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Abstract: Marine load is an important factor affecting propeller propulsion efficiency, and the study
of the wake evolution mechanism under different conditions is an essential part of the propeller
equipment design, which needs to meet the requirements of complex engineering. Based on the large
eddy simulation (LES) method, the wake instability characteristics are researched with the hydro-
dynamic load and wake dynamics theory, and the vortices composition and evolution mechanism
under various load conditions are analyzed. Meanwhile, the propeller wake using the unsteady
Reynolds-averaged Navier–Stokes (URANS) and LES methods is numerically simulated and com-
pared. In addition, a comparison between a simulation and an experiment is carried out. The vortices
evolution is described by dimensionless values of the velocity, pressure field, and vorticity field. The
breaking and reassembling of different vortices are discussed. The results show that the pitch of the
helicoidal tip vortices is larger under light loading conditions with high advance coefficients, and the
wake is more stable, in contrast, which is smaller and the vortices break down earlier. By comparison,
the topology of the vortices system is more complex under the low advance coefficient. Considering
the interference effect between adjacent tip vortices, the energy dissipation is accelerated, resulting in
the increased instability of vortices.

Keywords: propeller; unsteady Reynolds-averaged Navier–Stokes (URANS); large eddy simulation
(LES); advance coefficients; vortices

1. Introduction

The propeller is the most common power device in ships, and its performance has
become a hot issue for researchers, including its hydrodynamic performance, cavitation
performance, and noise performance. The subjects covered include improving energy-
saving efficiency, reducing fuel consumption, and ensuring the economic benefits with safe
operation, which is a major research area in the navigation field. A complex physical field
is generated behind the propeller operating in the water, which is called the propeller wake.
In the complex wake, the vortices evolve continuously, and their characteristics are closely
related to ship performance, operation, etc. Therefore, the analysis of vortex evolution
in the propeller wake can help to reduce the flow and vibration noise generated by the
operation [1], and to realize a propeller energy-saving design, which is a long-standing
requirement. In the pre-design stage, one of the most attractive and challenging topics is the
evolution analysis of the propeller wake vortex in hydrodynamics, which is an important
reference for improving ship performance.

Anirban et al. [2] conducted experiments on the characteristics of propeller propul-
sion under actual wave conditions and showed that the effect of the wake field is an
important reason for the large differences in the efficiencies of different propellers. A
comparative numerical analysis of the evolution of the wake vortex generated by the
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propeller during the test was carried out [3]. The detached eddy simulation (DES), a
numerical simulation method, was used to comprehensively analyze the propeller com-
position, three-dimensional structure, wake vortex contraction, and evolution rules. The
characteristics of the vortical structures of the ducted propeller model (DPM) wake were
described by the method in detail. Thanks to the computational fluid dynamics (CFD)
development in recent years, the characteristics of the wake field can be revealed by sim-
ulations, which is difficult in experiments. The RANS/LES method is increasingly used
in the CFD simulation of propellers to realize the mutual complement of an open water
test [4]. Dubbioso et al. [5] carried out numerical calculations of propellers to investigate
their hydrodynamic characteristics under multiple load cases by using the RANS method.
The influence of non-axisymmetric inflow conditions was studied for the non-uniform
distribution of the load on the propeller plane surface. The causes of wake vortex inter-
ference and enhanced diffusion effects were also analyzed in the local area behind the
propeller. Based on the LES method, Posa et al. [6] analyzed the characteristics of wake
vortex evolution and the interference effect between the hub vortex and hydrofoil boundary
layer. Wang et al. [7] showed that the interaction between the tip vortex and the secondary
tip vortex at the end plate was an important factor that triggered the leapfrog phenomenon
and induced external instability. When the internal tail vortex or root vortex is coherent,
it will experience contraction and approach the hub vortex and then intertwine with it to
form the dominant mode of the propeller wake.

Hu et al. [8] investigated the evolution of the propeller tip vortex and its effect on
the rudder surface pressure fluctuation using a large eddy simulation. They showed that
the propeller tip vortex became dislocated and shrank owing to its interactions with the
propeller by studying the relationship between the vortex flow field and the advance
ratio. The effect of the blade tip vortex leads to a strong periodicity of the rudder surface
pressure, while that within the hub vortex is relatively random. Magionesi et al. [9] showed
a dependence of the spatial shape of the modes and the temporal scales on the evolution
and destabilization mechanisms of the wake past the propeller. The phenomenon of
destabilization of the wake, originated by the coupling of consecutive tip vortices, and the
mechanisms of hub–tip vortex interaction and wake meandering are identified by both
proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD).

Felli et al. [10] investigated experimentally the mechanisms of the evolution of the
propeller tip and hub vortices in the transitional region and the far-field region and exam-
ined the effect of the spiral-to-spiral distance on the mechanisms of wake evolution and
instability transition. The study showed the relationship of the wake instability with the
spiral-to-spiral distance and a multistep grouping mechanism among the tip vortices.

The study in this paper focuses on a non-sloping uniform inlet propeller wake flow
field with a symmetric flow field. From the related literature, the loading condition has
a significant effect on the propeller propulsion efficiency, especially for maritime vessels.
Considering the loading effect on the instability of the propeller wake, taking the MAU
propeller as the object, numerical simulations of its wake field are carried out, and the
wake evolution processes under different loading conditions are obtained, which provide a
reference for the design of a high-efficiency propeller for complex engineering.

2. Mathematical Models
2.1. Unsteady Reynolds-Averaged Navier–Stokes

The RANS method is now widely used in engineering practice by solving the time-
averaged equation, which can make accurate forecasts while significantly reducing the
computational cost. However, based on the RANS model, the flow conditions’ changes
in time are ignored by the averaging operation, which cannot reflect the instantaneous
characteristics of the flow field. The RANS model is based on a definition of a mean value
with specific properties [11,12]. Considering the fluctuation influence, the turbulent motion
using the time-averaged method is deemed as a sum of the time-averaged flow and the
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instantaneous fluctuation flow. In the RANS method, the time-averaged value
−
a is defined

by the variable a, as shown in Equation (1).

−
a =

1
∆t

∫ t+∆t

t
a(t)dt, (1)

where
−
a is an instantaneous value that is equal to the sum of the time-averaged value

−
a

and the fluctuation value a′.
Whenever the computed solution is time-dependent, a phase average can be intro-

duced for unsteady flows with some fundamental frequencies, which has led to RANS
modeling becoming commonly renamed as URANS. Applying the URANS model can
resolve some of the unsteady features of the flow without the recalibration of model coeffi-
cients. The use of the URANS method is advocated in cases of clear scale separation, and
URANS simulations can be substantially more successful than a steady RANS computation,
especially in determining the mean flow [13]. The connection between the time-averaged
and fluctuation values is established using the RANS method through a turbulence model.
In the viscous vortex model, the turbulent viscosity is represented by the turbulent stress
σ(ω). The k-ω model is a two-equations model, as shown in Equations (2) and (3), which is
composed of the fluctuation transport equations of turbulent kinetic energy k and specific
turbulent dissipation rate ω. The shear stress transport (SST) k-ω model [14,15] is more
efficient in forecasting shear flow and has good adaptability to both near-wall and far-field
regions. Meanwhile, the model has higher computational accuracy and reliability, and,
especially, a significant advantage in rotating flow.

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xi

(
Γk

∂k
∂xj

)
+ Gk −Yk + Sk (2)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xi

(
Γω

∂ω

∂xj

)
+ Gω −Yω + Dω + Sω (3)

Dω = 2(1− F1)ρσω,2
1
ω

∂k
∂xj

∂ω

∂xj
(4)

where ρ is the fluid density; t is time; u is the velocity, u, v, and w are the components of x,
y, and z directions, respectively; Gk is the correlation term of the laminar velocity gradient;
Gω is the gradient correlation term corrected for the Reynolds number in Gk; Yk, Yω are the
turbulence caused by diffusion; Γk is the diffusivity of k; Γω is the diffusivity of ω; Dω is
the orthogonal divergence term introduced by the SST k-ω model, as shown in Equation
(4); F1 is the model mixing function; k is turbulent kinetic energy; ω is specific dissipation
rate; Sω is a custom turbulent dissipation-related term; and σω,2 = 0.856; refer to the article
of Zhang et al. [16] for more details about the turbulence model.

2.2. Spectral Fatigue Analysis Method

The non-linear convection term in the transport equation introduces an unclosed
term, describing the impact of the sub-filter scales on the resolved motion. As for RANS
modeling, it is replaced by a model term τLES

ij , which is usually called the subgrid-scale
(SGS) model. LES is often introduced based on the filtering concept [17], and the filter
width ∆ f is the key parameter of the model, usually called ∆. The step size of the grid ∆g
determines the corresponding parameters in the model by affecting the cutoff scale of the
filter. ∆ ∼ ∆g can maximize the benefit from the resolution capacity of the grid in shifting
the cutoff of the implicitly introduced filter to higher wavenumbers through the grid being
refined. The ratio of ∆ f to ∆g is usually set to 1 to improve computational efficiency.

LES solves large-scale turbulence and models small-scale motion in the flow domain
by directly simulating large-scale vortices and simplifying small-scale vortexes. Because
it is very difficult to describe the structure of large vortices with different boundary char-
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acteristics using turbulence models, the LES method conducts a direct simulation of the
turbulence fluctuation part by removing small-scale vortices through filtering in a small
spatial range and then building a model to simulate the effect of small vortexes on large
vortexes. The large-scale motion determines the turbulent kinetic energy K in the flow, and
the dissipation rate ε is determined by the small scale [18], and then K is decomposed and
ε simulated using the LES method. The LES method is popular for transient numerical
simulation of the flow field, but it requires a high-performance computer.

The theoretical formula of the wall-adapting local eddy-viscosity (WALE) model
adopts the form of a velocity gradient tensor. Although the model has some limitations
in the model coefficient term, it is less sensitive to the value of the coefficient than the
other SGS model. The model does not require near-wall damping and can automatically
provide accurate wall scaling. Moreover, the effectiveness of the WALE SGS model applied
in rotating machinery has been verified.

3. Numerical Set-Up

In engineering, generally, selecting propellers is based on the characteristics and
technical requirements of ships. The propellers with higher adaptability to ships are
selected by comparing the propellers that have different performances. In this paper, the
MAU propeller is selected as the object, which is a propeller series mainly developed by the
Japanese. It improves the cut shape, expands the range of disc and pitch ratio, and carries
out a 3~6-blade propeller model test, then completes the design chart of the propeller.

Considering the repeatability of numerical analysis, the MAU4-40 equal-pitch pro-
peller is selected as the geometry reference for modeling in the study, as seen in Figure 1,
and the main parameters of the propeller are seen in Table 1. The model reference co-
ordinate system is O-XYZ, as seen in Figure 2. The origin O is located at the center of
the rotation of the propeller; the Z-axis is along the direction of fluid flow; the Y-axis is
perpendicular to the center of the propeller hub upward; and the X-axis can be determined
according to the right-hand rule (r.h.s.). The numerical simulations in the paper were
carried out for two operating conditions, respectively, such as the advance coefficient
J = 0.3 and J = 0.6. The advance coefficient J is obtained by varying the incoming flow
velocity U (inlet velocity) at a fixed speed n (n = 7.5 rps). Unless otherwise stated, all
physical quantities were non-dimensionalized using characteristic parameters. Among
them, the propeller radius (d = 0.125 m) was chosen as the characteristic length, the fluid
density (ρ = 997.561 kg/m3) as the characteristic density, and the fixed rotational speed n
(n = 7.5 rps). Re = (nD2)/ν = 5.27 × 105, where ν is the kinematic viscosity.
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Table 1. Main parameters of MAU4-40 propeller.

Parameters Representative Unit Value

Diameter (Radius) D(d) (m) 0.250 (0.125)
Hub ratio Dh/D (-) 0.18
Pitch ratio P0.75/D (-) 1.0
Area ratio Sr (-) 0.4

Rotation rate n (rps) 7.5
Skew ε0.75 (◦) 10
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Figure 2. Model Cartesian reference frame.

The computational domain and boundary conditions of the simulation are presented
in Figure 3. The computational domain consists of two cylinders along the flow direction
containing the propeller. The propeller diameter (radius) D(d) is 0.25 (0.125) m, and the flow
field area diameter is 9.6 D in a large cylinder, which is a size that better avoids the blocking
effect on the propeller wake development. The inlet of the boundary condition is set as
the velocity inlet to provide a uniform inflow, and the outlet condition is defined as the
pressure outlet [19]. Considering the computational resources, the upstream velocity inlet
of the boundary conditions in this paper is 4.8 D from the propeller, and the downstream
pressure outlet is 9.6 D from the propeller. According to Kumar and Mahesh (2017), the size
effect of the computational domain on the evolution of the propeller wake is negligible.
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Figure 3. Computing domain and boundary conditions.

According to the characteristics of the turbulence model, in order to improve the
computational efficiency, the boundary layer grid is tried as follows: the grid with y+ < 1
has a high accuracy, and the final grid number is 3.8 M, and the details of boundary layer
grid test are seen in Table 2.
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Table 2. The boundary layer grid test.

y+ Boundary Layer Mesh KT-CFD 10KQ-CFD KT-EXP 10KQ-EXP

<1 20 3.8 M 0.3150 0.4710 0.3230 0.4650
6 20 2.3 M 0.3105 0.4750 0.3230 0.4650
8 20 1.8 M 0.3099 0.4768 0.3230 0.4650

To meet the algorithm accuracy requirements and better capture the viscous flow
in the near-wall boundary layer, the constraint y+ < 1 is set, and a boundary layer mesh
containing 20 prismatic layers is used. To avoid the numerical dissipation of the system,
multiple isotropic volumes (cylinders) with different dimensions are used to capture the
fundamental flow features in the critical region. The specific settings are as follows: the
blade tip region (1% D), the paddle hub region (2% D), and the dynamic domain region
(3% D), and four encrypted regions are set as 8% D, 15% D, 20% D, and 30% D. Thus, it can
capture enough tail flow details but saving computational resources as much as possible.
The specific details of grid division are referred to in Figure 4. The sliding grid technique is
used to divide the computational domain into static and rotating domains, based on which
the data interaction between the interfaces is carried out. The contact surface between
the static and rotating domains is set as the interface to realize the information exchange
and iteration between the two domains. For slip boundary, the velocity of the fluid in
the boundary method direction is 0, and the tangential velocity of the boundary is the
component of the fluid in the velocity in the tangential direction. At the inflow, the velocity
is set to the undisturbed flow value, that is, u = U, while at the outflow, the velocity
is extrapolated from the interior point. Among them, the number of the coarse mesh
is divided into 3.8 M for the MAU4-40 propeller open water working condition. The
output thrust and torque magnitude of the propeller are reflected by KT , KQ by following
Equations (5) and (6). KQ is usually taken as 10 times the value of the parameter. η is
a dimensionless value defined based on the above parameter by following Equation (7),
which is an important evaluation index of propeller propulsion efficiency.

KT =
T

ρn2D4 (5)

KQ =
Q

ρn2D5 (6)

η =
J

2π

KT
KQ

(7)

where U is the incoming flow velocity; n is the rotational speed; ρ is the fluid density; and
T is the output thrust and also the output torque.
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To verify the accuracy of the numerical calculation results in this paper, the CFD
calculated values of the propeller performance curves (KT, 10 KQ, η) were compared
with the test values. From Figure 5, the performance of the propeller calculated by the
mesh system and numerical model matches well with the experimental results in the
literature [20], and the average error of the calculated values (KT, 10 KQ, η) is less than
5%, which meets the engineering requirements. In summary, the numerical method and
mesh system in this paper are suitable for analyzing the propeller wake characteristics. To
improve the numerical accuracy of the wake field simulation, the dual mesh evaluation
procedure proposed in the literature is adopted in this paper to perform mesh sensitivity
analysis [21]. The dual mesh numbers are 18.94 M for the fine mesh number and 10.90 M
for the medium mesh number. The refinement ratio of the mesh, the error estimate for the
fine mesh, and the uncertainty are evaluated by the following equation.

r0 =

 N f ine

N medium


1/m

(8)

E =
f2 − f1

1− rp0
0

(9)

UN = Fs|E| (10)

where N denotes the total number of cells in the mesh, m denotes the dimensionality of the
problem, and this paper is a three-dimensional problem, so m = 3 and r0 ≈ 1.2; f 1 and f 2
correspond to the results of the fine and medium mesh, p is the formal order of accuracy
(p = 2); FS is a safety factor assumed to be 3.
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Figure 5. Comparison of the open water characteristic of numerical calculation and experiment.

As shown in the table, the numerical results obtained using medium and fine meshing
are very close, with UN not exceeding 2% in both cases, as seen in Table 3, indicating that
the obtained solutions are relatively grid independent. Therefore, both the numerical solver
and the grid strategy employed can be regarded as consistent and reliable. From the point
of view of improving accuracy, the fine mesh is more suitable for practical applications. All
subsequent analyses in the study were obtained from the fine mesh simulations.

The three-dimensional viscous flow field was solved by the finite volume method
based on the discrete flow solver in the STAR-CCM+ computational fluid dynamics pro-
gram, and the solution was stopped after the flow field was stable for 9 S. The turbulence
model should be selected according to whether the fluid is compressible, the establishment
of special feasible problems, accuracy requirements, computer capabilities, time constraints,
and other conditions. This requires an understanding of the scope and limits of application
of different conditions to select an appropriate model. The SST model adopts the K-W
model for the near-wall surface and the K-E model for the non-near-wall surface, which
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can better take the influence of wall shear into account. The SST turbulence model is recom-
mended by many scholars, especially in the case of precise computing grid division, so the
SST turbulence model is used in this RANS calculation. For more details and a complete
description of RANS/LES, the reader is directed to Posa et al. (2020), Di Mascio et al. (2014),
and Wang et al. (2022).

Table 3. Grid sensitivity test.

Load Medium Fine Exp E UN(%)

J = 0.3
Kt 0.3144 0.3160 0.3230 3.6 × 10−3 1.49

10 KQ 0.4662 0.4692 0.4650 6.8 × 10−3 1.94
J = 0.6

Kt 0.2147 0.2156 0.2250 2.0 × 10−3 1.20
10 KQ 0.3568 0.3572 0.3540 9.1 × 10−3 0.34

4. Numerical Validation
4.1. Propeller Characteristics

Figure 6 compares propeller wake vortical structures simulated by the LES using the
iso-surfaces of the Q-criterion with vortical structures obtained from simulation using the
URANS. These figures show that LES describes the evolution of the propeller wake far
better, which is especially manifested in the process from instability to final breakdown. By
contrast, the URANS could only make a limited capture aimed at some behavior.
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Importantly, the wake vortical structures with three dimensions considering each
of the two different advance coefficients captured by LES are remarkably similar to the
ones with two dimensions. Due to the instantaneous visualizations, there are some slight
differences in individual vortexes, which seems to be acceptable, as will be explained by
showing the complete wake field in Section 5.

As observed in the subsequent wake field, the pitch of the tip vortex increases with the
increase in the advance coefficient. Meanwhile, the propeller wake destabilizes and breaks
down further downstream. Mainly, at the low advance coefficient (J = 0.3), it is observed
that after the onset of the instabilities, the tip vortical structures collapse completely soon
after. This is followed by the hub vortex breakup. Whereas, at the high advance coefficient
(J = 0.6), the tip vortical structures break further downstream and experience mutual
interactions with adjacent vortices before proceeding to complete collapse.

4.2. Streamlines

There are wake flow streamlines of the propeller under different load conditions as
show in Figure 7. From the figures, when J = 0.3, the wake diameter is significantly smaller
than the propeller, which is due to the strong suction role of the propeller on the fluid at
low advanced coefficient. As J increases, the suction role decreases, and the wake diameter
increases. Under the condition of J = 0.6, the suction role is not obvious, which can reduce
energy loss and verifies the reason for high efficiency.
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4.3. Pressure Coefficient (Cp) Contours on Propeller Blades

As shown in Figure 8, it can be seen that the pressure distribution on the pressure side
decreases gradually along the rotation direction, and the maximum pressure is observed
near the tip of the endplate. In addition, the pressure distribution on the suction side
decreases suddenly in the initial phase and then gradually increases. The pressure core
area is distributed radially in the band. Therefore, the pressure on the suction side is
different from that on the pressure side; the air flow on the rear side first accelerates and
then decelerates along the direction of rotation. It should be noted that for the suction side,
the pressure gradient of the outer surface is greater than that of the inner surface, and the
change in velocity is more unstable outside the inner surface of the suction side, which is
more obvious in the results calculated by the LES method.
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5. Instantaneous Characteristics Wake Field
5.1. Instantaneous Cp Wake Field

Figure 9 shows the dimensionless pressure contour plot in the same plane. The
pressure inside the vortex decreases as the blade load decreases, with the largest pressure
drop occurring near the wake and inside the hub vortex. This pressure drop can lead to
cavitation of the propeller blade, which can be severely damaged and lead to cavitation
noise generation, and the cavitation generation should be delayed as much as possible in
practical engineering. Compared to the URANS model, the LES shows a more pronounced
negative pressure zone under a heavy load, position A, as shown in Figure 9.

As the load increases, both the negative pressure inside the vortex and the pres-
sure variation in the near-paddle region increase, producing more adjacent high-pressure
and low-pressure regions. This pressure variation is an important reason for the mutual
interference of complex vortex system topologies under high-load operating conditions.

5.2. Instantaneous u/U Wake Field

Figure 10 shows the axial velocity. A comparison of different advance coefficients
and different turbulence models is given, using the propeller advance velocity U for
the dimensionless axial velocity. The dimensionless velocity field is axisymmetric under
uniform inflow conditions. The velocity field behind the propeller is distributed with a
“camel’s hump” velocity peak characteristic, which decreases and widens as the wake
moves downstream due to the turbulent diffusion effect.

The effect of the boundary layer on the propeller blades is observed in this “low
velocity region”. At the same time, as the water accelerates behind the propeller, these
regions become more and more inclined as it progresses downstream. Further downstream,
the effect of turbulent diffusion can be seen. Comparing the different turbulence models
at the same dimensionless velocity, the LES model captures the “low velocity region”
more clearly, located at Figure 10a B and Figure 7c C. When comparing the dimensionless
velocities under different load conditions according to the LES calculation results, the
velocity gradient in the blade tip vortex region and hub vortex region decreases as the
load decreases, and the inclination of the “low speed “ is also smaller, as demonstrated
at position C and D in Figure 10. Under heavy load conditions, the distance between the
adjacent “low speed“ decreases, and the uneven velocity zone intensifies the interaction of
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the post-paddle vortex system structure and causes a larger energy loss, which is obtained
by comparing the C and D areas in Figure 10.
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In addition, the lowest negative velocities were observed at the beginning of the
hub vortex, which is a near-hub flow suction phenomenon generated by the hub vortex.
Negative velocities were also observed in a very small region of the first four blade tip
vortices attached to the blades under heavy load conditions.
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5.3. Vortical Structures

Figure 11 shows the state of the tail vortex field when the flow field is not stable. With
the increase in the solution time, the flow field gradually stabilizes, and the final wake field
is shown in Figure 12. Further capturing the variation in the vortex system caused by the
propeller, Figure 12 presents a graphical analysis of the longitudinal vortex field in a typical
motion moment and introduces the evolution of different vortices. A horseshoe-shaped
vortex system spiral trajectory with opposite signs can be seen at the junction of the blade
leading edge with the hub downstream to the convection (junction vortices) [22].
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Figure 12. Velocity fields in xy plane at typical moments of motion.

This coherent horseshoe-shaped vortex is important for identifying the mechanism
leading to propeller wake instability. This phenomenon is more clearly observed at higher
advance coefficients (J = 0.6), where the junction vortices start to break up into smaller
vortex structures near the bottom (near the hub vortex) due to the greater intensity of
the counter-rotating hub vortex than the blade tip vortex, leading to enhanced mutual
interference between adjacent junction vortices and gradual destabilization of its propeller
wake field (position H, Figure 13d).

On the other hand, the suction effect significantly alters the pressure and axial velocity
distribution upstream of the propeller, manifesting firstly in the strong vortex system with
opposite signs of shedding from the blade tip (i.e., tip vortex) and in the vortex system with
an intense flow at the rear of the hub (i.e., hub vortex) seen on the leeward and windward
sides of the wake field [22], where the hub vortex is formed by the merging of root vortices
shedding from the blades and involves detachment from the hub of the shear layer. This is
evident from the transient vortex fields in Figure 12.

Steep pressure gradients (Figure 9) near the propeller blade tip were captured for both
loading conditions and both methods, a condition that keeps the vortices merged in the
vortex region of the blade tip vortex stable. At the same time, the vortex attached to the
propeller blade surface formed vortex structures that exhibited different morphologies on
the leeward and windward side, evolving along the downstream direction with the tip
vortices. The LES method in the near-wall region can accurately capture the “secondary
tip vortices” in region G in Figure 13d. However, the URANS method is not able to
capture this phenomenon. Under heavy load conditions, the strong vortices of opposite
signs in the blade back part are mixed (Figure 13c E1 and Figure 13d E2). These opposite
vortices interact and collide along the blade tip direction, making the topology of the vortex
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system more complex and leading to increased instability and gradual destabilization of
the vortex structure.
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The area where the hub vortex causes low pressure is susceptible to cavitation. The
hub vortex undergoes deformation and dissipation and eventually merges into the far
wake of the propeller.
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6. Conclusions

The numerical simulation of propeller wakes based on the URANS method and LES
method under different loading conditions (J = 0.3, J = 0.6) is carried out in this paper,
and the accuracy of the calculation results is verified by comparing existing experimental
data. The dimensionless evaluation index is used to analyze the related factors of the
propeller wake instability from three aspects: pressure field, velocity field, and vorticity
field. Based on the above research, the influences of different operating conditions on
the hydrodynamic performance of a propeller wake are revealed based on the theory of
propeller wake dynamics.

1. From the results, the LES method is more effective than the URANS method in
evaluating the propeller wake structure under the same meshing conditions and can
more accurately capture the vortex details such as tip vortex, tip secondary vortex,
junction vortex, and hub vortex.

2. Under the light loading conditions (J = 0.6), the junction vortex shows signs of frag-
mentation and decomposes into more and smaller vortices, and the collisions between
adjacent vortical structures increase, resulting in the disorder of the junction vortical
structure in the far-field region. Under heavy loading conditions (J = 0.3), the vortex
attached to the blade surface forms the tip vortex and tip secondary vortex, which is
accompanied by a stronger interaction, and the topology of the vortex system becomes
more complex.

3. By comparison, at high advance coefficients, the characteristics of the propeller wake
are obvious enough to study all the wake mechanisms, and the instability mecha-
nisms and their interrelations are more universal to the other propulsions’ analysis
and application. At low advance coefficients, the tip vortex interacts with the tip sec-
ondary vortex before the breakdown, resulting in energy loss and reduced propeller
propulsion efficiency. Moreover, with the ship load increase, the breakdown velocity
of the tip secondary vortex is accelerated, and a more fragmented vortex is formed
(Figure 13c F), which leads to the instability of the propeller wake.

MAU has been widely used in engineering and has not been widely analyzed. This
paper supplements the research on the vortex characteristics of the MAU series propeller
wake field. The LES method is more effective than the URANS method in evaluating
the wake structure of the propeller, and the interaction between the tip vortex and the
secondary tip vortex before decomposition is analyzed. The relationship between energy
loss and propeller propulsion is established, which provides a reference for the optimization
of the MAU series propeller.
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