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Abstract: The role of spin and orbital rotational symmetry on the laser-induced magnetization
dynamics of itinerant-electron ferromagnets was theoretically investigated. The ultrafast demagne-
tization of transition metals is shown to be the direct consequence of the fundamental breaking of
these conservation laws in the electronic system, an effect that is inherent to the nature of spin-orbit
and electron-lattice interactions. A comprehensive symmetry analysis is complemented by exact
numerical calculations of the time evolution of optically excited ferromagnetic ground states in the
framework of a many-body electronic Hamiltonian. Thus, quantitative relations are established
between the strength of the interactions that break the rotational symmetries and the time scales that
are relevant for the magnetization dynamics.

Keywords: ultrafast magnetization dynamics; spin-orbit coupling; band and itinerant ferromagnets;
symmetry breaking

1. Introduction

Symmetry and the absence thereof are known to play a central role in a wide variety
of physical phenomena, most decisively when these have a quantum mechanical origin.
Condensed-matter magnetism, as a profoundly quantum mechanical effect, is one of
its most remarkable demonstrations. Indeed, the pseudovector character of the spin
and orbital contributions to the average magnetization renders geometry and symmetry
arguments particularly appealing. Let us mention, for example, the Mermin–Wagner
theorem, which establishes the absence of finite-temperature long-range magnetic order
in two-dimensional systems with a continuous symmetry [1], the spontaneous symmetry
breaking at the origin of long-range magnetic-order below the Curie and Néel temperatures,
or the breaking of spin-rotational symmetry through spin-orbit interaction, which explains
the stability of the magnetization direction with respect to the lattice structure. Whenever
the magnetic behavior is conditioned by symmetry arguments, it is clear that the presence
of any interaction or external field lifting the underlying symmetry results in dramatic
effects. For instance, in the context of the Mermin–Wagner theorem, breaking the spin-
rotational symmetry triggers the appearance of an easy magnetization axis, which stabilizes
the long-range order and the magnetization direction at finite temperatures. Therefore,
characterizing the symmetries underlying a given physical problem and identifying the
possible sources of their absence are crucial for the theoretical description of magnetic
materials.

Symmetry considerations are also very helpful for understanding time-dependent
quantum phenomena, not least as the justification for absorption selection rules and for any
conservation laws relevant to the subsequent time evolution. And yet, in the particular case
of the laser-induced magnetization dynamics of ferromagnetic metals, a straightforward
analysis of the selection rules and conservation laws seems quite puzzling at first, to the
point that it actually reveals the fundamental interest of the phenomenon. The basic experi-
mental observation is the following. When a ferromagnetic material, such as a Ni film, is
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optically excited with a very short intense laser pulse having a wavelength λ ' 600–800 nm,
a very rapid decrease of the sample magnetization is observed within times of the order
of a few hundreds of femtoseconds [2–6]. These experimental findings are fascinating for
several reasons: (i) The time scale is far too short to justify the validity of the hypothesis of
equilibrium statistical mechanics, which would allow explaining the demagnetization sim-
ply as the result of thermalization. A microscopic understanding requires, therefore, taking
explicitly into account the nonadiabatic dynamics of the ferromagnetic solid as a correlated
many-body system. (ii) The laser excitation cannot be directly responsible for the observed
significant magnetization change, because the total spin of the system is conserved to an
extremely high degree in optical absorptions and because experiments with very short
pulses show that the demagnetization takes place even well after the exciting pulse is
over [7–9]. Furthermore, similar ultrafast demagnetizations have been observed by using
indirect non-optical sources of excitation [10–12]. One concludes that the observed ultrafast
demagnetization (UFD) reflects the non-conservation of the electronic spin polarization of
the solid. (iii) The fundamental interaction coupling the electron spin with other degrees
of freedom, thus allowing for the non-conservation of the total spin polarization, is the
spin-orbit coupling. Since this interaction preserves the total spin-plus-orbital angular
momentum, as rooted in the isotropy of space, one has experimentally looked for signs
of an enhancement of the orbital magnetic moments along the demagnetization process.
However, time-resolved X-ray magnetic circular dichroism (XMCD) experiments clearly
show that the orbital moments at the d-shell of the magnetic transition-metal atoms are
not enhanced in any significant way as the system demagnetizes [4–6]. Elucidating the
microscopic mechanisms behind the non-conservation of the spin angular momentum
represents, therefore, a fundamental theoretical challenge.

In past years, the UFD effect has been the subject of a considerable theoretical and
experimental research activity. Several theoretical explanations have been proposed, some
of them based on a purely electronic description of the problem [13–18] and others that do
not require respecting electronic angular momentum conservation, such as temperature
models [2,19,20], superdiffusive transport [21,22], and spin-to-lattice angular momentum
transfer [23–25]. These interpretations are not all necessarily mutually exclusive. The
possibility that more than one type of process contributes to the UFD effect cannot be
ruled out a priori. It is the purpose of this paper to review and analyze a previously
formulated many-body electronic theory of the magnetization dynamics of laser-excited
transition metals from the perspective of symmetry [15,18]. In this way, it is shown how
the experimentally observed UFD of itinerant-electron ferromagnets can be understood
as the consequence of breaking two fundamental rotational symmetries, namely, the spin-
rotational symmetry, due to spin-orbit interactions, and the orbital rotational symmetry,
due to the interaction of the electrons with the lattice.

The remainder of the paper is organized as follows. In Section 2, the theoretical
background is recalled. The fundamental symmetries behind the problem, the different
interactions which may break them, and the consequences that this would have on the laser-
induced magnetization dynamics are pointed out. These qualitative considerations are
complemented in Section 3, where the results of exact numerical calculations of the many-
electron dynamics triggered by short-pulse optical excitations are presented. The time
evolutions of the spin and orbital average magnetizations are analyzed. The corresponding
demagnetization times are derived together with the degrees of demagnetization reached
at long times. Thus, quantitative relations between the ultrafast demagnetization effect and
the interactions responsible for the rotational symmetry breakings are revealed. Finally,
Section 4 summarizes our conclusions.

2. Theory

Symmetries are not obvious a priori since most real situations we are confronted
with are asymmetric. Therefore, in order to analyze the UFD effect from the perspective
of symmetries, it is useful to start from an idealized situation in which the sources of
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asymmetry are absent. If the electronic spin and translational degrees of freedom were
decoupled, and in the absence of external magnetic fields, the Hamiltonian of the system

would commute with the spin operator ~̂S. The total spin of the system would be then
conserved, even in the presence of a laser field, once the highly improbable direct coupling
to the magnetic field is ruled out. Consequently, no demagnetization effect would be
possible. One concludes that breaking spin-rotational symmetry through the spin-orbit
interaction is central to a microscopic understanding of the problem. Furthermore, if the
lattice potential acting on the electrons were absent or rotationally invariant, the total
angular momentum ~J = ~S +~L would be conserved, even in the presence of spin-orbit
coupling (SOC). Thus, any decrease of ~S would be compensated by an enhancement of
the orbital angular momentum~L, again in contrast to the experimental observations. One
concludes that breaking the orbital rotational symmetry, a natural consequence of the lattice
potential of the solid, is equally important for the theoretical description of the UFD effect.
As is often the case with symmetry arguments, the previous line of reasoning provides no
information about the actual quantitative consequences of these symmetry breakings on
any specific system under study. Indeed, the strength and effectiveness of the SOC depend
strongly on the considered element and its electronic structure, and the influence of the
lattice potential on the magnetically relevant d or f orbitals is sensitive to the spatial extent
of the corresponding wave functions. Nevertheless, the above symmetry considerations
are very useful since they define the minimum requirements to be fulfilled by a quantum
theory of the laser-induced magnetization dynamics.

In order to analyze the consequences of spin and orbital rotational symmetry on the
laser-induced magnetization dynamics, we considered an electronic model Hamiltonian
that focuses on the itinerant electrons responsible for transition-metal (TM) magnetism [15].
The many-body Hamiltonian is given by

Ĥ = Ĥ0 + ĤC + ĤSO + ĤE(t) . (1)

The first term:
Ĥ0 = ∑

iασ

εα n̂iασ + ∑
i 6=j

∑
αβσ

tαβ
ij ĉ†

iασ ĉjβσ (2)

describes the single-particle band structure of the most relevant valence bands and is
responsible for electron delocalization, band formation, and metallic behavior. In the usual
notation ĉ†

iασ, ĉiασ, and n̂iασ stand for the creation, annihilation, and number operators
of a spin-σ electron at atom i having the radial and orbital quantum numbers α = nlm.
For simplicity, only the 3d and 4p valence orbitals are taken into account explicitly in
the calculations, since they determine the magnetic properties and the optical absorption.
Thus, εα represents the energy of the atomic-like 3d or 4p orbitals, which are assumed to
be independent of the magnetic quantum number m, and tαβ

ij denotes the corresponding
hopping integrals between atoms i and j. The second term:

ĤC =
U
2 ∑

i
n̂d

i (n̂
d
i − 1)− J ∑

i
~̂s d

i ·~̂s d
i (3)

describes the dominant intra-atomic Coulomb interaction among the 3d electrons, where
n̂d

i and ~̂s d
i refer, respectively, to the total 3d number and spin operators at atom i. ĤC

is characterized by the average direct Coulomb integral U and exchange integral J, as
derived, for example, in [18,26]. The interplay between the strength of the local Coulomb
interactions U and J and the kinetic energy gain resulting from electron delocalization,
as measured by the electron hoppings and the d band width, defines the ground-state
magnetic order and the stability of magnetism at finite temperatures [27–30]. The third
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term in Equation (1) takes into account the spin-orbit interaction among the 3d electrons. It
is given by

ĤSO = ξ ∑
i

∑
αβ∈3d

∑
σσ′

(~l ·~s )ασ,βσ′ ĉ
†
iασ ĉiβσ′ , (4)

where ξ is the SOC constant and (~l ·~s )ασ,βσ′ denotes the intra-atomic matrix elements of
the scalar product between the orbital and spin angular momenta at atom i. Finally, the
last term:

ĤE(t) = e~̂r · ~E(t) = e E(t) ∑
iαβσ

〈 α |~ε ·~̂r| β 〉 ĉ†
iασ ĉiβσ (5)

describes the interaction with the external laser field ~E = E~ε in the intra-atomic dipole
approximation, where~ε denotes a dimensionless normalized polarization vector and e > 0
is the electron charge. Notice that the dipole matrix elements 〈 α |~̂r| β 〉 satisfy the atomic
selection rule 〈 nlm |~̂r| n′l′m′ 〉 = 0 unless l − l′ = ±1, so that the optical excitation involves
only 3d-4p transitions.

Before closing this section, it is worth underlining the most important symmetries of
the problem, together with the main interactions that could break them, which are common
to both the present model description and the complete first-principles Hamiltonian. The
single-particle kinetic and potential energy operator Ĥ0, the electron-electron interaction
ĤC, and the interaction with the laser field ĤE conserve the total spin ~S = ∑i~si of the

electronic system, since [Ĥ0, ~̂S] = [ĤC, ~̂S] = [ĤE, ~̂S] = 0. Consequently, in the absence
of SOC, the Hamiltonian Ĥ0 + ĤC + ĤE would conserve ~S. In fact, it is the spin-orbit
operator ĤSO that breaks the spin-rotational symmetry of Ĥ by coupling the spin and

orbital degrees of freedom ([Ĥ, ~̂S] = [ĤSO, ~̂S] 6= 0). Furthermore, the electronic transitions
induced by ĤSO involve angular momentum transfers between~si and~li, keeping~ji =~li +~si

unchanged since [ĤSO,~̂ji] = 0 for all i. The invariance of the total angular momentum
~J = ∑i~ji under ĤSO follows. Moreover, the conservation of ~J is also respected by the
Coulomb interactions, which are invariant upon spin and orbital rotations, thus preserving
~si,~li, and~ji. However, it is important to notice that the interatomic hybridizations in Ĥ0,
though total-spin conserving, do not preserve the orbital angular momentum ~L = ∑i

~li.
Indeed, the interatomic hoppings tij are the consequence of the interaction of the electrons
with the lattice potential, which is obviously not invariant upon rotations of the electronic

coordinates. As a result, [Ĥ0,~̂L] 6= 0 and [Ĥ0,~̂li] 6= 0. The conservation of the total angular
momentum~J is broken. The origin of the non-conservation of~L lies, as already mentioned,
in the lack of rotational symmetry of the lattice potential, which leads to non-vanishing
hopping integrals tαβ

ij between orbitals α and β having different magnetic quantum numbers
m at neighboring atoms. In this context, it is useful to recall that in the present electronic
model [Equations (1)–(5)] the ionic degrees of freedom and the lattice potential are regarded
as static. Therefore, electronic transitions involving angular momentum transfer due to
dynamical electron-phonon processes, which are also a consequence of breaking the orbital
rotational symmetry of the electronic system, were not taken into account. Finally, notice
that the previous symmetry considerations apply not only to the model Hamiltonian
given by Equations (1)–(5), but also to the complete first-principles electronic Hamiltonian.
Indeed, from an ab initio perspective, the orbital rotational symmetry and the conservation
of~L are broken by the electrostatic potential generated by the ions in the solid, while the
spin-rotational invariance and the conservation of ~S, in the absence of magnetic fields, are
broken by the SOC. In the following section, the consequences of these main symmetry
breakings on the ultrafast magnetization dynamics of transition metals are quantified by
calculating the exact time evolution of the laser-excited ferromagnetic ground states in the
framework of the proposed many-body model.
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3. Results and Discussion

For the calculations we used a tetrahedral cluster model, which corresponds to the
local structure of a face-centered cubic crystal such as Ni, with parameters appropriate for
3d TM ferromagnets: the SOC constant ξ = 70 meV, which was taken from calculations on
3d TM atoms [31], a direct Coulomb integral U = 10 eV and an exchange integral J = 2 eV,
estimated from experimental photoemission spectra and theoretical calculations of the Ni
density of electronic states [32–35], and a 3d-4p promotion energy ∆εpd = 1 eV, estimated

from band structure calculations [36]. The hopping integrals tαβ
ij were determined by

applying the two-center approximation [37] with the nearest-neighbor (NN) Slater–Koster
integrals (ddσ) = 0.6 eV, (ddπ) = −0.3 eV, (ppσ) = 1.5 eV, and (pdσ) = −0.4 eV. These
values are similar to those obtained in [36] by fitting the band structure of bulk Ni. For
simplicity, the orbital degeneracy was reduced by considering only the 3d orbitals having
|m| ≤ 1 and the 4p orbital having m = 0. In this way, one obtains, for example for Ne = 5
electrons, a ground state showing an almost saturated spin polarization Sz = 0.58 h̄ per
atom, a strongly quenched orbital angular momentum Lz = 0.11 h̄ per atom, and a small
but non-negligible 4p band occupation np ' 0.028 per atom. Notice that the quantization z
axis coincides with the easy magnetization axis.

The laser excitation triggering the magnetization dynamics is given by a time-depend-
ent electric laser field ~E with wavelength λ = 1050 nm and a Gaussian envelope having
a pulse width τp = 1 fs. The fluence of the pulse was chosen so that the absorbed energy
amounts to ∆E = 227 meV per atom, which is not far from the typical absorbed energies
estimated in experiment (e.g., ∆E ' 100 meV in. [3]). The dynamics following the laser
excitation of the ground state has been calculated exactly by using the short-time itera-
tive Lanczos method [38]. In this way, any mean-field approximation to the many-body
Coulomb interaction ĤC, which would introduce artificial symmetry breakings, is avoided.
The full correlated nature of the dynamics of the many-electron system and, in particular,
its fundamental conservation laws are thereby preserved.

From a physical perspective, the model respects the semilocal nature of the microscopic
mechanisms of angular momentum transfer behind the UFD effect, as discussed in [15,18].
Furthermore, by varying the strength of the spin-orbit coupling ξ and hopping integrals
tij, it is possible to quantify the effects of spin-rotational and orbital-rotational symmetry
breakings on the magnetization dynamics. To this aim, it is meaningful to always consider
the same initial laser-excited state corresponding to the above-given realistic SOC strength ξ

and hopping integrals tαβ
ij , since, otherwise, changes in ξ and tαβ

ij would alter the absorption
spectra and the absorbed energy, which are known to have a strong effect on the subsequent
dynamics [18]. In this way, the different time evolutions can be directly related to the
symmetry-breaking interactions without any spurious effects due to changes in the initial
excitation. Thus, the focus is set on the role played by the spin-orbit interaction and the
electron delocalization on the electronic dynamics.

3.1. Breaking Spin-Rotational Symmetry

The role of spin-rotational symmetry on the laser-induced magnetization dynamics
has been investigated by comparing the time evolutions for different spin-orbit coupling
strengths ξ. Since the spin-orbit interaction is the only term in the Hamiltonian that
precludes total spin conservation, one may regard ξ as a measure of the importance of this
symmetry breaking. Figure 1 shows the time dependence of the average spin-component
Sz along the favored magnetization direction for representative values of ξ in the range
0 ≤ ξ ≤ 90 meV. The averages of the perpendicular components Sx and Sy are nearly
zero for the tetrahedral geometry. For the sake of comparison, the same initial state
has been considered in all cases, which corresponds to ξ = 70 meV at t = 1 fs. As
expected, no demagnetization takes place for ξ = 0, since the total spin ~S is conserved.
In contrast, already the smallest considered ξ = 5 meV is sufficient for an appreciable,
albeit modest demagnetization to set in. The mechanism by which the laser excitation
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triggers the magnetization dynamics can be qualitatively understood by noting that the
laser absorption changes the single-particle electronic occupations, by exciting majority-
spin electrons to energies where empty minority-spin states are available and by creating
holes in the minority levels at energies comparable to those of occupied majority-spin states.
This allows for efficient spin-orbit-induced spin-flip transitions, which set in motion the
spin-to-orbital angular momentum transfer at the origin of the ultrafast demagnetization.
The results for different ξ clearly demonstrate that the SOC strength plays a central role in
the demagnetization process, by affecting both the demagnetization rate and the degree of
demagnetization at long times after the excitation. This is noteworthy taking into account
that all the time propagations shown in Figure 1 were obtained starting from the same
excited state with the same absorbed energy and number of photons [18].
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Figure 1. Time dependence of the total spin per atom Sz/Na for different SOC strengths ξ following an
optical excitation with a 1 fs laser pulse. The full curves were obtained from exact time propagations,
while the dashed curves show the corresponding fits to the exact results using the exponential law
Sz(t) = (S0

z − S∞
z ) e−t/τS + S∞

z . The subfigures (a,b) highlight the behavior for shorter and longer
times, respectively.

The calculated time dependence of Sz(t) for different ξ can be characterized by two
main parameters, namely, the spin demagnetization time τS and the degree of spin demag-
netization ∆Sz = S0

z − S∞
z at long times. Indeed, as shown by the dashed curves in Figure 1,

Sz(t) can be reasonably well fitted by a function of the form Sz(t) = (S0
z − S∞

z ) e−t/τS + S∞
z .

The results for τS and ∆Sz derived from the exponential fits to the exact Sz(t) are given in
Figure 2 as a function of ξ. One observes that τS decreases monotonously with increasing
ξ. In particular, for ξ = 5 meV the demagnetization time is τS = 978 fs, whereas for
ξ = 140 meV it is only τS = 16 fs. The dependence of τS on ξ can be approximated



Symmetry 2023, 15, 457 7 of 13

by an inverse power-law of the form τS ∝ 1/ξν with ν ' 1.3, which lies in between
ν = 1, as estimated from the energy-time uncertainty relation, and ν = 2, which would
follow from Fermi’s golden rule. The importance of the strength of the interaction break-
ing spin-rotational symmetry is thus quantified, as it determines the time scale of the
demagnetization effect [15].
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a

Figure 2. Spin demagnetization time τS (red crosses) and long-time degree of demagnetization
∆Sz = S0

z − S∞
z (blue circles) as a function of the SOC strength ξ. The results were derived from the

exponential fits to the exact time dependence Sz(t) given in Figure 1. The dashed red curve shows
the fitted inverse power-law τS ∝ 1/ξν with ν ' 1.3. The blue lines connecting the circles are a guide
to the eye.

A further important result concerning the role of spin-orbit interactions is that ξ also
conditions the long-time degree of demagnetization ∆Sz = S0

z − S∞
z , where S0

z denotes the
spin projection in the initial state and S∞

z its value in the limit of t� τS. In Figure 2, results
are given for ∆Sz as a function of ξ, which were derived from the exponential fits to the
exact Sz(t) of Figure 1. Starting from ξ = 0, where the absence of SOC implies ∆Sz = 0, and
increasing ξ, one observes that ∆Sz grows relatively fast for small ξ up to ξ ' 20 meV. This
is followed by a much slower linear increase of ∆Sz in the range 30 meV ≤ ξ ≤ 140 meV.
Note that we are unable to properly assess numerically the limit of t� τS for ξ → 0, where
τS itself diverges. Thus, the question whether an arbitrary small symmetry breaking (i.e.,
ξ → 0) might yield a finite ∆Sz for t → ∞ cannot be addressed in the present theoretical
framework. Nevertheless, for reasonably long finite times (e.g., t = 1–2 ps), the calculations
clearly show that the degree of demagnetization vanishes as ξ → 0. In fact, a continuous
decrease ∆Sz → 0 in the limit ξ → 0 can be qualitatively understood by recalling that the
SOC-induced spin flips leading to demagnetization necessarily involve finite changes in the
local exchange energy as well as changes in the relative orientations between neighboring
spins [see Equation (3)]. Since these energy differences remain finite independently of the
value of ξ, the spin fluctuations induced by the SOC should be progressively inhibited as
the coupling constant ξ vanishes.

The results presented in the following section show that the ultrafast demagnetization
effect is as indissociable from breaking the spin-rotational symmetry as it is indissociable
from the absence of orbital rotational symmetry caused by the lattice potential. In fact, all
the above results were obtained by taking full account of the interactions of the electrons
with the lattice, as given by the corresponding realistic values of the hopping integrals and d
band width. Still, before quantifying the role of orbital rotational symmetry, it is meaningful
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to turn our attention to the dynamics of the orbital angular momentum~L, which is triggered
by the laser excitation. Figure 3 shows the time dependence of the spin, orbital, and total
angular momenta per atom Sz, Lz, and Jz for realistic values of both ξ and tαβ

ij . One observes
that in the ground state, before the excitation, Lz ' 0.11 h̄ is already strongly quenched,
since almost any residue of the atomic second Hund rule is washed away by the interatomic
hybridizations responsible for band formation and electron delocalization. This trend is in
good agreement with the behavior found in transition metals [39]. After the excitation, Lz
shows some oscillations in the range 0.02 h̄ ≤ Lz ≤ 0.13 h̄, remaining essentially quenched,
while Sz decreases most significantly from Sz = 0.58 h̄ in the ground state to Sz ' 0.2 h̄
in the long-time limit. The total electronic angular momentum Jz = Lz + Sz decreases
accordingly (see Figure 3). These results show that the orbital Lz is no reservoir for the
decreasing spin Sz, in agreement with time-resolved XMCD experiments [4–6]. Physically,
the fact that Lz remains quenched for all times and that Jz is not conserved during the
demagnetization process reflects the transfer of angular momentum from the electronic
to the lattice degrees of freedom. It is the goal of the following section to show that the
non-conservation of~J is the consequence of the absence of orbital rotational symmetry.
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Figure 3. Time dependence of the spin Sz, orbital Lz, and total Jz = Sz + Lz electronic angular
momenta per atom following a 1 fs laser-pulse excitation for SOC strength ξ = 70 meV.

3.2. Breaking Orbital Rotational Symmetry

The orbital rotational symmetry is broken in a solid by the deviations ∆v(~r) of the
lattice potential from atomic-like spherical symmetry. In the tight-binding method con-
sidered in this paper it is precisely ∆v(~r) that defines the interatomic hoppings tαβ

ij for
i 6= j [40] once the local orbitals have been chosen [see Equations (1)–(5)]. Therefore, the
interatomic hybridizations at the origin of electron delocalization and metallic behavior
give a direct measure of the quantitative importance of this symmetry breaking. Formally,
one may consider that the atomic spherically symmetric limit is progressively achieved
by increasing the distance Rij between NN atoms i and j up to infinity or, equivalently, by
reducing the absolute value of the hopping integrals down to zero. In order to understand
and quantify the importance of breaking orbital rotational symmetry on the laser-induced
dynamics of TMs, we took advantage of our model approach and varied the strength of
the hybridizations systematically by scaling the interatomic hoppings for i 6= j as tij = α t0

ij,

where 0 ≤ α ≤ 1 and t0
ij stands for the hopping matrix in the considered solid.

In Figure 4, results are given for the time dependence of the spin, orbital, and total
angular momenta per atom Sz, Lz, and Jz = Lz + Sz after the laser excitation for representa-



Symmetry 2023, 15, 457 9 of 13

tive values of the hopping scaling α keeping the SOC constant ξ = 70 meV. For the sake of
comparison, the same initial state has been considered in all cases, which corresponds to
α = 1 at t = 1 fs, as in Section 3.1. In the absence of symmetry breaking, i.e., for α = 0, the
total angular momentum Jz is conserved and no demagnetization takes place. However,
both Sz and Lz depend strongly on time, showing strong oscillations with an amplitude
|∆Sz| = |∆Lz| ' 0.14 h̄–0.28 h̄ per atom and a period T ' 39 fs. The amplitude of the oscil-
lations corresponds approximately to one S−L+ or S+L− transition, whereas the oscillation
period is of the order of the SOC timescale h̄/ξ = 10 fs. Clearly, these oscillations reflect
the exchange between spin and orbital angular momenta within the many-electron system,
which is decoupled from the lattice for tij = 0.
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Figure 4. Time dependence of the average spin, orbital, and total angular momenta Sz, Lz, and Jz

after a 1 fs laser-pulse excitation for representative scalings α of the electronic hopping integrals
tij = α t0

ij, where t0
ij corresponds to the Ni d band width. The SOC strength is ξ = 70 meV.

For nonvanishing hopping integrals (0 < α ≤ 1) different regimes need to be dis-
tinguished. For very small α (e.g., α = 0.025 as in Figure 4b) the hopping time scale
thop = h̄/|tij|, i.e., the time that an electron typically spends on the same atom, is much
longer than the time involved in intra-atomic spin-orbit transitions. Therefore, the oscilla-
tions Sz ↔ Lz are strong and very weakly damped. In this hypothetical situation where the
importance of orbital symmetry breaking is quantitatively weak (tij � ξ) it is not the SOC
but the hoppings what control the demagnetization rate, since the transfer of the angular
momentum to the lattice, or equivalently the quenching of Lz, is the slowest quantum
mechanical process. Of course, this limit does not apply to TMs, where the SOC strength is
about two orders of magnitude smaller than the d band width. However, one could imagine
possibilities of realizing this situation in some artificially made material, for example, in an
optical lattice or with magnetic impurities at low concentrations.

As the scaling factor α is increased and the hopping and SOC times start to become
comparable (e.g., α = 0.125 or α = 0.25 as in Figure 4c,d) the quenching of Lz is no longer
the bottleneck. The oscillations of Sz and Lz are still present, keeping essentially the same
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period as for small α. However, their amplitude is strongly reduced, not just at short times
but more and more as the system evolves in time. Furthermore, the demagnetization effect,
as measured by the importance and speed of the decay of Sz and Jz, becomes increasingly
important as α increases. Finally, for realistic values of the hopping integrals (e.g., α = 0.5
and α = 1 as in Figure 4e,f) the hopping time is of the order of 1 fs, which is much shorter
than the time involved in spin-orbit transitions. The rate by which the orbital angular
momentum Lz is quenched and transferred to the lattice is much stronger than the rate
by which spin polarization is transferred to the orbital angular momentum by the SOC,
so that all oscillations between Sz and Lz disappear (see Figure 4e,f). In this regime, the
demagnetization time is controlled by the SOC strength ξ, as discussed in the previous
section and in [15]. The central importance of breaking orbital rotational symmetry to the
ultrafast demagnetization of TMs is hereby demonstrated.

The characteristic time scale for the quenching of orbital angular momentum Lz and
the transfer of electronic angular momentum Jz to the lattice can be estimated by fitting the
exact calculated time dependence of Jz(t) with an exponential function. Notice, however,
that Jz(t) does not follow a simple exponential behavior very closely, since it shows some
oscillations superimposed on the overall decay as a function of t. The thus obtained decay
time τJ and long-time angular momentum transfer ∆Jz = J0

z − J∞
z are shown in Figure 5

as a function of the hopping-scaling parameter α. For α = 1, which corresponds to typical
values of the d band width in transition metals, τJ ' 32 fs is in qualitative agreement
with the experimental observations [2–6]. As the hopping integrals are reduced (α < 1),
one observes that τJ increases monotonously with decreasing α, tending to diverge in the
limit of α → 0, where the orbital rotational symmetry is restored. The increase of τJ is
rather weak at first, for 0.5 < α < 1, as long as the hopping integrals are not far from the
realistic values, then becoming quite strong as tij starts to approach values comparable
with the SOC strength ξ, and finally diverging. However, note that the enhancement of
τJ is significant even if the hopping integrals and d band width are much larger than the
SOC strength ξ. For example, for α = 0.5, τJ is about twice as large as for α = 1. Therefore,
the hopping integrals are important, together with the dominant ξ, for defining the actual
value of the demagnetization rate. When α is further reduced, tij starts to approach values
comparable to the SOC strength ξ and the hopping time thop ' h̄/|tij| becomes comparable
to tSOC ' h̄/ξ. Then, a much more rapid increase of τJ is observed, which reflects a strong
reduction of the quenching rate of Lz (α < 0.4). In this regime, the rate k J = 1/τJ of the
angular momentum transfer into the lattice is governed by the strength of the hopping
integrals. They give a measure of the importance of the interaction between the electrons
and the lattice and, thus, quantify the deviations from perfect rotational symmetry.

The change ∆Jz = J0
z − J∞

z of the total electronic angular momentum at long times
depends rather weakly on the strength of the hopping integrals for 0.2 ≤ α ≤ 1, where
it amounts to ∆Jz ' 0.4–0.5 h̄ (see Figure 5). One concludes that the quenching of Lz
in the limit of t � τJ is quite effective, as soon as the hopping integrals and d band
width are comparable or larger than the spin-orbit interactions. The electron delocalization
throughout the lattice due to the interatomic hoppings represents, therefore, a most effective
dissipation channel of angular momentum into the lattice.
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Figure 5. Decay time τJ (red crosses) and long-time transfer ∆Jz = J0
z − J∞

z (blue circles) of the total
electronic angular momentum Jz as a function of the strength α of the interatomic hopping integrals
tij = α t0

ij (0 ≤ α ≤ 1). The results were derived by fitting the function Jz = (J0
z − J∞

z ) e−t/τJ + J∞
z

to the exact time dependencies of Jz shown in Figure 4. The lines connecting the points are a guide
to the eye. For α = 0, the total angular momentum Jz is strictly conserved, and thus, ∆Jz = 0 and
τJ = ∞.

4. Conclusions

The laser-induced ultrafast demagnetization of transition metals has been investigated
from the perspective of rotational symmetry. General considerations clearly demonstrate
that breaking both the spin and orbital rotational symmetries of a ferromagnetic material is
crucial in order to explain the experimentally observed time dependence of the spin and
orbital moments following a strong laser excitation. However, the absence of these symme-
tries alone provides no information on the actual extent of the effects that the sources of
these symmetry breakings —the spin-orbit interactions and the interatomic hybridizations—
have on the magnetization dynamics under realistic conditions. Therefore, the qualitative
symmetry analysis has been complemented by performing exact numerical calculations of
the time evolution following a laser excitation in the framework of a many-body electronic
Hamiltonian. The results obtained as a function of the most relevant interaction parameters
allowed us to quantify the consequences of spin and orbital symmetry breaking on the
time-dependent properties observed in the experiment. In particular, one observes that
the characteristic demagnetization time is controlled by the spin-orbit coupling strength,
which is the smallest energy scale, whereas the quenching of the orbital angular momentum
resulting from the motion of the electrons in the lattice is controlled by the much stronger
electronic hoppings. For this reason, the latter takes place at a much shorter time scale of
the order of 1 fs.

The present investigations addressed the problem of laser-induced magnetization
dynamics from the perspective of the electronic system by regarding the ionic lattice as a
static framework, whose degrees of freedom are classical and independent of time. While
this is a sound approximation taking into account the large differences in mass and time
scales between lattice and electronic degrees of freedom, it certainly does not cover all
theoretically relevant aspects of the problem. It is therefore meaningful to extend the
present investigations by incorporating the lattice degrees of freedom explicitly in order to
elucidate the consequences of the transfer of angular momentum on the lattice dynamics. A
quantum mechanical treatment of the lattice vibrations in such an extended electron-lattice
many-body model would allow one to quantify the importance of the electron-phonon
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coupling in the ultrafast demagnetization relative to the static effects of the lattice potential
considered in this work. Research in this direction is currently in progress and will be
reported elsewhere.
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