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Abstract: Noncommutative geometry is an established potential candidate for including quantum
phenomena in gravitation. We outlined the formalism of Hopf algebras and its connection to the
algebra of infinitesimal diffeomorphisms. Using a Drinfeld twist, we deformed spacetime symmetries,
algebra of vector fields and differential forms, leading to a formulation of noncommutative Einstein
equations. We studied a concrete example of charged BTZ spacetime and deformations steaming from
the so-called angular twist. The entropy of the noncommutative charged BTZ black hole was obtained
using the brick-wall method. We used a charged scalar field as a probe and obtained its spectrum and
density of states via WKB approximation. We provide the method used to calculate corrections to the
Bekenstein–Hawking entropy in higher orders in WKB, but we present the final result in the lowest
WKB order. The result is that, even in the lowest order in WKB, the entropy, in general, contains
higher powers in h̄, and it has logarithmic corrections and polynomials of logarithms of the black
hole area.

Keywords: black hole entropy; noncommutative gravity; brick wall

1. Introduction

The quest to understand the quantum aspects of gravity has a long history. Namely,
since Einstein introduced the theory of general relativity (GR) [1] and the first black hole
(BH) solution by Schwarzschild [2], there has been much effort and many research directions
that have the goal to formulate some sort of quantum gravity theory. In the center of most
of them is the study of quantum aspects of BHs, with entropy being the most interesting
physical quantity.

The entropy of BHs was first understood by Bekenstein [3] and Hawking [4] in the
framework of semi-classical gravity. Later, it was argued that the origin of BH entropy is
rooted in the statistical mechanics of in-falling particles [5] after a proper regularization of
the UV divergence [6,7]. There are many approaches (string theory [8–10], quantum geome-
try [11], conformal field theory [12–16], AdS/CFT duality [17], effective field theory [18–22]
and noncommutative geometry [23–25], to name a few) toward quantum gravity in which
the entropy of BHs coincides with the Bekenstein–Hawking area law in the leading order.

In this paper, motivated by the possibility of the co-existence of GR and Heisenberg’s
uncertainty principle [26,27], we used the noncommutative (NC) geometry framework as
the underlying theory that captures quantum aspects of gravity [28–32]. It is natural to
expect that, at very small scales, i.e., the Planck scale, the structure of smooth manifolds
leading to the classical spacetime structure of GR will be modified in any theory of quantum
gravity and therefore has to be replaced with some other structure. This new structure is the
NC space, represented by some NC algebra and a corresponding NC differential geometry
that will enable a formulation of an NC gravity theory [33,34]. In [26,27], it was explicitly
shown that the principles of GR together with the Heisenberg’s uncertainty principle lead
to an NC structure of spacetime.

There have been various attempts to construct a well-defined NC gravity theory [35–46],
where it has been shown [47,48] that the NC version of the BTZ black hole [49] is related
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to κ-deformed algebra [50–55]. In addition, a similar example was found for the NC
generalization of a Kerr black hole [56] and in some version of NC cosmology [38], leading
to the fact that κ-deformed algebras have an intriguing connection, a sort of universality,
when investigating quantum aspects of BHs. Therefore, in this paper, we dealt with a
special type of κ-deformation that comes from a Drinfeld twist [57–61].

The charged BTZ (QBTZ) black hole is a solution of Einstein–Maxwell equations in
2+1 dimensions [62–65]. It is a 2+1-dimensional generalization/simplification of Reissner–
Nordström–AdS black hole [66]. Since gravity in 2+1 dimensions has no propagating
degrees of freedom and, in principle, can be quantized [67,68], it provides a perfect labora-
tory for analyzing quantum aspects of gravity and, in particular, the entropy of BHs. This,
together with the fact that an angular twist renders NC corrections only to the coupling be-
tween the electromagnetic potential and charged scalar field while keeping the background
classical [58–61], is our main motivation for studying the entropy of an NC QBTZ.

The paper is organized as follows. In Section 2, we first outline the Hopf algebra
approach to the symmetries of manifolds and then present its deformation via the Drinfeld
twist leading to a formulation of NC gravity theory. Using the angular twist, we show that
QBTZ is a solution of NC Einstein equations and we derive NC corrections to the equation
of motion for a charged scalar field. In Section 3, the brick wall method for calculating
the entropy of BHs is outlined in general and then used to calculate the quantum and NC
corrections to the entropy of QBTZ BH. In Section 4, we study certain limiting cases and
finally, in Section 5, we conclude the paper with some final remarks.

Throughout the paper, we use units where kB = c = G = 1, but we explicitly write h̄
since we use WKB and expansions in h̄.

2. Noncommutative QBTZ

In this section, we will first motivate the use of Hopf algebra when dealing with
infinitesimal diffeomorphisms, and then introduce the Drinfeld twist and show how it
generates NC differential geometry, ultimately leading to a formulation of NC gravity.
Using this formalism, we will analyze the deformation of the QBTZ-metric via the angular
twist and derive the NC generalization of the equation of motion for the charged scalar
field.

2.1. Infinitesimal Diffeomorphisms and Hopf Algebra

The symmetries of a manifoldM are encoded into the algebra of infinitesimal diffeo-
morphisms. The infinitesimal diffeomorphism generated by some smooth vector field v
acts on the algebra of smooth functions onM, i.e., C∞(M), as Lie derivatives

δv f = Lv( f ) = v( f ) = vµ∂µ f , ∀ f ∈ C∞(M) (1)

where, in the last equality, we used a local basis
{

∂µ

}
of smooth vector fields Ξ(M). The

algebra of infinitesimal diffeomorphisms is described by the Lie algebra of vector fields,
where the Lie bracket [·, ·] : Ξ(M)× Ξ(M) −→ Ξ(M) is given by

[v, w] = u, v, w, u ∈ Ξ(M) (2)

where, in the local basis
{

∂µ

}
, we have

v = vµ∂µ, w = wµ∂µ, u =

(
vα ∂wµ

∂xα
− wα ∂vµ

∂xα

)
∂µ (3)

and vµ, wµ ∈ C∞(M). The Lie algebra of vector fields (Ξ(M), [·, ·]) together with its dual,
i.e., one-forms Ω1(M), plays a central role in differential geometry, and its action on any
tensor field is represented via the Lie derivative due to the compatibility identity

LvLw −LwLv = L[v,w], ∀v, w ∈ Ξ(M). (4)
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Note that, for any vector field v ∈ Ξ(M), there exists vinv = −v, which generates the
inverse infinitesimal diffeomorphism. In addition, the action of Lie algebra (Ξ(M), [·, ·])
on any tensor product between tensors T and T′, i.e., the product of representations T ⊗ T′,
is defined by the Leibniz rule

Lv(T ⊗ T′) = Lv(T)⊗ T′ + T ⊗Lv(T′). (5)

If we now introduce a canonical map ε : Ξ(M) −→ C, such that it associates to each
vector field the number zero, v 7→ 0, the structure of a Hopf algebra emerges.

A Hopf algebra H is an algebra (also a co-algebra) together with three maps: coproduct
∆, counit ε and antipod S, that satisfy

(∆⊗ 1)∆ = (1⊗ ∆)∆, (6)

(ε⊗ 1)∆ = 1 = (1⊗ ε)∆, (7)

m[(S⊗ 1)∆] = ε = m[(1⊗ ε)∆], (8)

where m(a ⊗ b) = ab, ∀a, b ∈ H is the algebra multiplication. In our example, the Lie
algebra of vector fields (Ξ(M), [·, ·]), the Hopf algebra is given by H = (UΞ, m, ∆, ε, S),
where UΞ is the universal enveloping algebra of the Lie algebra (Ξ(M), [·, ·]), m is the
product in UΞ (namely the composition of vector fields) and ∆ : UΞ −→ UΞ⊗ UΞ is a
C-linear homomorphism that encodes the Leibniz rule (5) and is given by

∆(v) = v⊗ 1 + 1⊗ v, ∆(1) = 1⊗ 1, ∀v ∈ Ξ(M), (9)

S : UΞ −→ UΞ is a C-linear antihomomorphism that encodes the algebra inverse

S(v) = −v, S(1) = 1, ∀v ∈ Ξ(M), (10)

and ε : UΞ −→ C is a C-linear map that encodes the normalization

ε(v) = 0, ε(1) = 1 v ∈ Ξ(M). (11)

In conclusion, one says that the symmetries of a manifoldM are fully encoded into its
corresponding Hopf algebra H = (UΞ, m, ∆, ε, S).

2.2. Deformed Symmetries, Twist and Noncommutativity

The Hopf algebra framework is suitable for investigating quantum or, more specifically,
deformed symmetries [69]. One of the most comprehensive ways of realizing this is by
using the concept of a Drinfeld twist [70–72]. A Drinfeld twist (here, we need to extend the
notion of universal enveloping algebra to formal power series in parameter λ. We replace
the field C with the ring C[[λ]], so we promote UΞ −→ UΞ[[λ]], but, for brevity, we drop
this notation (for more details see [34,69])) F ∈ UΞ ⊗ UΞ is an invertible element that
satisfies (we also demand F = 1⊗ 1 +O(λ))

F ⊗ 1(∆⊗ 1)F = 1⊗F (1⊗ ∆)F cocycle condition (12)

(ε⊗ 1)F = 1 = (1⊗ ε)F normalization condition (13)

Provided that a Drinfeld twist exists, there is a well-known theorem that enables us to
construct a new Hopf algebra HF = (UΞ, m, ∆F , ε, SF ), where

∆F = F∆F−1 (14)

SF = αSα−1, α = m[F (1⊗ S)] (15)

This new Hopf algebra HF describes the deformed infinitesimal diffeomorphisms, i.e.,
the symmetry of the deformed or noncommutative manifold. Note that the usual geometry
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of a commutative manifoldM is fully described by using its corresponding algebra of
smooth functions (C∞(M), ·) =: A. This algebra A is covariant under the Hopf algebra
H = (UΞ, m, ∆, ε, S). Namely, we have

v( f g) = Lv( f g) = Lv( f )g + fLv(g)

= v( f )g + f v(g)

= m[∆(v)( f ⊗ g)] ∀ f , g ∈ A and v ∈ Ξ(M).

(16)

However, the algebra A is commutative and fails to be covariant under the Hopf
algebra HF due to ∆F , which now encodes a deformed Leibniz rule. Luckily, the algebra A
can be “fixed” by changing the product, i.e., by promoting it into a noncommutative algebra
A? = (C∞(M), ?) so that it becomes covariant under HF . The ? is called the star-product
and is fully determined by the Drinfeld twist F

f ? g := m
(
F−1 f ⊗ g

)
=: m?( f ⊗ g), ∀ f , g ∈ C∞(M). (17)

The algebra A? is, in general, noncommutative, since f ? g 6= g ? f , but, due to the
cocycle condition for the twist (12), it is associative:

f ? (g ? h) = ( f ? g) ? h, ∀ f , g, h ∈ C∞(M). (18)

In addition, the covariance is now given by

v( f ? g) = m?[∆F (v)( f ⊗ g)]. (19)

Therefore, it is often said that the Hopf algebra HF describes the symmetries of a
noncommutative manifold underlying the algebra A? = (C∞(M), ?).

The twist F can be used to construct the ?-Lie algebra of vector fields Ξ? defined by
deforming the Lie bracket (2)

[·, ·] −→ [·, ·]? := [·, ·]F−1 = [ f̄ A(·), f̄A(·)] (20)

where F−1 = f̄ A ⊗ f̄A [33–36]. Explicitly, for two vector fields, we have

[u, v]? = [ f̄ A(u), f̄A(v)] = u ? v− R̄A(u)R̄A(v) (21)

where R−1 = R̄A ⊗ R̄A = FF−1
21 is the inverse R-matrix (the R-matrix is defined as

R(h ? g) = g ? h) and F−1
21 = f̄A ⊗ f̄ A. In the ?-Lie algebra, we have the ?-Jacobi identity

[u, [v, z]?]? = [[u, v]?, z]? + [R̄A(v), [R̄A(u), z]?]?. (22)

The deformed Lie derivative L? is given by

L?u(v) := [u, v]? = L f̄ A(u) f̄A(v) (23)

and satisfies
L?vL?w −L?R̄A(w)L

?
R̄A(v)

= L?[v,w]?
, ∀v, w ∈ Ξ(M (24)

and a deformed Leibniz rule compatible with (22)

L?v(T ⊗? T′) = L?v(T)⊗? T′ + R̄A(T)⊗? L?R̄A(v)
(T′) (25)

where T ⊗? T′ = F−1(T ⊗ T′) = f̄ A(T)⊗ f̄A(T′) is the deformed tensor product.
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2.3. Twisting the Algebra of Exterior Forms

One-forms Ω1(M) are dual to vector fields Ξ(M) via the bilinear mapping 〈·, ·〉:
Ξ(M) × Ω1(M) −→ A, where, in the local basis of vector fields

{
∂µ

}
and one-forms

{dxµ}, one has
〈v, ω〉 = vµωµ (26)

where v = vµ∂µ ∈ Ξ(M) and ω = ωµdxµ ∈ Ω1(M). Exterior forms (constituted of
p-forms) Ω = ⊕pΩp(M) form an algebra with the wedge product ∧ : Ω×Ω −→ Ω.

Once again, the twist F can be used to construct the NC one-forms Ω1
? as dual to

vector fields (note that Ξ(M) and Ξ? are isomorphic as vector spaces, as well as Ω1(M)
and Ω1

?) Ξ? via the ?-bilinear mapping 〈·, ·〉? : Ξ? ×Ω1
? −→ A?, where

〈v, ω〉? := 〈·, ·〉F−1(v⊗ω) =
〈

f̄ A(v), f̄A(ω)
〉

(27)

and satisfies the A?-linearity properties

〈 f ? v, ω ? g〉? = f ? 〈v, ω〉? ? g, 〈v, f ? ω〉? = R̄A( f ) ? 〈R̄A(v), ω〉? ∀ f , g ∈ C∞(M). (28)

2.4. Twisting the Geometry and NC Gravity

The formalism of Hopf algebras and twists is suitable for further deforming the
geometric objects, such as connection∇ : Ξ(M) −→ Ω1(M)×Ξ(M), covariant derivative
∇u(v) := 〈u,∇v〉, Riemann curvature tensor R : Ξ(M)× Ξ(M)× Ξ(M) −→ Ξ(M) and
torsion T : Ξ(M) × Ξ(M) −→ Ξ(M). Here, we immediately give the definitions of
?-objects (for more details, see [33,34]).

A ?-connection ∇? : Ξ? −→ Ω1
? × Ξ? is a linear mapping satisfying the following

Leibniz rule:
∇?( f ? v) = d f ⊗? v + f ?∇?(v) (29)

There exists an associated covariant derivative ∇?
u(v) := 〈u,∇?(v)〉? that, due to (28)

and (29), satisfies
∇?

u+vw = ∇?
uw +∇?

vw (30)

∇?
f ?uw = f ?∇?

uw (31)

∇?
u( f ? v) = L?u( f ) ? v + R̄A( f ) ?∇?

R̄A(u)
v (32)

Note that the ?-covariant derivative ∇?
u( f ) evaluated on a function is equal to the

action of a ?-Lie derivative L?u( f ) as in the commutative case. Equations (30)–(32) are often
considered as the “axioms” for defining the ?-covariant derivative. The ?-curvature R? and
?-torsion T? associated to a connection ∇? are defined as

R?(u, v, w) := ∇?
u∇?

vw−∇?
R̄A(v)∇

?
R̄A(u)

w−∇?
[u,v]?w (33)

T?(u, v) := ∇?
uv−∇?

R̄A(v)R̄A(u)− [u, v]? (34)

Note that the definitions of R? and T? are analogous to the commutative ones up to
the inclusion of the R-matrix. Namely, since the noncommutativity of the ?-product is
regulated by the R-matrix whenever we have to permute the order of the elements in the
commutative definitions, one needs to include the R-matrix contribution (see [36] for more
details).

If we assume that there exist a local basis of vector fields {ei} and a dual basis of
one-forms

{
θi} such that 〈

ei, θ j
〉
?
= δ

j
i (35)
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we can define the coefficients R? l
ijk and T? l

ij as

R? l
ijk =

〈
R?(ei, ej, ek), θl

〉
?
, T? l

ij =
〈

T?(ei, ej), θl
〉
?

(36)

and the ?-Ricci curvature tensor R?
ij is given by

R?
ij =

〈
θl , R?(el , ei, ej)

〉
?

(37)

At this point, we are ready to write the NC version of the vacuum Einstein equation as

R?
ij = 0. (38)

Note that all our algebraic (A?, Ξ?, Ω?, HF ) and geometric objects (∇?, R?, T?) reduce
to the usual ones (C∞(M), Ξ(M), Ω(M), H,∇, R, T) in the commutative limit. The in-
clusion of full ?-Riemannian geometry will require the introduction of a metric tensor g
and the notion of a torsion-free and metric-compatible connection Γ. Both of these can be
defined in general (see [33,34]), which enables one to define the ?-Ricci scalar R and the full
Einstein equation

R?
ij −

1
2

gij ? R? + gijΛ = 8πT?
ij, (39)

where T?
ij is the noncommutative energy–momentum tensor and Λ is the cosmological

constant. This defines our NC gravity. We will skip further discussion on the general
?-formalism and, in the forthcoming subsections, focus on concrete examples.

2.5. Angular Twist

An angular twist is a special example of an abelian Drinfeld twist defined by (here,
we consider that the twist, or, more specifically, the vector fields ∂t and ∂φ, always act as
Lie derivatives)

F = e−
ia
2 (∂t⊗∂φ−∂φ⊗∂t) = 1⊗ 1− ia

2
(∂t ⊗ ∂φ − ∂φ ⊗ ∂t) +O(a2). (40)

The twist defined in (40) is abelian since [∂t, ∂φ] = 0 and Drinfeld because it satis-
fies (12). It was extensively studied in [58–61], where it was used to calculate NC corrections
to the entropy of Reissner–Nordström BH [25] and field theory [57].

As described in previous subsections, the angular twist (40) defines the noncommuta-
tive algebra A? = (C∞(M), ?), where the ?-product is given by

f ? g = m
(
F−1 f ⊗ g

)
= f g +

ia
2

(
∂ f
∂t

∂g
∂φ
− ∂ f

∂φ

∂g
∂t

)
+O(a2). (41)

Therefore the algebra A? is a κ-deformed (it is called κ-deformed because the alge-
bra (43) can be written in a general κ-deformed form

[xµ
?, xν] =

i
κ

(
uµxν − uνxµ

)
(42)

where κ is the deformation parameter and uµ is a constant unit vector. This Lie-algebra-type
noncommutative space (42) can be equipped with a κ-igl Hopf algebra as its symmetry alge-
bra [73,74]. Note that the most famous example of (42) is the so-called κ-Minkowski algebra
(for which, uµ = (1,~0)) together with its κ-Poincare–Hopf algebra as its symmetry [52–54],
and this explains the origin of the name “κ-deformed”) spacetime, where the commutation
relations for coordinates are given by

[t ?, x] = −iay, [t ?, y] = iax, [x ?, y] = 0, (43)
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where [a ?, b] := a ? b− b ? a. In the polar coordinates, we have

[r ?, t] = 0, [r ?, eiφ] = 0, [eiφ ?, t] = aeiφ, (44)

which is connected to the κ-cylinder algebra [75].
The angular twist (40) is also a Moyal twist since it can be written like

F = eΘAB∂A⊗∂B , (45)

where A, B = {t, r, φ} and Θtφ = −Θφt = − ia
2 are the only non-zero elements of the

constant deformation matrix ΘAB. In the case of a Moyal twist, we have a rather big
simplification of the general formulation of the NC gravity. Namely, due to the trivial
action of the twist on the basis

{
∂µ

}
and {dxα}, note that〈

∂µ, dxν
〉
?
= δν

µ (46)

and that the ?-covariant derivative is determined by

∇?
∂µ

∂ν := ∇?
µ∂ν = Σ ρ

µν ? ∂ρ = Σ ρ
µν ∂ρ, Σ ρ

µν ∈ C∞(M) (47)

which leads to

R? σ
µνρ = ∂µΣ σ

νρ − ∂νΣ σ
µρ + Σ τ

νρ ? Σ σ
µτ − Σ τ

µρ ? Σ σ
ντ (48)

and
T? ρ

µν = Σ ρ
µν − Σ ρ

νµ . (49)

The metric tensor g is given by

g = gµν ? dxµ ⊗? dxν = gµνdxµ ⊗ dxν (50)

and it remains undeformed. One can show [33,34] that there exist a unique ?-torsion free

T? ρ
µν = 0 (51)

and metric-compatible
∇?

µg = 0 (52)

? Levi–Civita connection that is explicitly given by

Σ ρ
µν =

1
2

g?ρσ ?
(
∂µgνσ + ∂νgµσ − ∂σgµν

)
(53)

where g?ρσ is the unique ?-inverse satisfying

g?αρ ? gρβ = δα
β, gµρ ? g?ρν = δν

µ (54)

and is explicitly given as

g?αβ = gαβ − gγβΘAB(∂Agασ)(∂Bgσγ) +O(a2) (55)

where gαβ is the usual inverse
gασgσβ = δα

β. (56)

Now, it is easy to see that, if the metric g has Killing vectors Kα compatible with the
Moyal twist, i.e., [Kα, ∂β] = 0, the ?-curvature and ?-Levi–Civita (53) are undeformed and,
in that case, any g that satisfies the commutative Einstein equation will also satisfy the
?-Einstein Equation (39) provided that the energy–momentum tensor inherits the symmetry,
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i.e., LKα(T) = 0. However, the NC geodesic motion will change and so will the equation of
motion for the metric perturbations (see [33,34]).

2.6. Noncommutative QBTZ

Using the formalism outlined so far, we want to deform a particular manifold described
by the QBTZ metric [62–65] with the angular twist (40). The QBTZ metric is given by

ds2 = − f dt2 +
1
f

dr2 + r2dφ2, f (r) = −M +
r2

l2 − 2Q2 ln
( r

l

)
(57)

and, together with the electromagnetic potential A = Aµdxµ

Aµ =
(
−Q ln

( r
l

)
,~0
)

(58)

satisfies the coupled Einstein–Maxwell equations (coupled Einstein–Maxwell equations
consist of the Einstein equation with the energy–momentum tensor being the Maxwell
stress tensor and the Maxwell equations in the curved background g). Here, M and Q are
the mass and charge of the black hole, while 1/l2 is the cosmological constant rendering
the QBTZ-metric asymptotically AdS. The QBTZ has time-translation and azimuthal
symmetry since

L∂t(g) = L∂φ
(g) = L∂t(A) = L∂φ

(A) = 0 (59)

implying that ∂t and ∂φ are its Killing vector fields. Whenever we want to deform a
manifold that has time-translation and azimuthal symmetry (rotation in the x− y plane)—
that is, whenever the metric g has ∂t and ∂φ as Killing vectors—the angular twist (40)
becomes an abelian affine Killing twist [33]. One can easily see that deforming the QBTZ
with the angular twist will lead to the conclusion that the whole NC differential geometry
is undeformed and that QBTZ is also a solution of the ?-Einstein Equation (39) with
T? = T = Tµνdxµ ⊗ dxµ, where Tµν are the components of the Maxwell stress tensor. In
order to see this more explicitly, it is enough to calculate

∇?
µ∂ν = Σ ρ

µν ? ∂ρ = Γ ρ
µν ∂ρ (60)

where Σ ρ
µν = Γ ρ

µν = 1
2 gρσ

(
∂µgνσ + ∂νgµσ − ∂σgµν

)
are the undeformed Levi–Civita coeffi-

cients leading ultimately to R? = R, etc.
Therefore, we can consider the QBTZ to be a fixed commutative and NC background at

the same time, i.e., QBTZ = NCQBTZ. This is very convenient because we effectively have
that the spacetime part, i.e., the geometry, can be treated completely classically. However,
when considering NC field theory—for example, if we introduce a charged scalar probe
Φ̂ into the scenario—the scenario become interesting. As shown in [58–60], there will be
a nontrivial NC correction to the coupling between the U(1) field and the charged scalar
field. We will look at this in more detail in the next subsection.

2.7. NC Klein–Gordon Equation in (NC)QBTZ Background

Since we showed that the NCQBTZ, which is the QBTZ deformed with an angular
twist (40), can be treated as a classical curved background, the action for an NC-charged
scalar field is given by

S[Φ] =
∫

d4x
√
−g
(

gµν
(

DµΦ̂
)+

? DνΦ̂− µ2

h̄2 Φ̂+ ? Φ̂
)

, (61)

where Dµ is the U(1)?-covariant derivative given by

DµΦ̂ = ∂µΦ̂− i
q
h̄

Âµ ? Φ̂ (62)
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and where q and µ are the charge and mass of the scalar field Φ̂. Such a defined action (61)
is invariant under infinitesimal U(1)? gauge transformations

δΛ̂Φ̂ = iΛ̂ ? Φ̂, δΛ̂ Âµ = ∂µΛ̂ + i
(
Λ̂ ? Âµ − Âµ ? Λ̂

)
, δΛ̂gµν = 0 (63)

where Λ̂ is the NC gauge parameter. In order to express the NC field Φ̂ and Âµ in terms of
their commutative counterparts Φ and Aµ, one needs to use the so-called Seiberg–Witten
(SW) map [76,77]. The SW map for an abelian twist is known up to all orders in the
deformation parameter a [78] and is explicitly given as

Φ̂ = Φ− q
4h̄

Θρσ Aρ(∂σΦ + (∂σ − i
q
h̄

Aσ)Φ) +O(a2), Âµ = Aµ −
q

2h̄
Θρσ Aρ(∂σ Aµ + Fσµ) +O(a2) (64)

where Fµν = ∂µ Aν − ∂ν Aµ are the components of the electromagnetic field-strength two-
form. Using (40) and (64), the action (61) up to the first order in a is given by

S =
∫

d4x
√
−g
[

gµν(DµΦ)+DνΦ− µ2

h̄2 Φ+Φ + L(a)
]
+O(a2) (65)

where L(a) is the NC correction

L(a) =
µ2q2

2h̄2 ΘαβFαβΦ+Φ +
q2Θαβ

2
gµν

(
−1

2
(DµΦ)+FαβDνΦ + (DµΦ)+FανDβΦ + (DβΦ)+FαµDνΦ

)
(66)

Now, we vary the action (65) with respect to Φ+ to obtain the equation of motion for
Φ and, after using the ansatz Φ = e−

i
h̄ EtR(r)eimφ, we obtain the radial equation of motion

R′′m +
1
f

[
1
f

(
E− qQ ln( r

l )
)2

h̄2 − m2

r2 −
µ2

h̄2

]
Rm +

2
r f

(
r2

l2 −Q2 +
f
2

)
R′m + im

aqQ
h̄r2 f

[
r f

d
dr

+ r
(

r
l2 −

Q2

r2

)]
Rm = 0 (67)

where E and m are separation constants corresponding to the energy and angular momen-
tum (magnetic quantum number), and we explicitly used the QBTZ-metric (57). Radial
Equation (67) is the central result of this paper and, in the following sections, we use it to
calculate the NC correction to the entropy of QBTZ via the brick-wall method.

3. Black Hole Entropy in the Brick Wall Model

In order to calculate the entropy of a BH in general, it is crucial to regularize the UV
divergence and isolate the relevant physical contribution [19,79]. One of the simplest ways
to achieve this was presented a long time ago by ’t Hooft [6,7] using the so-called brick
wall method. Alongside the brick wall method, the BH entropy can be described using the
entanglement of the degrees of freedom between the two sides of the horizon [80,81] and
by using the Wald entropy formula within the effective field theory approach to quantum
gravity [21,22,82]. It has been shown [19,83] that all three approaches are related due to the
fact that all of them have an almost identical UV divergence of the BH entropy.

The brick wall method is a semi-classical approach, where the BH is considered as a
fixed background that is in thermal equilibrium with a thermal bath of some surrounding
quantum matter fields at the Hawking temperature. Therefore, the canonical entropy of the
matter field outside the BH horizon is related to the entropy of BH itself. When calculating
the canonical entropy, the crucial ingredient is the density of states. The density of states
diverges at the horizon and this is the reason why one uses a cutoff h, i.e., the brick wall,
imposing that, at this point r+ + h, the matter fields outside the BH horizon vanish. The
value of the cutoff is determined from the matching condition, where the leading divergent
part of the canonical entropy obeys the Bekenstein–Hawking area law. The canonical
entropy is given by

S = β2 dF
dβ

(68)
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where F is the free energy of the matter field at the inverse temperature β and is given
by [6,7]

F = −
∫ ∞

0

N(E)
eβE − 1

dE. (69)

In order to evaluate (69), the key ingredients are the energy E (the spectrum of the
field) and the density of states N(E), i.e., the number of eigenmodes of the matter field.
Both of them are determined by solving the equation of motion for a surrounding field in
the fixed BH background and imposing the brick wall boundary conditions, i.e., that the
fields are vanishing close to the horizon and in the spatial infinity. The first condition will
regularize the UV infinities, whereas the second regularizes the IR infinities, which will
occur in the density of states due to the contribution coming from the vacuum surrounding
the system at large distances, but this can be omitted [6]. For scalar fields, everything is
governed by the radial part of the Klein–Gordon equation and one uses the WKB method
to solve it. Now, we move on to our concrete example of the NC scalar field on an NCQBTZ
background.

3.1. WKB and the Density of States N(E)

The radial part of the equation of motion for the NC scalar field on an NCQBTZ
background is given in (67) and, since we are unable to solve it analytically, we used the
WKB method. To carry this out, we first used an ansatz

Rm =
ψm√
r
√

f
(70)

so that (67) can be put in the following form (note that Equation (71) slightly differs from
the corresponding one in [84] due to the appearance of the A, B and C term. They appear
here because of two reasons. One is because we are looking at a Klein–Gordon equation for
a charged scalar and the other is because of the NC corrections. When q and a tend to zero,
we recover the equation in [84]):

ψ′′m +

(
A(r)

h̄
+ B(r)

)
ψ′m +

(
V(r)2

h̄2 +
C(r)

h̄
− ∆(r)

)
ψm = 0 . (71)

where

V2 =
− h̄2m2 f (r)

r2 +
(
E−Qq ln

( r
l
))2

f 2(r)
(72)

∆ = −
Q2 d

dr f (r)
r f 2(r)

− Q2

r2 f (r)
+

d2

dr2 f (r)
2 f (r)

−
3
(

d
dr f (r)

)2

4 f 2(r)
− 1

4r2 +
r d

dr f (r)
l2 f 2(r)

+
1

l2 f (r)
(73)

A =
iQamq

r
(74)

C =
iQamq

(
−2Q2l2 − l2r2 d

dr f (r)− l2r f (r) + 2r3
)

2l2r3 f (r)
(75)

B = − 2Q2

r f (r)
−

d
dr f (r)
f (r)

+
2r

l2 f (r)
(76)

The V2 function is related to the effective potential (for the µ = 0 case) together with
the energy, A and C are the NC correction to the ψ′ and ψ term, respectively, B is the
correction to the ψ′ term due to charge q and ∆ is the standard term related to the existence
of the term R′ in (67).
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In order to solve (70), we used the WKB-ansatz

ψm =
c0√
P(r)

e
i
h̄
∫ r P(r′)dr′ (77)

to obtain a differential equation for P(r):

1
h̄2

(
V2 − P2 + iPA

)
+

1
h̄

(
C + iPB− P′

2P
A
)
=

P′′

2P
− 3

4
P′2

P2 + ∆ +
P′

2P
B. (78)

We are looking for a solution that is a power series in h̄, namely

P(r) =
∞

∑
n=0

h̄nPn(r). (79)

Substituting the series (79) into (78), we obtain, for the Pn up to n = 2,

P0 = i
A
2
±
√

V2 − A2

4
(80)

P1 =
A P′0

2P0
− iBP0 − C

iA− 2P0
(81)

P2 =
P2

1 − iP1B + A P′1
2P0
− A P′0P1

2P2
0
− 3

4
P′20
P0

+
P′′0
2P0

+ B P′0
2P0

+ ∆

iA− iP0
(82)

From now on, we will focus on the lowest order in the WKB approximation, i.e., on P0.
Using (72) and (80) and choosing the + sign, we obtain

P0 = −Qamq
2r

+

√√√√Q2a2m2q2

4r2 +
− h̄2m2 f (r)

r2 +
(
E−Qq ln

( r
l
))2

f 2(r)
. (83)

Since we expect that the NC scale governed by the deformation parameter a is small
compared to the other scales in the problem, i.e., it is comparable with the Planck scale,
we further expanded P0 up to a2 (we expanded up to a2 because, later, we will see that the
linear terms do not contribute to the entropy S):

P0 =
Q2a2m2q2 f (r)

8r2
√
− h̄2m2 f (r)

r2 +
(
E−Qq ln

( r
l
))2
− Qamq

2r
+

√
− h̄2m2 f (r)

r2 +
(
E−Qq ln

( r
l
))2

f (r)
. (84)

The density of states N(E) is defined by [6,7]:

N(E) =
∞

∑
n=0

Nn(E) =
1

πh̄

∫ L

r++h
dr
∫ mmax

−mmax
dm P(r) (85)

where r+ is the outer horizon, h is the brick wall cutoff, L is the IR cutoff and mmax is the
maximal value of the magnetic quantum number m such that P remains real and is given by

mmax =
r

h̄
√

f

(
E− qQ ln

( r
l

))
. (86)
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In the lowest order in WKB, we have

N0 =
1

h̄π

∫ L

r++h
dr
∫ mmax

−mmax
P0dm

=
1

h̄2π

∫ L

r++h

r√
f

[
1
f

∫ E
0

dΛ
G√
Λ

+
a2q2Q2

8h̄2

∫ E
0

dΛ

√
Λ
G

]
,

(87)

where

G(Λ, E) =
√
E −Λ, E =

(
E−Qq ln

( r
l

))2
, Λ =

h̄2m2 f (r)
r2 (88)

and the linear term in a vanishes due to
∫ mmax
−mmax

mdm = 0. Next, we evaluated the Λ
integration and, using ∫ E

0

Λ
G
√

Λ
dΛ =

π

2
E ,

∫ E
0

G√
Λ

dΛ =
π

2
E (89)

we obtained the density of states N(E) in the lowest WKB order

N0 =
1

2h̄2

∫ L

r++h
dr
[

E2 − 2EQq ln
( r

l

)] r√
f

(
1
f
+

a2q2Q2

8h̄2

)
(90)

and we postponed the r-integration for later.

3.2. Entropy of NCQBTZ

Once we have the density of states N0, using (68) and (69), we can obtain the free
energy F0 and canonical entropy S0. Here, we also used the notation

F =
∞

∑
n=0

Fn, S =
∞

∑
n=0

Sn. (91)

After the E integration, we obtain

S0 =
1

2h̄2

∫ L

r++h
dr
(

6ζ(3)
β2 − 4Qq ln

( r
l

) ζ(2)
β

)
r√

f

(
1
f
+

a2q2Q2

8h̄2

)
(92)

where we used the ζ-function regularization and also subtracted the infinite contribution
proportional to ζ(1), which originates from the electrostatic self-energy of the charge q of
the scalar particle.

We are interested in the main contribution to the entropy S0 coming from the horizon.
In order to extract this contribution, we split the integration over r into two parts:∫ L

r++h
dr(. . .) =

∫ R

r++h
dr(. . .) +

∫ L

R
dr(. . .) (93)

where we introduced an intermediate scale R > 0 such that, in the first term we have
h� r+ � R and, in the second term, r+ � R� L. The second term is the contribution of
the vacuum surrounding the system at large distances and can be omitted [6,7]. The first
contribution can be evaluated in the near horizon limit; namely, we used the near horizon
coordinate x = r− r+ and h� r+ to obtain

S0 =
1√
h

∞

∑
n=0

hn fn (94)
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where the coefficients fn are given in Appendix A up to n = 3, and the inverse temperature
β is related to the Hawking temperature via surface gravity κ:

1
β
= h̄

κ

2π
= h̄

f ′(r+)
4π

. (95)

The brick wall cutoff h is determined by imposing that the most divergent part of S0
as h −→ 0 is equal to the Bekenstein–Hawking entropy SBH = A

4h̄ [6,7] i.e.,

(S0)div =
f0√

h
= SBH (96)

leading to

h =

(
f0

SBH

)2
. (97)

Now, we can plug the cutoff (97) into the full expression for the entropy (94) to obtain
the dependence of the entropy on the area A, i.e., the quantum and NC corrections to the
Bekenstein–Hawking area law

S0 = SBH +
∞

∑
k=0
Vk lnk

(
A
l

)
+

(
aqQ

h̄

)2 ∞

∑
k=0
Wk lnk

(
A
l

)
(98)

where A = 2πr+ is the area of the horizon and the function coefficients Vk andWk depend
on A and have an expansion in h̄:

Vk =
1
h̄

∞

∑
n=0

h̄nvkn, Wk =
1
h̄

∞

∑
n=0

h̄nwkn (99)

where the coefficients vkn and wkn are given in the Appendix B up to n = 5 and k = 3. Note
that, up to the linear order in h̄, the expression for the entropy (98) is of the general form
presented in [84], but, due to the existence of terms lnk

(
A
l

)
in higher orders in h̄, this is no

longer true. This is due to the fact that the electromagnetic potential (58) in 2+1 dimensions
has a logarithmic dependence, rather than r−1, which then explains the appearance of
higher powers of ln in the expression for the entropy (98).

4. Some Limit Cases

The equation for the entropy (98) appears to be very involved, so we will analyze
some of its interesting limiting cases.

4.1. Limit Case q −→ 0

The limit q −→ 0 means that the charge of the surrounding scalar field Φ is negli-
gible. In this case, there is no coupling between the electromagnetic potential Aµ and Φ,
and therefore there are no NC corrections to the entropy. However, we obtain quantum
corrections to the entropy of QBTZ, i.e.,

lim
q→0

S = SBH +
∞

∑
k=0

lim
q→0

(Vk) lnk
(

A
l

)
= SBH + h̄FQBTZ(A) ln

(
A
l

)
(100)

where we used

lim
q→0

(Vk) = lim
q→0

(V0) = h̄ lim
q→0

v02 = h̄FQBTZ(A) = −h̄
9ζ(3)2

(
A

πl2 − 4πQ2

A

)
32π5 (101)

This is in complete agreement with [84], and (100) represents the entropy of QBTZ in
the lowest WKB order.
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4.2. Limit Case Q −→ 0

The Q −→ 0 limit means that the charge of the BH is negligible. If so, there is no
electromagnetic potential Aµ, no coupling with Φ and no NC corrections. In addition, the
QBTZ reduces to the spinless BTZ metric, i.e., for the entropy, we obtain

lim
Q→0

S = SBTZ +
∞

∑
k=0

lim
Q→0

(Vk) lnk
(

ABTZ
l

)
= SBTZ + h̄FBTZ(A) ln

(
ABTZ

l

)
(102)

where we used

lim
Q→0

(Vk) = lim
Q→0

(V0) = h̄ lim
Q→0

v02 = h̄FBTZ(A) = −h̄
9ζ(3)2 ABTZ

32π6l2 (103)

and
SBTZ =

ABTZ
4h̄

, ABTZ = 2πrBTZ, rBTZ = l
√

M. (104)

This is also in complete agreement with [84], and (102) represents the entropy of BTZ
in the lowest WKB order.

4.3. The Almost BTZ Limit

The angular twist (40) does not deform either the BTZ metric or its coupling to the
scalar probe. Hence, taking limits of Q, q −→ 0 in (98) simply reproduces the commutative
results. The NC corrections only appear if we have a charged BH (in our case, QBTZ) and
a charged scalar probe Φ. Therefore, it is interesting to take a closer look at the QBTZ
with a very small charge Q (but not negligible) in order to compare the NC corrections
with respect to the (almost) BTZ black hole. We will investigate (98) for small Q; that is,
we expand everything to the lowest order in the BH charge Q. Since the NC correction
is proportional to Q2, it is enough to expand the S0 up to quadratic terms in Q. To carry
this out, we first need to find the expansion of r+. Since r+ is given in terms of Lambert
function W [85], in order to avoid the asymptotics and a complex analysis, we solved
the condition for the horizon of QBTZ metric f (r+) = 0 perturbatively. First, we wrote
(the symbol O(∼) represents a function of the form α1ξ + α2ξ2 + . . ., where αn are some
dimensional parameters)

r+ = rBTZ + r̃, r̃ = O(Q2)

=⇒ r2
+ = r2

BTZ + 2rBTZr̃ +O(r̃2)

=⇒ ln
( r+

l

)
= ln

( rBTZ

l

)
+

r̃
rBTZ

+O(r̃2)

(105)

which gives

r̃ =
l2

rBTZ
Q2 ln

( rBTZ

l

)
+O(Q4) (106)

and the expansion for r+ is given by

r+ = rBTZ

(
1 +

(
l

rBTZ

)2
ln
( rBTZ

l

)
Q2

)
(107)

Next, we expanded the entropy (98) as a series in Q and obtained

S = SBTZ +
∞

∑
n=0

snQn +
a2q2

h̄2

∞

∑
n=0

znQn (108)



Symmetry 2023, 15, 417 15 of 20

where sn and zn were calculated up to n = 2, i.e.,

s0 = −9ABTZζ(3)2h̄
32π6l2 (109)

s1 = h̄0

3ζ(2)ζ(3)q ln
(

ABTZ
l

)
2π4 − 3ζ(2)ζ(3)q ln (2π)

2π4 +
3ζ(2)ζ(3)q

4π4

+ h̄2
(

9ζ(2)ζ(3)3q
32π10l2

)
(110)

s2 =
1
h̄

2ζ(2)2l2q2 ln
(

ABTZ
l

)2

π2 ABTZ
−

2ζ(2)2l2q2 ln
(

ABTZ
l

)
π2 ABTZ

+
4ζ(2)2l2q2 ln (2π) ln

(
ABTZ

l

)
π2 ABTZ

− 2ζ(2)2l2q2 ln (2π)2

π2 ABTZ
+

+
2ζ(2)2l2q2 ln (2π)

π2 ABTZ
+

π2l2 ln
(

ABTZ
l

)
ABTZ

− π2l2 ln (2π)

ABTZ

+ h̄0 · 0

+ h̄

−9ζ(2)2ζ(3)2q2 ln
(

ABTZ
l

)
4π8 ABTZ

+
9ζ(2)2ζ(3)2q2 ln (2π)

4π8 ABTZ
−

9ζ(3)2 ln
(

ABTZ
l

)
8π4 ABTZ

+
9ζ(3)2

8π4 ABTZ
+

9ζ(3)2 ln (2π)

8π4 ABTZ


(111)

and

z0 = z1 = 0, z2 = h̄

(
−

9A3
BTZζ(3)2

512π8l4

)
+ h̄3

(
−

27A3
BTZζ(3)4

4096π14l6

)
(112)

5. Final Remarks

The brick wall method is one of the most widely used methods for calculating cor-
rections to the Bekenstein–Hawking entropy [84]. It is important to note that even the
lowest order in WKB can provide corrections of the same structure as higher orders if
one expands the metric beyond the linear order in the horizon [84]. Like in [25], we
present a derivation of the NC correction to Bekenstein–Hawking entropy steaming from
a Drinfeld twist, which is compatible with the symmetries of the background metric, i.e.,
we used a Killing twist [33,34]. Contrary to the general form for the entropy corrections
found in [25,84], the NC corrections to the entropy of QBTZ exhibit extra terms that are
polynomials in logarithms. This peculiarity is present due to the fact that both the electro-
magnetic potential (58) and QBTZ metric (57) have an explicit logarithmic dependence on r
that later propagates in the WKB expansion. It is generally believed that the appearance
of logarithmic dependence in the corrections to the entropy of black holes is due to the
nonlocality of the quantum nature of gravity. If so, we can conclude that, in the special
example of QBTZ deformed via the angular twist (40), the NC corrections to entropy seem
to suggest that the quantum aspects of gravity in 2+1 dimensions have a higher degree of
nonlocality than the corresponding theory in 3+1 dimensions [25].

It is important to note that the universal nature of the UV divergence of the BH
entropy is related to the fact that the von Neumann algebra of observables in QFT in curved
backgrounds is of type-III [86–88]. As supported by the results in [25] and in this paper,
it seems that, from a perturbative standpoint, these UV divergences persist even in the
NC framework, suggesting that noncommutativity does not change the typology of the
corresponding von Neumann algebra of observables.
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Appendix A. Entropy in Terms of the Brick Wall Cutoff h

In order to evaluate the contribution coming from the horizon of the entropy S0, we
need to integrate (92) in the near horizon limit

S =
1

2h̄2

∫
h

dx
[

6ζ(3)
β2 − 4Qq

(
ln
( r+

l

)
+

x
r+

)
ζ(2)

β

]
x + r+√
f ′(r+)x

(
1

f ′(r+)x
+

a2q2Q2

8h̄2

)
. (A1)

where the upper bound contribution is omitted, and we also used

ln
( r

l

)
= ln

( r+
l

)
+

x
r+

+O(x2), f (r) = f ′(r+)x +O(x2) (A2)

since f (r+) = 0 and f ′(r+) =
(

2r+
l2 − 2Q2

r+

)
. After the x integration and using

1
β
= h̄

κ

2π
= h̄

f ′(r+)
4π

. (A3)

we obtained

S0 =
1√
h

∞

∑
n=0

hn fn (A4)

where, up to n = 3,

f0 = −
Qζ(2)qr+ ln

( r+
l
)

π
√

f ′(r+)h̄
+

3ζ(3)
√

f ′(r+)r+
8π2

f1 =
Q3ζ(2)a2

√
f ′(r+)q3r+ ln

( r+
l
)

8πh̄3 − 3Q2ζ(3)a2 f ′(r+)
3
2 q2r+

64π2h̄2 +
Qζ(2)q ln

( r+
l
)

π
√

f ′(r+)h̄
+

+
Qζ(2)q

π
√

f ′(r+)h̄
− 3ζ(3)

√
f ′(r+)

8π2

f2 =
Q3ζ(2)a2

√
f ′(r+)q3 ln

( r+
l
)

24πh̄3 +
Q3ζ(2)a2

√
f ′(r+)q3

24πh̄3 − Q2ζ(3)a2 f ′(r+)
3
2 q2

64π2h̄2 +
Qζ(2)q

3π
√

f ′(r+)h̄r+

f3 =
Q3ζ(2)a2

√
f ′(r+)q3

40πh̄3r+
.

(A5)

Appendix B. Coefficients vkn and wkn

v00 =

−2Q2ζ(2)2q2 ln (2π)2

π3
(

A
πl2 − 4πQ2

A

) +
2Q2ζ(2)2q2 ln (2π)

π3
(

A
πl2 − 4πQ2

A

) +
16Q4ζ(2)4q4 ln (2π)3

3π6 A
(

A
πl2 − 4πQ2

A

)2

 (A6)

v01 =

−3Qζ(2)ζ(3)q ln (2π)

2π4 +
3Qζ(2)ζ(3)q

4π4 +
6Q3ζ(2)3ζ(3)q3 ln (2π)2

π7 A
(

A
πl2 − 4πQ2

A

)
 (A7)

v02 =

−9ζ(3)2
(

A
πl2 − 4πQ2

A

)
32π5 +

9Q2ζ(2)2ζ(3)2q2 ln (2π)

4π8 A

, v03 =

9Qζ(2)ζ(3)3q
(

A
πl2 − 4πQ2

A

)
32π9 A

 (A8)

v10 =

− 2Q2ζ(2)2q2

π3
(

A
πl2 − 4πQ2

A

) +
4Q2ζ(2)2q2 ln (2π)

π3
(

A
πl2 − 4πQ2

A

) − 16Q4ζ(2)4q4 ln (2π)2

π6 A
(

A
πl2 − 4πQ2

A

)2

 (A9)
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v11 =

(
3Qζ(2)ζ(3)q

2π4 − 12Q3ζ(2)3ζ(3)q3 ln (2π)

π7 A
(

A
πl2
− 4πQ2

A

)
)

, v12 =
(
− 9Q2ζ(2)2ζ(3)2q2

4π8 A

)
, v20 =

− 2Q2ζ(2)2q2

π3
(

A
πl2
− 4πQ2

A

) + 16Q4ζ(2)4q4 ln (2π)

π6 A
(

A
πl2
− 4πQ2

A

)2

 (A10)

v21 =

 6Q3ζ(2)3ζ(3)q3

π7 A
(

A
πl2 − 4πQ2

A

)
, v30 =

− 16Q4ζ(2)4q4

3π6 A
(

A
πl2 − 4πQ2

A

)2

, v4k = v5k = 0. (A11)

w00 =

−Aζ(2)2 ln (2π)2

8π4 − Q2ζ(2)4q2 ln (2π)4

3π7
(

A
πl2 − 4πQ2

A

) +
Q2ζ(2)4q2 ln (2π)3

3π7
(

A
πl2 − 4πQ2

A

) +
8Q4ζ(2)6q4 ln (2π)5

5π10 A
(

A
πl2 − 4πQ2

A

)2

 (A12)

w01 =

− 3AQζ(2)ζ(3)q
(

A
πl2
− 4πQ2

A

)
ln (2π)

32π5 − Qζ(2)3ζ(3)q ln (2π)3

2π8 + 3Qζ(2)3ζ(3)q ln (2π)2

8π8 + 3Q3ζ(2)5ζ(3)q3 ln (2π)4

π11 A
(

A
πl2
− 4πQ2

A

)
 (A13)

w02 =

− 9Aζ(3)2
(

A
πl2
− 4πQ2

A

)2

512π6 −
9ζ(2)2ζ(3)2

(
A

πl2
− 4πQ2

A

)
ln (2π)2

32π9 +
9ζ(2)2ζ(3)2

(
A

πl2
− 4πQ2

A

)
ln (2π)

64π9 + 9Q2ζ(2)4ζ(3)2q2 ln (2π)3

4π12 A

 (A14)

w03 =

− 9Qζ(2)ζ(3)3q
(

A
πl2
− 4πQ2

A

)2
ln (2π)

128π10 +
9Qζ(2)ζ(3)3q

(
A

πl2
− 4πQ2

A

)2

512π10 +
27Qζ(2)3ζ(3)3q

(
A

πl2
− 4πQ2

A

)
ln (2π)2

32π13 A

 (A15)

w04 =

−27ζ(3)4
(

A
πl2 − 4πQ2

A

)3

4096π11 +
81ζ(2)2ζ(3)4

(
A

πl2 − 4πQ2

A

)2
ln (2π)

512π14 A

 (A16)

w10 =

Aζ(2)2 ln (2π)

4π4 − Q2ζ(2)4q2 ln (2π)2

π7
(

A
πl2 − 4πQ2

A

) +
4Q2ζ(2)4q2 ln (2π)3

3π7
(

A
πl2 − 4πQ2

A

) − 8Q4ζ(2)6q4 ln (2π)4

π10 A
(

A
πl2 − 4πQ2

A

)2

 (A17)

w11 =

 3AQζ(2)ζ(3)q
(

A
πl2
− 4πQ2

A

)
32π5 − 3Qζ(2)3ζ(3)q ln (2π)

4π8 + 3Qζ(2)3ζ(3)q ln (2π)2

2π8 − 12Q3ζ(2)5ζ(3)q3 ln (2π)3

π11 A
(

A
πl2
− 4πQ2

A

)
 (A18)

w12 =

−9ζ(2)2ζ(3)2
(

A
πl2 − 4πQ2

A

)
64π9 +

9ζ(2)2ζ(3)2
(

A
πl2 − 4πQ2

A

)
ln (2π)

16π9 − 27Q2ζ(2)4ζ(3)2q2 ln (2π)2

4π12 A

 (A19)

w13 =

 9Qζ(2)ζ(3)3q
(

A
πl2
− 4πQ2

A

)2

128π10 −
27Qζ(2)3ζ(3)3q

(
A

πl2
− 4πQ2

A

)
ln (2π)

16π13 A

, w14 =

− 81ζ(2)2ζ(3)4
(

A
πl2
− 4πQ2

A

)2

512π14 A

 (A20)

w20 =

−Aζ(2)2

8π4 − 2Q2ζ(2)4q2 ln (2π)2

π7
(

A
πl2 − 4πQ2

A

) +
Q2ζ(2)4q2 ln (2π)

π7
(

A
πl2 − 4πQ2

A

) +
16Q4ζ(2)6q4 ln (2π)3

π10 A
(

A
πl2 − 4πQ2

A

)2

 (A21)

w21 =

−3Qζ(2)3ζ(3)q ln (2π)

2π8 +
3Qζ(2)3ζ(3)q

8π8 +
18Q3ζ(2)5ζ(3)q3 ln (2π)2

π11 A
(

A
πl2 − 4πQ2

A

)
 (A22)

w22 =

−9ζ(2)2ζ(3)2
(

A
πl2 − 4πQ2

A

)
32π9 +

27Q2ζ(2)4ζ(3)2q2 ln (2π)

4π12 A

, w23 =

27Qζ(2)3ζ(3)3q
(

A
πl2 − 4πQ2

A

)
32π13 A

 (A23)
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w30 =

− Q2ζ(2)4q2

3π7
(

A
πl2 − 4πQ2

A

) +
4Q2ζ(2)4q2 ln (2π)

3π7
(

A
πl2 − 4πQ2

A

) − 16Q4ζ(2)6q4 ln (2π)2

π10 A
(

A
πl2 − 4πQ2

A

)2

 (A24)

w31 =

Qζ(2)3ζ(3)q
2π8 − 12Q3ζ(2)5ζ(3)q3 ln (2π)

π11 A
(

A
πl2 − 4πQ2

A

)
, w32 =

(
−9Q2ζ(2)4ζ(3)2q2

4π12 A

)
(A25)

w40 =

− Q2ζ(2)4q2

3π7
(

A
πl2
− 4πQ2

A

) + 8Q4ζ(2)6q4 ln (2π)

π10 A
(

A
πl2
− 4πQ2

A

)2

, w41 =

(
3Q3ζ(2)5ζ(3)q3

π11 A
(

A
πl2
− 4πQ2

A

)
)

, w50 =

− 8Q4ζ(2)6q4

5π10 A
(

A
πl2
− 4πQ2

A

)2

 (A26)
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