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Abstract: With the help of molecular dynamics simulations and an artificial sodium channel model,
we corroborated that the application of terahertz stimulation at a characteristic frequency can largely
increase the permeability of the sodium channel by a factor of 33.6. The mechanism is that the
carboxylate groups in the filter region transfer the absorbed terahertz photon energy to the sodium
ions, which increase the ions’ kinetic energy; this results in breaking the hydrated hydrogen bonding
network between the hydrosphere layer of the ions and the carboxylate groups, thereby increasing
their diffusion and reducing the energy barrier for them to cross the channel. This study on terahertz-
driven particle transmembrane transport offers new ideas for targeted therapy of channel diseases
and for developing novel integrated engineering systems in energy conversion and storage.
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1. Introduction

Sodium ions, as one of the main metal elements in living organisms, play an inte-
gral role in the regulation of cellular functions, such as the maintenance of endocrine
cell excitability, cell membrane permeability [1], and the correct conduction of electrical
impulses in the heart [2]. Therefore, sodium channels as carrier proteins are among the
popular research subjects. Its unique osmotic selectivity allows it to be used in wastewater
treatment [3] and desalination [4,5]. In addition, its permeability can direct the genera-
tion of bioelectric phenomena, bringing cells from resting potentials to action potentials,
which helps to study sodium channel diseases in medical clinics due to sodium potential
dysregulation as well as genetic mutations. Examples include critical illness polyneuropa-
thy [6], minimal change disease-related nephrotic syndrome [7], conduction disorders and
ventricular arrhythmias [2,8,9], neurological disorders—primary red-hot pain sympathetic
dysfunction [10], and many others. These facts indicate that reduced sodium permeability
is a major factor in triggering these diseases. Therefore, it is essential to have a clear idea
of the sodium permeability process, which also contributes to the interventions for the
treatment of such diseases.

The permeation and selection mechanisms of sodium channels originate from the
interaction between Na+ ions and charged functional groups (-COO−) in the selective filter
region of the channels [11,12] and most low-frequency biomolecular motions are in the
same frequency range as terahertz and infrared signals [13–16]. The frequency region from
0.5 to 100 THz thus was named as the generalized terahertz EM wave [17]. Terahertz waves
can interfere with the activity of biological systems [18–20], and significant non-thermal
biological [21,22] and thermal [23] effects occur. For example, terahertz waves significantly
interfere with the naturally occurring local strand separation of double helix DNA [24],
thereby altering functions such as DNA gene expression [25,26]. Electromagnetic (EM)
stimulation at the frequency of 1.39 THz induces super-permeability of confined water
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(approximately one order of magnitude) and a phase transition from a one-dimensional ice
phase to a one-dimensional coherent gas phase [27], while EM stimulation at the frequency
of 31.5 ± 1.0 THz induces a 37-fold increase in the super-permeability of confined mono-
layer water through a graphene-based membrane [28]. EM stimulation of 35.0 ± 1.0 THz
resonates with the vibration of hydroxyl groups on graphene oxide membranes (GO mem-
branes) and transfers its photon energy to the membrane, resulting in a 141-fold increase
in the permeability of GO membranes [29]. High-frequency terahertz (e.g., 53.7 THz)
stimulus resonates with carbonyls in the filter region of potassium channels to increase K+

currents, further regulating brain function and treating brain diseases [30], and correcting
tumor cells with reduced potassium currents or causing rapid apoptosis of potassium
overload [31]. EM stimulation of 42.55 THz on calcium channels can result in significant en-
hancement of calcium ions selectivity and conductance, thus correcting for reduced calcium
currents in defective Ca2+ channels or inducing rapid apoptosis in calcium-overloaded
tumor cells [32,33]. EM stimulation of 4.0 THz can increase the dissociation rate between
dopamine D2 receptors and risperidone ligands by up to 8 orders of magnitude in phar-
macological interventions for disease treatment, thereby facilitating the dissociation of
high-affinity antipsychotics and reducing side effects [34]. Terahertz waves at certain spe-
cific frequencies in single-walled carbon nanotubes cause hydrogen bond breakage through
rotation and rotation-induced translational resonance [35] or through their radial breathing
mode [36], which in turn leads to a threefold enhancement in the net flux of water. Inspired
by the above studies, we wondered whether EM stimulation at a specific frequency could
change the permeability of sodium channels.

In this study, we propose a physical method to enhance the permeability of sodium
channels by modulating the carboxylate groups (-COO−) inside the sodium channel with
THz stimulation (Figure 1a), and find out that the value of ion permeation in the case under
48.2 THz EM stimulation is 33.6 times greater than the one under the normal permeability
state (Figure 1b), which is much more effective than the approach of temperature elevating.
The underlying mechanism is resonance-driven energy transfer, meaning that due to the
frequency matching, terahertz photon’s energy is transferred to the -COO−, boosting the
kinetic energy of the -COO−, which then transfers energy to the Na+ ions and reduces
the binding of the -COO− to the Na+ ions through mutual collisions with Na+ ions and
water molecules.

Symmetry 2023, 15, x FOR PEER REVIEW 2 of 10 
 

 

significantly interfere with the naturally occurring local strand separation of double helix 
DNA [24], thereby altering functions such as DNA gene expression [25,26]. Electromag-
netic (EM) stimulation at the frequency of 1.39 THz induces super-permeability of con-
fined water (approximately one order of magnitude) and a phase transition from a one-
dimensional ice phase to a one-dimensional coherent gas phase [27], while EM stimulation 
at the frequency of 31.5 ± 1.0 THz induces a 37-fold increase in the super-permeability of 
confined monolayer water through a graphene-based membrane [28]. EM stimulation of 
35.0 ± 1.0 THz resonates with the vibration of hydroxyl groups on graphene oxide mem-
branes (GO membranes) and transfers its photon energy to the membrane, resulting in a 
141-fold increase in the permeability of GO membranes [29]. High-frequency terahertz 
(e.g., 53.7 THz) stimulus resonates with carbonyls in the filter region of potassium chan-
nels to increase K+ currents, further regulating brain function and treating brain diseases 
[30], and correcting tumor cells with reduced potassium currents or causing rapid apop-
tosis of potassium overload [31]. EM stimulation of 42.55 THz on calcium channels can 
result in significant enhancement of calcium ions selectivity and conductance, thus cor-
recting for reduced calcium currents in defective Ca2+ channels or inducing rapid apopto-
sis in calcium-overloaded tumor cells [32,33]. EM stimulation of 4.0 THz can increase the 
dissociation rate between dopamine D2 receptors and risperidone ligands by up to 8 or-
ders of magnitude in pharmacological interventions for disease treatment, thereby facili-
tating the dissociation of high-affinity antipsychotics and reducing side effects [34]. Te-
rahertz waves at certain specific frequencies in single-walled carbon nanotubes cause hy-
drogen bond breakage through rotation and rotation-induced translational resonance [35] 
or through their radial breathing mode [36], which in turn leads to a threefold enhance-
ment in the net flux of water. Inspired by the above studies, we wondered whether EM 
stimulation at a specific frequency could change the permeability of sodium channels. 

In this study, we propose a physical method to enhance the permeability of sodium 
channels by modulating the carboxylate groups (-COO−) inside the sodium channel with 
THz stimulation (Figure 1a), and find out that the value of ion permeation in the case 
under 48.2 THz EM stimulation is 33.6 times greater than the one under the normal per-
meability state (Figure 1b), which is much more effective than the approach of tempera-
ture elevating. The underlying mechanism is resonance-driven energy transfer, meaning 
that due to the frequency matching, terahertz photon’s energy is transferred to the -COO−, 
boosting the kinetic energy of the -COO−, which then transfers energy to the Na+ ions and 
reduces the binding of the -COO− to the Na+ ions through mutual collisions with Na+ ions 
and water molecules. 

 
Figure 1. Schematic representation of the accelerated passage of sodium ions through the sodium 
channel under terahertz electromagnetic (EM) stimulus. (a) Schematic representation of a sodium 
channel protein, with the enlarged section showing the channel-selective filter region, the four car-
boxylate groups (-COO−) of the four Glu amino acids. (b) Effect of adding a 48.2 THz EM wave on 
artificial sodium channels. The flow rate of the sodium channel was significantly increased by 33.6 
times after the THz EM stimulation. 

  

Figure 1. Schematic representation of the accelerated passage of sodium ions through the sodium
channel under terahertz electromagnetic (EM) stimulus. (a) Schematic representation of a sodium
channel protein, with the enlarged section showing the channel-selective filter region, the four
carboxylate groups (-COO−) of the four Glu amino acids. (b) Effect of adding a 48.2 THz EM wave
on artificial sodium channels. The flow rate of the sodium channel was significantly increased by
33.6 times after the THz EM stimulation.

2. Method

According to the data of the crystal structure (PDB ID code 3RVY), the sodium channel
embedded between the bilayer lipid membrane is composed of a quaternary arrangement
of protein chains as well as a narrow pore region acting as a selective filter. Four -COO− of
anion residues in this pore region were proved to be the functional groups in determine
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the ion-selective permeability of sodium ion channels [37]. Therefore, based on the real
channels described above, we constructed a biologically inspired physical model of a
sodium channel, where four -COO− were modified on the inner wall of a carbon nanotube
in the same plane (as shown in Figure S1). The length and diameter of the nanotube
are 0.485 and 0.535 nm, respectively. Furthermore, two graphene sheets were used to
reproduce the function of bilayer lipid membranes to separate molecules. The software
used for molecular dynamics simulations (MD) is GROMACS 2020 [38,39]. The detailed
simulation parameters can be found in Section 1.a of the Supporting Information. We
used an umbrella sampling method [40,41] to calculate the potential of the mean force
(PMF) or free energy profile [42] of Na+ ions during permeation of the pore selective
filter, as detailed in Section 1.c of the Supporting Information. This PMF is obtained by
integrating the average force sampled on the ion pathway with the help of a bias potential,
which describes the energy relationship between the ions and the surrounding molecules
during permeation. In the presence of an EM field, the motion of charged particles at room
temperature depends mainly on the electric component of the EM wave [28], so we use only
the electric field component E(t) = A·u·cos (ωt + ϕ) as the EM stimulation. Here A, ω, and
ϕ are the electric field strength, the angular frequency, and the initial phase, respectively.
The direction of polarization of the wave is perpendicular to the plane of the membrane,
i.e., u = (0, 0, 1).

3. Results and Discussion

Figure 2 shows that a characteristic frequency of EM stimulation at 48.2 THz can
distinctively improve the ion permeability of the biomimetic sodium channel. We char-
acterized the permeability of ions in the channel in terms of the flow of ions (F), which
describes the average number of ions permeating from one side of the channel to the other
per nanosecond. First, we found that under EM stimulation at the characteristic frequency
of 48.2 THz, the permeability of the sodium channel changed from normal permeability
(F = 0.03 ± 0.01 /ns) to ultrafast permeability (F = 1.01 ± 0.05 /ns) as the stimulus strength
A increased. However, with EM stimulation at other frequencies such as 36.0 THz, the
permeation of Na+ ions did not change significantly even when A reached an intensity of
1.0 V/nm (Figure 2a). Notably, the permeability of the channel remained at the normal per-
meability state when A ≤ 0.2 V/nm and rapidly increased in a nonlinear way to 33.6-fold
greater than the normal one when strength A increased from 0.2 to 1.0 V/nm, and after
A > 1.0 V/nm, the permeability reached a plateau and remained stable. This fact suggests
that the osmotic shift induced by EM stimulation occurs at specific frequencies, such as
48.2 THz. To emphasize the significance of the increased permeability caused by the EM
stimulation, we investigated the relationship between ion permeation and temperature
in the absence of EM stimulation (Figure 2b). By changing the temperature of the system,
we found that the flow of Na+ increases in a linear way with the elevation of temperature
(from 293 K to 320 K), which follows the Einstein-Smoluchowski diffusion equation [43,44].
Although the F increased to 0.06 ± 0.01 /ns at 320 K, it was still much lower than the
ultrafast permeation induced by 48.2 THz EM stimulation. As a result, the permeability of
biomimetic sodium channels can be increased with light at particular frequencies.

To further investigate how light at specific frequencies enhances the permeability of
the sodium channel, we analyzed the absorption spectrum of the -COO− in the sodium
channel as well as the absorption spectrum of bulk water in the system (Figure 3). Different
atoms or molecules are usually able to produce different fingerprint peaks in the spectrum.
Therefore, we used the velocity and charge of an atom to obtain the absorption spectrum
through the Fourier transform of its autocorrelation function [45–47]. As shown in Figure 3a,
the -COO− in the sodium channel have characteristic absorption peaks at 9.4, 16.9, and
48.2 THz, in good agreement with the experimental -COO− spectral data [48]. The first two
of these absorption peaks correspond to symmetric stretching vibrations of -COO− (lower
intensity) [32]. To ensure that the EM wave penetrates the protein and avoids absorption
by water, we also calculated the absorption bulk water spectrum. The first two absorption
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frequencies of -COO− were found to be strongly absorbed by water and difficult to use
as a resonance source. In contrast, the photon energy of 48.2 THz EM stimulation can be
resonantly absorbed by the -COO−, inducing the -COO− to enter the excited state and
be able to produce a transfer of energy [49]. To confirm this conjecture, we compared the
energy transfer of -COO−, Na+ ions, and water molecules in the presence and absence of
48.2 THz EM stimulation (Figure 3b–d). We discovered that, in the channel, the average
kinetic energy Ek of the -COO− in the ultrafast permeability state (1.44 kcal/mol) was
1.60 times higher than the one in the normal permeability state (0.89 kcal/mol). Similarly,
in the ultrafast permeability state, the energy of Na+ (1.17 kcal/mol) was also greater than
that in the normal permeability state (0.88 kcal/mol), agreeing with the increased diffusion
coefficient (Figure S2). In addition, we compared the changes in the average kinetic energy
among -COO−, Na+ ions, and water molecules at different A (Figure 3e). The kinetic
energies of -COO−, Na+, and water molecules all showed a similar trend of increase as the
strength A gradually increased. However, at the same intensity, the kinetic energy of the
-COO− was always greater than that of the Na+ ions, and the Ek of the Na+ ions was greater
than that of water. These results suggest that the -COO− in the channel increased their
kinetic energy after absorbing the energy of 48.2 THz EM stimulation, thereby increasing
the collisions of -COO− with Na+ ions and water molecules; this further improves the
process of kinetic energy transfer, causing a potential change in the interaction among them
and accelerating the permeation of the sodium channel.
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To uncover the pathway of energy transfer from the -COO− to Na+ ions, we studied
the effect of EM stimulation on the hydrogen bond (H-bond) network between -COO− and
the hydrated layer of Na+ (Figure 4a). It is important to clarify that sodium ions need to be
encapsulated by a water shell layer throughout the permeation process [50]. The number of
hydration coordination sites was 5~6 (Figure S3), which is consistent with the experimental
results [37]. Na+ ions will interact with the -COO− in the selective filter region of the
channel so that -COO− acts as a compensation for shedding some of the water molecules,
which is an important reason why -COO− can regulate Na+ permeation [12]. Furthermore,
H-bonds are formed between two molecules when the O-O distance is less than 0.35 nm and
their H-bond angle is less than 30◦ [51,52]. Accordingly, Na+ passing through the ligated
hydrosphere will form H-bonds with the -COO− in the channel. Figure 4a elucidates that
the -COO− affects Na+ through hydrogen bonding, altering the permeation of Na+ ions,
regardless of the presence or absence of EM stimulation. Under the normal permeability
state, water molecules in the aqueous shell layer of Na+ ions form 1.90 H-bonds with
the -COO− at the opening of the tube, which gradually decreases to 1.19 as the Na+

ions penetrate deeper into the channel, due to the disruption of the aqueous shell layer
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of ions in the channel. When the ions reach the position where the -COO− are located
(z = 0.0 Å), the -COO− will have a compensating effect on the aqueous shell layer and form
1.90 H-bonds with the water molecules inside the channel. This fact also proves that, at
this position, the Na+ ions are more easily trapped by the -COO− and less likely to escape
the channel, resulting in blocked permeation. However, after the application of 48.2 THz
EM stimulation, the H-bonds are disrupted through collisions between the -COO− and
Na+ ions as well as the surrounding water spheres, and their average H-bond number
(NH-bonds) was significantly reduced, which explains the weakened energy transfer between
the -COO− and Na+ ions. Furthermore, during the entry of Na+ ions into the channel,
the difference between the local maximum and minimum number of hydrogen bonds in
the case with EM stimulation (∆Nwith) increases to 1.32 (in the case without stimulation
∆Nw/o= 0.79), enhancing the binding of Na+ to the -COO−. This fact further confirms that
Na+ ions that can enter the channel faster can similarly be freed from -COO− more easily,
thereby facilitating the diffusion of Na+ ions and accelerating osmosis.
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Figure 3. Vibrational spectra for -COO− and bulk water inside the channels, and kinetic energy
boosting and transferring process among -COO−, Na+ ions, and water in the channel. (a) Vibrational
spectra of the -COO− (orange curve) and bulk water (black curve) inside the channels. The main
vibration frequencies (vmain) of -COO− inside the channel are 9.4, 16.9, and 48.2 THz; the vmain of
bulk water is 17.5 THz with a broad peak width. (b–d) Probability distributions of the molecular
kinetic energy Ek of -COO− (b), Na+ ions (c), and water (d) inside the sodium channel in the presence
and absence of 48.2 THz EM stimulation. (e) Mean kinetic energy changes of -COO−, Na+ ions, and
water with the application of 48.2 THz EM stimulation at different strengths A.
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z-direction of the channel in the presence and absence of 48.2 THz EM stimulation. (a) The maximum
NH-bond in the case without EM stimulation was 1.98 (black curve), while it decreased to 1.92 after
the addition of 48.2 THz EM stimulation (orange curve). Moreover, the difference between the local
maximum and minimum number of hydrogen bonds in the case with EM stimulation (∆Nwith) is
1.32, while it is 0.79 in the case without the stimulation (∆Nw/o). (b) The z on the x-axis denotes the
distance of the ion from the center point of the channel in the z-direction throughout the traction
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stimulation (∆Ewith), denoting an accelerated Na+ penetration. The icon at z = 0.0 Å represents the
position of -COO−; the two red spheres are the oxygen atoms and the green one is the carbon atom.

Finally, we performed calculations of the potential of the mean force (PMF) of Na+

ions in the cases with and without the addition of 48.2 THz EM stimulation. It is able to
reflect the free energy change of the ions passing through the channel [42,53,54]. Figure 4b
shows the PMF results for Na+ passing through the channel in the presence and absence
of 48.2 THz EM stimulation. As the distance between the Na+ and the -COO− decreases,
the energy potential trap gradually increased, indicating that the interaction force between
them is also gradually intensifying, corresponding to the enhancement in the number of
H-bonds in Figure 4a. Moreover, with the application of 48.2 THz EM stimulation, the
energy consumed by the Na+ to reach the filter region of the channel (z = 0.0 Å) is less
than that in the normal permeability state, which indicates that the Na+ can enter the
channel more easily. In addition, the free energy difference between the potential at the
highest local point in the direction of the channel exit and the lowest potential (∆Ew/o)
is relatively high, with a value of 2.79 kcal/mol when there is no stimulation, which is
approximately 1.84 times larger than the value in the presence of 48.2 THz EM stimulation
(∆Ewith = 1.52 kcal/mol). This fact illustrates that Na+ is bounded by the -COO− and is
very difficult to exit from the channel. It is concluded that when 48.2 THz EM stimulation is
added, Na+ ions undergo kinetic energy transfer and H-bond breaking, the rate increases,
and it is easier to break free and leave the channel, thus resulting in an ultrafast permeation
rate of Na+.

4. Conclusions

In closing, inspired by the structure of the natural Na+ protein channel, we designed
a simple model of a biomimetic sodium channel as a simulated system to investigate the
effects of different terahertz EM stimulation on the permeability of the sodium channel.
The simulation results elucidated that the EM stimulation at a specific frequency resonating
with the functional groups (-COO−) in the channel affects the rate of sodium ions transport
across the channel. We conclude that sodium ions permeate more rapidly under 48.2 THz
EM stimulation, approaching 33.6 times compared to the normal permeability state. The
main mechanism for this phenomenon comes from the interaction between the stimulus
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and -COO− in the channel. As the -COO− resonantly absorbs the photon energy of the EM
stimulation, it then transfers the energy to the Na+ in the channel, increasing the kinetic
energy of the ion. By means of the collisions between -COO−, Na+, and water molecules, it
breaks the H-bonds between the water and -COO− in the first aqueous shell layer around
the ion, reducing the interaction between the ion and the -COO−, improving the diffusion of
the Na+ ions, and reducing the energy consumption. Our findings can be used to improve
the transport efficiency of nanofluidic systems [55]; provide some reference value for the
detection of diseases of the skeletal system [56], cardiovascular diseases, and other diseases
of living organisms [57]; and help to expand the range of applications of EM waves in
various fields such as the regulation of neurological diseases [58], energy conversion, and
storage. In addition, this mechanism could also serve as an inspiration for promoting life
activities with particle transport [59].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym15020427/s1, Figure S1: Schematic representation of an
artificial sodium channel; Figure S2: The mean square displacement (MSD) of Na+ ions passing
through the channel with and without 48.2 THz electromagnetic stimulation; Figure S3: Probability
distribution of the coordination numbers N for Na+ located inside and outside the channels [60–65].
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