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Abstract: Multiplicative calculus, also called non-Newtonian calculus, represents an alternative
approach to the usual calculus of Newton (1643-1727) and Leibniz (1646-1716). This type of calculus
was first introduced by Grossman and Katz and it provides a defined calculation, from the start,
for positive real numbers only. In this investigation, we propose to study symmetrical fractional
multiplicative inequalities of the Simpson type. For this, we first establish a new fractional identity
for multiplicatively differentiable functions. Based on that identity, we derive new Simpson-type
inequalities for multiplicatively convex functions via fractional integral operators. We finish the study
by providing some applications to analytic inequalities.
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1. Introduction

Between 1967 and 1970, Grossman and Katz created the first non-Newtonian cal-
culation system, called geometric calculation. Over the next few years they created an
infinite family of non-Newtonian calculi, thus modifying the classical calculus introduced
by Newton and Leibniz in the 17th century each of which differed markedly from the
classical calculus of Newton and Leibniz known today as the non-Newtonian calculus or
the multiplicative calculus, where the ordinary product and ratio are used, respectively, as
sum and exponential difference over the domain of positive real numbers see [1]. This cal-
culation is useful for dealing with exponentially varying functions. It is worth noting that
the complete mathematical description of multiplicative calculus was given by Bashirov
et al. [2]. We recall that the multiplicative derivatives p* of positive function p is defined

as follows: )
cn e [P h)>h
o0 = tim(P5)

The relation between p* and the ordinary derivative o’ is as follows:

o

p*(t) = eMmP®) = oo

Theorem 1. Let p : [I,k] C R — R be four times continuously differentiable function on (1, k).
Then we have

k
1 I +k 1 (k—1)?*
6(P(l) +4p(2 ) +P(k>> “E=1) p(u)du| < W"P(4)”w, 1)

where Hp(‘*)H = sup ‘p(‘*)(u)‘ < co.
* ]

ue(lk
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The above inequality is well known in the literature as Simpson’s integral inequality.
Regarding some results connected with inequality (1) and related inequalities, we refer
readers to [3-17]. Shafqat et al. [18] investigated the existence and uniqueness of the Fuzzy
fractional evolution equations. Boulares et al. [19,20] studied the existence and uniqueness
of solutions for non-linear fractional differential equations.

The multiplicative derivative admits the following properties:

Theorem 2 ([2]). Let p and © be two multiplicatively differentiable functions, and c is an arbitrary
constant. Then functions cp,p9,p + 0, 0/9 and p® are * differentiable and

* (cp)(t) =p"(1),
o (p8)(t) =p" ()" (1), "

®)
p+8)"(1) = " (1) FHET 8% (1) e

k
The multiplicative integral noted * integral [ (p(t))dt has the following relationship
l

k k
[t = exp{ / 1n<p<t>>dt}.
1 1

The multiplicative integral enjoy the following properties:

with the Riemann integral

Theorem 3 ([2]). Let p be a positive and Riemann integrable on [1, k|, then p is multiplicative
integrable on (1, k] and

The multiplicative integration by parts is given by the following Theorem:

Theorem 4 ([2]). Let p : [I,k] — R be multiplicative differentiable, let ¢ : [I,k] — R be
differentiable so the function p® is multiplicative integrable, and
k
N _ p(k)°® 1
0" (t) = 0™ % e
l [ (e ™)

1

Using the above result and the properties of multiplicative derivatives and integrals,
Ali et al. [21], established an interesting identity given by the following lemma.
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Lemma 1 ([21]). Let p : [I,k] — R be multiplicative differentiable, let h : [I,k] — R and let
¢ : ] C R — R be two differentiable functions. Then we have

k

/ SAGEL ))‘” _ p((k))"™ 1 _
1 p(h(l))ﬁ(l) j(p(h(t))ﬂ/(t))dt
1

In recent years, much interest has been given to the development of the theory and ap-
plications of multiplicative calculus. Aniszewska [22] presented the multiplicative version
of the Runge-Kutta method and used it to solve multiplicative differential equations. Riza
et al. [23], gave the numerical solutions of multiplicative differential equations by intro-
ducing the multiplicative finite difference methods. Misirli and Gurefe [24] presented the
multiplicative Adams Bashforth-Moulton methods. Bashirov and Norozpour [25] extended
the multiplicative integral to complex valued functions. Bhat et al. defined multiplicative
Fourier transform in [26] and multiplicative Sumudu transform [27]. Bashirov [28] studied
double integrals in the sense of multiplicative calculus. In [29], Ali et al. introduced the
multiplicative Hermite-Hadamard inequality for multiplicative integral as follows:

Theorem 5. Let f be a positive and multiplicatively convex function on interval [uy,uy], then
following inequalities hold

f(15) < ( / (f(t))‘”) < G(f(ur), f(u),
where G(-, ) is a geometric mean.

In [30], Ali et al. generalized the obtained results in [29], via ¢-convexity. In [31],
Ozcan generalized the results in [29] under the h-convexity. In [32], Ozcan established the
analogue preinvex of the Hermite-Hadamard inequality. In [33], Ozcan generalized the
results of [32] for h-preinvex functions.

In [34], Meftah studied the so-called Maclaurin type inequalities.

Theorem 6. Let f : [uy,uz] — R be a multiplicative differentiable mapping on [uy, up] with
uy < up. If f* is multiplicative convex on [uy, uy], then we have

<f<5u16+u2)3f<u1;u2> f(ul +5u2> > (/f )“1 i
< (e (r () (e (52) " (22))

() )

In[21], Ali et al. gave some Ostrowski and Simpson type inequalities for multiplicative
integrals as follow:
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Theorem 7. Let f : [° C R — R be a multiplicative differentiable mapping on I°, uy, up € I°
with uy < uy. If f is increasing on [uy, up) and f*is multiplicatively convex on [uq, uy], then the
following Ostrowski type inequality for multiplicative integrals holds for all x € [uy, up)

f) ( / (f(t))‘“)

u

X—q +(1127x)3+(x7u1)3 Uy —Xx +(uz—x)3+(x7u1)

< (Pt s ()R s

3

Theorem 8. Let f : I° C R — R be a multiplicative differentiable mapping on I°, uy, up € I°
with uy < uy. If f is increasing on [uq, up| and f* is multiplicatively convex on [uy, uy], then we
the following Ostrowski type inequality for multiplicative integrals holds for all x € [uq, u;]

(For (572 ) s (/ <f<t>>‘”> B PRl

Recently, Abdeljawad and Grossman [35] introduced the multiplicative Riemann—
Liouville fractional integrals as follows:

Definition 1. The of order « € C ,Re(a) > 0, respectively, are defined by
(11%) (x) = el (o)) @)

and

(o1tp) (x) = el 0P) )

where ] and J_ denote the left and right Riemann—Liouville fractional integral, defined by
X
1 ,
« _ Y 1
U10) () = £ [ (x— 0" Tp(t)dt, ] < x

and
k

(Ji-p) (x) = r(lw)/(t —x)* Lo(t)dt, x < k.

Budak and Ozcelik [36], used the above operator and presented some Hermite—
Hadamard type inequalities for multiplicatively fractional integrals.

Hoping to stimulate future research in this direction and motivated by paper [21]
and some of the existing results in the literature, in this study, we prove a new integral
identity. Based on this, we establish some symmetrical fractional multiplicatively Simpson
type inequalities for convex functions. Some applications to special means are proposed to
demonstrate the effectiveness of our finding.

2. Main Results

We first recall that a positive function p is said to be multiplicatively convex, if the
following inequality holds

p(tx+ (1= 1t)y) < [o(x)]'[o(y)]" .

Lemma 2. Let p : [I, k] — R be a multiplicative differentiable mapping on |1, k] with | < k. If p*
is multiplicative integrable on [1, k|, then we have the following identity for multiplicative integrals
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and

I

Il
/
*

exp{z”z‘(t)"‘1 ln(p((l -0l + tlerk))dt}
1

1 I+k 3
= (p(M)e{p
( ( i >> exp{f,j‘};%Zw—l) 11n<p<u>>du}
B et (p(4))°
- 20— 1p(41)
Lk ="
(exp{ (r(l) { (u—D*"VIn(p(u))du

=t (o) (e (1))
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1

k

e ] (k= u)“—llnpw)dt}
+
Z

(k—I)"

= (o)) (o . !
(p< 2 >> (p(k)) exp{za 1ra+1)<r(a)f (k—u)*~ 1lnf() )}

1
3 1
o(555) p(k)e
= 2017 (a41) *
k (k—1)%
exp F(la) [ (k—u)* " np(u)du
Itk
Z
Ik 1 227 1p(ag)
+ 3 1 (k=)
o(55) etk ((vrtpe) )
Multiplying the above equalities, we obtain
Ik 1 Ik 221
1 + 3 + (k=1)%
nxn =) (p(55)) (e (55))

20— 1r(a+1)

X(p<lJ2rk>)é(P(k))‘l’-<<*I§%kp> (k)) (=1)"
- ((P(l))(PC;k))”‘(P(k)))é((lmp)(l;k) (*I‘hzkp) (k))za(:rgx;n

which is the result. The proof is completed. [

Theorem 9. Let p : [I,k] — R™ be a multiplicatively differentiable mapping on [1, k] with | < k.

If Inp*| <InM on [1, k], then we have

2011 (g41)

‘ ((p(z» (p(’ﬁ"))%(k») % (o (55) (ciae) i) "

1
k=l 1\atl
o (e m)

Proof. From Lemma 2, properties of multiplicative integral and using the fact that |In f*| <

In M, we have
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IN

IN

3l (05 )
l

NSy

x(exp{k;Z;—(l—t)“ ln(p*((l—t)l—;k—l—tk )‘dt})
exp k4_lln./\/17t —;‘dt}) (exp{k;lln./\/ly —(1—t)“‘dt})
0 0

1
1
1 a+2 20 /1\at!
eXp{ 1 (3(0¢+1)+a+1(3> )mM})
k—1{ a+2 o 1)1k
<exp{ 4 <S(o¢+1)+zx+1(3> In M
k 2 1%“
+1\3

The proof is completed. [

Corollary 1. In Theorem 9, if we take x = 1, we obtain
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((p(l))(p(lZ"))4<p<k>>>é (2p<u>du) < e,

Theorem 10. Let p : [I, k] — R be a multiplicative differentiable mapping on |1, k] with | < k. If p*
is multiplicatively convex function on [1, k|, then we have

201 (a41)

‘ <<p<1>> (p(”zk))4<p<k>>) % (0 (54) (catgp) ) "

— —u a 1 %
e (e ()
(7)) |
Proof. From Lemma 2, modulus and properties of multiplicative integral, we have

“Ir(a+1)

((p(l)) (p(’é")f@(k))) % (o) (45) (c1t0) ) B

1np*<(l—t)l+tl—;k>‘dt})
(2_;(14)“) lnp*((l—t)l—iz_l(—i—tk)’dt}). @)

From the multiplicative convexity of p* and properties on In, we have

AN

]

X

o
——

=
o]

O\»—l

lnp*<(1—t)l+tl_glc>’ < ln(p*(l))(l_t)(f*<l_|2—k>>t ®)
— (o (s ()
and
g (1-0" 5" k)| < 1n<p*<l>><“>(f*(’§"))t @
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Combining (2)-(4), we obtain

((P(l)) (p<l?{>)4(p(k))> % <(in‘P) (l—;k) <*I‘1%kp> (k)) _zw_(kl,l)aﬂ

IN
o
—N—
e
N
/—\
—
\
7 N\
N =
|
N —
~
=
~~_
7 N
—_
|
-
N—
—
=]
~
i)
—
=
+
—
—_
5
TN
~~
7 N
N‘+
>
N~~~
~__
'
[
~

-
— e p{kzl(((/ <2—;t“)(1—t)dt+ 7 <;t“1)(1t)dt) In(o* (1))
' (3)*
(3)
+ ( 4 <t )tdt+(;)i (;t“é)tdt) ln(f*<l—'2—k>>)}
et [ ] oy
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1+2

1 (et a2 ()
+ln<f (Z;k)>2< 2)(at2) T a+2\3
k—1 I +k %<z1+2)(a+2+ H )

X expy —— ln(p( 5 ))

i 2
* ln(f*(k))<<mﬂﬁl(§)”“z(ﬂz)(é)lﬂ))) }

(f (l +k)> kzl<6&f’z>+ﬂ(é)l+§>l

2

where we have used

1 1 .
51D >tdt

- (i (3) ms())

7N
N =

|
N| =
-

=
"
~
—_

|

-
S—
QU

Il
\H
7N
o))

RBl—=

LG ] Gy
- 12(aa+ 2) G)

4 — o —3u o 1\ o 1\«
T RetD@+2) et (3) T 12(x+2) (3)

and

Rl=

1-(3)

(;t“—é)tdt = / (;(l—f)“—é>(1—f)df
0

—
Gl
~ \,_.
2=
Gl

4—u n 1
= DRat2) T 12@r2) (3) '

The proof is completed. O
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Corollary 2. In Theorem 10, using the multiplicative convexity of p*, ie., f* (%) < /p*()p*(k),
we obtain

‘<(p(l))(p<l;k>>4(5’(k>))é((ﬂi‘p)(ﬁ") <*I@p> (k)>—2“(,jf;;;+l>
Ea (124(311#(“5‘;1) (%)Ha).

< e M) (F k)] ™

Corollary 3. In Theorem 10, if we take a = 1, we obtain

<(p<,))(p(l§k)) )(/p >1k

< [<p*<l>><f*<k>>]821<"”(f*(’;"))“‘*(k g

Corollary 4. In Corollary 3, using the multiplicative convexity of f*, we obtain

I+k\\* )‘l’(k udu)[]k SN (R ED
((pm)(p( ) otk {p() < (0" ) ()]

3. Applications to Special Means

We shall consider the means for arbitrary real numbers , k.
The Arithmetic mean: A(l, k) = 5.

The Harmonic mean: H(I, k) = lzil;(

The logarithmic means: L(I, k) = k lnl’l k>0,and ! # k.

kp+144p+1

The p-Logarithmic mean: Ly ([, k) = (W

)”,z,k >0, #kand p € R\{—1,0}.

Proposition 1. Let [,k € Rwith 0 < I < k, then we have

b GHTIR-AN) LR < o)

Proof. The assertion follows from Corollary 1 applied to the function p(f) = et whose
1 1 k 1=k
p*(t)=e 2, M =¢ 2 and (fp(u)d”> =exp{-L7}(k)}. O
l

Proposition 2. Let [,k € Rwith 0 < I < k, then we have

_ p—1_,p—-1
LAWK+ A (L))~ L (LK) ’ < ep%

Proof. The assertion follows from Corollary 4, applied to the function p(t) = ¢!’ with p > 2
1
k =
whose p*(t) = e#"’ " and (fp(u)d”> = exp{—LZ(l, k)} O
1

4. Conclusions

Multiplicative calculus is an alternative to Newtonian calculus. Since its inception
as one of the non-Newtonian calculus, a number of works have been devoted to different
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applications of multiplicative calculus. In this study, we discussed Simpson-type fractional
integral inequalities for multiplicatively differentiable functions based on a new identity.
Some special cases are derived and applications of our findings are provided. We hope that
the new strategy formulated in this paper will inspire and stimulated further research in
this promising field of multiplicative fractional inequalities.

Author Contributions: Conceptualization, A.M., H.B. and B.M.; methodology, A.M. and H.B.; writ-
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