
Citation: Rabab, A. Quasi-

Monomiality Principle and Certain

Properties of Degenerate Hybrid

Special Polynomials. Symmetry 2023,

15, 407. https://doi.org/10.3390/

sym15020407

Academic Editors: Juan Luis García

Guirao, Sergei D. Odintsov and

Calogero Vetro

Received: 3 January 2023

Revised: 21 January 2023

Accepted: 25 January 2023

Published: 3 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Quasi-Monomiality Principle and Certain Properties of
Degenerate Hybrid Special Polynomials
Rabab Alyusof

Department of Mathematics, College of Science, King Saud University, Riyadh 11421, Saudi Arabia;
ralyusof@ksu.edu.sa
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1. Introduction and Preliminaries

To propose and pose solutions to a variety of differential and integro-differential
equations in the areas of mathematics, biomedical sciences, engineering physics and ap-
proximation theory, numerous sequences of polynomials came into play as a vital role such
as Bessel polynomials, tangent polynomials, Laguerre and Chebyshev polynomials, the
Hermite, Jacobi and Legendre polynomials. A vast and the largest family of sequences of
polynomials is, of course, the Appell polynomial family [1]. Extensive research is being
carried out on the Appell family due to its significance in numerous areas of mathematical,
biological and engineering sciences. These polynomials form a commutative group under
the operation of composition and, thus, increase their significance in the areas of linear and
abstract algebra.

Appell [1], denoted by Qm(u), was introduced in the 18th century, designated by the
expression:

m Qm−1(u) =
d

du
Qm(u), m ∈ N0 (1)

and specified by the designated generating expression as:

∞

∑
k=0

Qk(u)
tk

k!
= Q(t) exp(ut), (2)

where, Q(t) is a convergent power series, whose expansion in Taylors’ form is listed as:

∞

∑
k=0

Qk
tk

k!
= Q(t), Q0 6= 0. (3)

A notable evolution was seen in recent years with the induction of multi-variable and
index functions in polynomial families of special functions. To answer the challenges arising
in a variety of mathematical fields, such as mathematical physics, engineering mathematics,
approximation and automata theory and abstract algebra, multi-variate and indices of
special functions are required. Over the past few years, a number of generalizations of
mathematical physics, including special functions, have evolved considerably. Hermite [2]
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himself first devised the notion of multiple-index, multiple-variable Hermite polynomials
and degenerate hybrid polynomials [3–7].

Several writers, including S. A. Wani et al. [8–14], made an effort to introduce a hybrid
family connected to Appell sequences of special polynomials. The authors developed
the hybrid form of Appell polynomials and investigated a number of their characteris-
tics, including their generating function, the definition of series, summation formulae,
determinant forms, approximation features, etc.

The first effort to introduce 3-variable degenerate Hermite Kampé de Fériet polynomi-
als and study their various properties was undertaken by Kyung-Won Hwang et al. [15].
The following generating function defines theHm(u, v, w; η), as listed below:

(1 + η)
ut
η (1 + η)

vt2
η (1 + η)

wt3
η =

∞

∑
m=0
Hm(u, v, w; η)

tm

m!
. (4)

The 3-variable degenerate Hermite polynomials Hm(u, v, w; η), given in (4), are the
solution of the expression listed below:

∂
∂vHm(u, v, w; η) =

(
η

log(1+η)

)
∂2

∂u2 {Hm(u, v, w; η)},
∂

∂wHm(u, v, w; η) =
(

η
log(1+η)

)2
∂3

∂u3 {Hm(u, v, w; η)}
and

Hm(u, 0, 0; η) =
(

log(1+η)
η

)m
{um}.

(5)

Since
(1 + η)

t
η → et, as η → 0. (6)

Thus, in view of the above, expression (4) reduces to 3-variable Hermite polynomials [16]
given by expression:

∞

∑
m=0

Hm(u, v, w)
tm

m!
= exp (ut + vt2 + wt3). (7)

Dattoli [17] refined the monomiality principle, which was proposed in 1941 by Stef-
fensen [18], by two remarkable operators, which satisfy the following expressions:

cm+1(u) = M̂{cm(u)} (8)

and
m cm−1(u) = D̂{cm(u)} (9)

and, therefore, were given the name of multiplicative and derivative operators for a
polynomial set {cm(u)}m∈N.

Thus, polynomials {cm(u)}m∈N are referred to as a quasi-monomial if they obey the
formula:

1̂ = D̂M̂ − M̂D̂ = [D̂,M̂], (10)

and is, therefore, designated as a Weyl group structure.
The M̂ and D̂ expressions are significant from the point of view to determine the prop-

erties of {cm(u)}m∈N when it is quasi-monomial. Therefore, the succeeding axioms hold:

(i) If M̂ and D̂ possesses differential realizations, then the polynomial cm(u) satisfies the
differential equation by the expression:

m cm(u) = M̂D̂{cm(u)}. (11)

(ii) The expression:
M̂m {1} = cm(u), (12)
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is said to be an explicit form of the underlying polynomial, while taking, c0(u) = 1.
(iii) Further, in view of (12), the expression:

∞

∑
m=0

cm(u)
tm

m!
= etM̂{1}, |t| < ∞ , (13)

derived is called the exponential generating relation.

The techniques or approaches of operational formalism are very much significant in
numerous areas varying from mathematical physics to classical and quantum optics, engi-
neering mathematics to lie-algebras. Therefore, due to such importance and significance,
these rules prove beneficial for research; see for example [8,19,20].

Thus, in view of Equations (8) and (9), we derived the multiplicative and derivative
operators by differentiating the expression (4) w.r.t. t and u, respectively, and they are thus
given by the expressions:

Hm+1(u, v, w; η) = M̂H{Hm(u, v, w; η)}

=

(
u log(1+η)

η + 2v ∂
∂u + 3w

(
η

log(1+η)

)
∂2

∂u2

)
{Hm(u, v, w; η)} (14)

and

m Hm−1(u, v, w; η) = D̂H{Hm(u, v, w; η)} = η

log(1 + η)

∂

∂u
{Hm(u, v, w; η)}. (15)

Additionally, in view of (11), we derive the expression for the differential equation by
making use of expressions (14) and (15) as:

(
u

∂

∂u
+ 2 v

η

log(1 + η)

∂2

∂u2 + 3 w (
η

log(1 + η)
)2 ∂3

∂u3 −m

)
{Hm(u, v, w; η)} = 0. (16)

Concerning the significance of these results, regenerated and motivated by them, here,
3-variable degenerate Hermite-based Appell polynomials HQm(u, v, w; η), which are given
by the relation:

Z(t, u, v, w; η) =
∞

∑
m=0

HQm(u, v, w; η)
tm

m!
= Q(t)(1 + η)

ut
η (1 + η)

vt2
η (1 + η)

wt3
η , (17)

are constructed by proving the above result and their several properties such as quasi-
monomiality are deduced. The article is presented in the form of sections as listed: in
Section 2, we construct HQm(u, v, w; η) polynomials and obtain some of their significant
and basic properties by taking the help of multiplicative and derivative operators derived
in Section 1. In Section 3, symmetry identities for HQm(u, v, w; η) polynomials are obtained.
In Section 4, the operational rule for HQm(u, v, w; η) polynomials are constructed, and then
a few examples are given in the last section.

2. 3-Variable Degenerate Hermite-Based Appell Polynomials

To generate and frame the 3-variable degenerate Hermite-based Appell polynomials
represented by the notation HQm(u, v, w; η) in the context of the monomiality principle, the
succeeding results are proved:
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Theorem 1. For the 3-variable degenerate Hermite-based Appell polynomials, represented by the
notation HQm(u, v, w; η), the succeeding relation holds:

∞

∑
m=0

HQm(u, v, w; η)
tm

m!
= Q(t)(1 + η)

ut
η (1 + η)

vt2
η (1 + η)

wt3
η . (18)

Proof. In view of expression (12), we have

HQm(u, v, w; η) =

(
u

log(1 + η)

η
+ 2v

∂

∂u
+ 3w

( η

log(1 + η)

) ∂2

∂u2

)m

{1}, (19)

and in view of expression (13), we have

∞

∑
m=0

HQm(u, v, w; η)
tm

m!
= exp

(
t
(

u
log(1 + η)

η
+ 2v

∂

∂u
+ 3w

( η

log(1 + η)

) ∂2

∂u2

))
{1}, (20)

thus, the result (18).

Theorem 2. For the polynomials HQm(u, v, w; η), the succeeding generating expression holds
true:

∞

∑
m=0

HQm(u, v, w; η)
tm

m!
= Q(t)(1 + η)

ut
η (1 + η)

vt2
η (1 + η)

wt3
η , (21)

or
∞

∑
m=0

HQm(u, v, w; η)
tm

m!
= Q(t)(1 + η)

ut+vt2+wt3
η , (22)

respectively.

Proof. Changing u in Equation (2) by M̂H, that is, the multiplicative operator of the
polynomialsHm(u, v, w; η), we have

Q(t) exp
(
M̂H t

)
=

∞

∑
m=0

Qm(M̂H)
tm

m!
. (23)

Making use of expression M̂H represented by expression (14), we obtain

Q(t) exp

((
(u + 2vt + 3wt2)log(1 + η)

η

)
t

)
=

∞

∑
m=0

Qm

(
(u + 2vt + 3wt2)log(1 + η)

η

)
tm

m!
. (24)

Denoting the 3-variable degenerate Hermite-based Appell polynomials in the r.h.s. of
expression (24) by HQm(u, v, w; η),

Qm

(
(u + 2vt + 3wt2)log(1 + η)

η

)
= HQm(u, v, w; η) (25)

and the ist exponential in the l.h.s. of expression (24) is expanded on usage of expression (4),
assertion (21) or assertion (22) is established.

Theorem 3. The succeeding multiplicative and derivative operators for the polynomials
HQm(u, v, w; η), holds:

ˆMHQ =

(
Q′(t)
Q(t)

+ u
log(1 + η)

η
+ 2v

∂

∂u
+ 3w

( η

log(1 + η)

) ∂2

∂u2

)
(26)
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and
ˆDHQ =

η

log(1 + η)
Du, (27)

respectively.

Proof. Differentiating (22) with respect to t partially and simplifying, we have

[Q′(t)
Q(t)

+ M̂H
]

Q(t) exp
(
M̂H t

)
=

∞

∑
m=0

m Qm(M̂H)
tm−1

m!
. (28)

Replacing m by m + 1 in the r.h.s. of the above expression and simplifying, we find[Q′(t)
Q(t)

+ M̂H
]

Q(t) exp
(
M̂H t

)
=

∞

∑
m=0

Qm+1(M̂H)
tm

m!
. (29)

Inserting expressions (14), (25) on both sides of the above expression (29), it follows that[
Q′(t)
Q(t) + u log(1+η)

η + 2v ∂
∂u + 3w

(
η

log(1+η)

)
∂2

∂u2

]
× ∑∞

m=0 HQm(u, v, w; η) tm

m! = ∑∞
m=0 HQm+1(u, v, w; η) tm

m! .
(30)

In view of Equation (5), equating the coefficients of like exponents of t on both sides
of the above expression, we are led to the result (26).

Again, differentiating expression (21) w.r.t. u, it follows that

Du

{
Q(t)(1 + η)

ut
η (1 + η)

vt2
η (1 + η)

wt3
η

}
=

t
η

log(1 + η)
{

Q(t)(1 + η)
ut
η (1 + η)

vt2
η (1 + η)

wt3
η

}
. (31)

Using the generating expression (21) on both sides of the above expression and com-
paring the coefficients of like exponents of t on both sides of the above expression, we are
led to the result (27).

Remark 1. Using expressions (26) and (27) in Equation (11), we find the following differential
equation for the 3-variable degenerate Hermite-based Appell polynomials HQm(u, v, w; η):[(

u + Q′(t)
Q(t)

η
log(1+η)

)
∂

∂u + 2v
(

η
log(1+η)

)
∂2

∂u2 + 3w
(

η
log(1+η)

)2
∂3

∂u3 −m

]
×HQm(u, v, w; η) = 0.

(32)

Next, a series representation of the polynomials HQm(u, v, w; η) is derived:

Theorem 4. The following series expansion:

HQm(u, v, w; η) =
m

∑
k=0

(
m
k

)
Hm−k(u, v, w; η) Qk, (33)

for the polynomials HQm(u, v, w; η) holds true.

Proof. Using Equations (2) with u = 0 and (4) in the l.h.s. of the expression (21), we find

∞

∑
m=0

HQm(u, v, w; η)
tm

m!
=

∞

∑
k=0

Qk
tk

k!

∞

∑
m=0
Hm(u, v, w; η)

tm

m!
(34)

and thus on the usage of the c.P. rule in the r.h.s. of the above expression, assertion (33) is
proved.
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3. Symmetric Identities

In this section, we give symmetric identities for polynomials HQm(u, v, w; η).

Theorem 5. For, α, β > 0 and α 6= β , it follows that

αm
HQm(βu, β2v, β3w; η) = βm

HQm(αu, α2v, α3w; η). (35)

Proof. Since, α, β > 0 and α 6= β, we can start by writing:

R(t; u, v, w; η) = Q(t) (1 + η)
αβut

η (1 + η)
α2β2vt2

η (1 + η)
α3β3wt3

η . (36)

Therefore, the above expressionR(t; u, v, w; η) is symmetric in α and β.
We further can write

R(t; u, v, w; η) = HQm(αu, α2v, α3w; η)
(βt)m

m!
= βm

HQm(αu, α2v, α3w; η)
tm

m!
. (37)

Thus, it follows that

R(t; u, v, w; η) = HQm(βu, β2v, β3w; η)
(αt)m

m!
= αm

HQm(βu, β2v, β3w; η)
tm

m!
. (38)

Equating the coefficients of like term of t in the last two equations, we obtain the asser-
tion (30).

Theorem 6. For α, β > 0 and α 6= β , it follows that

m

∑
i=0

i

∑
n=0

(
m
i

)(
i
n

)
αiβm+1−iQn(η)

HQi−n(βu, β2v, β3w; η)Pm−i(α− 1; η) =

m

∑
i=0

i

∑
n=0

(
m
i

)(
i
n

)
βiαm+1−iQn(η)HQi−n(αu, α2v, α3w; η)Pm−i(β− 1; η). (39)

Proof. Since α, β > 0 and α 6= β, we can start by writing:

S(t; u, v, w; η) = Q(t)

αβt(1 + η)
αβut

η (1 + η)
α2β2vt2

η (1 + η)
α3β3wt3

η

(
(1 + η)

αβt
η −1

)
(
(1 + η)

αt
η − 1

)(
(1 + η)

βt
η − 1

) . (40)

Using the same fashion as in the above theorem, we obtain assertion (34).

Similarly, we can establish other symmetric identities by taking different functions.

4. Operational Formalism

As we are well aware, operational techniques are extensively used to generate new
polynomial families of the doped type so that these are connected to the regular and
generalized special functions easily. These techniques are utilized to form new hybrid
special polynomials whose properties lie within the parental polynomial.

Differentiating successively (21) w.r.t. u, v, w, we find

Du

{
HQm(u, v, w; η)

}
=

log(1 + η)

η
m
{
HQm−1(u, v, w; η)

}
, (41)



Symmetry 2023, 15, 407 7 of 9

D2
u

{
HQm(u, v, w; η)

}
=
( log(1 + η)

η

)2
m(m− 1)

{
HQm−1(u, v, w; η)

}
, (42)

Dv

{
HQm(u, v, w; η)

}
=

log(1 + η)

η
m(m− 1)

{
HQm−1(u, v, w; η)

}
, (43)

and

Dw

{
HQm(u, v, w; η)

}
=

log(1 + η)

η
m(m− 1)(m− 2)

{
HQm−1(u, v, w; η)

}
, (44)

respectively.
In view of expressions (41)–(44), we observe that HQm(u, v, w; η) are the solutions of

the expressions:

η

log(1 + η)
D2

u

{
HQm(u, v, w; η)

}
= Dv

{
HQm(u, v, w; η)

}
(45)

and ( η

log(1 + η)

)2
D3

u

{
HQm(u, v, w; η)

}
= Dw

{
HQm(u, v, w; η)

}
, (46)

respectively, under the following initial condition

HQm(u, 0, 0; η) = Qm(u; η). (47)

Thus, from expressions (45)–(47), it follows that

HQm(u, v, w; η) = exp

(
v η

log(1 + η)
D2

u + w
( η

log(1 + η)

)2
D3

u

)
{Qm(u)}. (48)

In light of the aforementioned viewpoint, the polynomials HQm(u, v, w : η) can be
constructed from the Appell type degenerate polynomials Qm(u; η) by employing the
operational rule (48).

5. Examples

Depending on the choice of function Q(t), numerous members of the Appell family
can be obtained:

The generating function for the Bernoulli polynomials cm(u) is given by ([21], p. 36)(
t

et − 1

)
eut =

∞

∑
m=0

cm(u)
tm

m!
, |t| < 2π, (49)

where ck := ck(0) are called Bernoulli numbers.
The generating function for the Euler polynomials Em(u) is given by ([21], p. 40)(

2
et + 1

)
eut =

∞

∑
m=0

Em(u)
tm

m!
, |t| < π, (50)

where Ek := 2kEk

(
1
2

)
are called Euler numbers.

The generating function for the Genocchi polynomials Gm(u) is given by [22](
2t

et + 1

)
eut =

∞

∑
m=0

Gm(u)
tm

m!
, |t| < π, (51)

where Gk := Gk(0) are called Genocchi numbers.
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A large variety of applications in advanced number theory, biomedical sciences and
engineering mathematics such as numerical analysis and actuarial mathematics make
use of these above-mentioned polynomials extensively. The powers of natural numbers,
the binomial expansion and the Taylor expansion are some of the few examples where
the Bernoulli numbers can be found. In close coordination with the trigonometric and
hyperbolic cotangent are a few examples, where the Euler numbers can be seen and enter
the Taylor expansion, while Genocchi numbers and tangent numbers are significant in
areas of graph theory and automata theory.

Thus, for suitable selection of Q(t) in (21), the expressions that we called generat-
ing expressions for 3-variable degenerate Hermite-based Bernoulli, Euler and Genocchi
polynomials hold:

∞

∑
m=0

Hcm(u, v, w; η)
tm

m!
=

(
t

et − 1

)
(1 + η)

ut
η (1 + η)

vt2
η (1 + η)

wt3
η , (52)

∞

∑
m=0

HEm(u, v, w; η)
tm

m!
=

(
2

et + 1

)
(1 + η)

ut
η (1 + η)

vt2
η (1 + η)

wt3
η , (53)

and
∞

∑
m=0

HGm(u, v, w; η)
tm

m!
=

(
2t

et + 1

)
(1 + η)

ut
η (1 + η)

vt2
η (1 + η)

wt3
η , (54)

respectively.
Additionally, in view of Equation (33), these polynomials satisfy the following series

form:

Remark 2. The 3-variable degenerate Hermite-based Bernoulli, Euler and Genocchi polynomials
satisfy the following explicit form:

Hcm(u, v, w; η) =
m

∑
k=0

(
m
k

)
Hm−k(u, v, w; η) ck, (55)

HEm(u, v, w; η) =
m

∑
k=0

(
m
k

)
Hm−k(u, v, w; η) Ek, (56)

and

HGm(u, v, w; η) =
m

∑
k=0

(
m
k

)
Hm−k(u, v, w; η) Gk, (57)

respectively

Similarly, other corresponding results can be established for these polynomials.

6. Conclusions

In this paper, we study the general properties and identities of the 3-variable degener-
ate Hermite-based Appell polynomials by convoluting Appell and degenerate 3-variable
Hermite polynomials. These presented results can be applied in any 3-variable degenerate
Hermite-based Appell type polynomials, such as Bernoulli, Euler, Genocchi and tangent
polynomials. Further, we established their quasi-monomial properties and operational rule.
Additionally, symmetric identities are given.

Further, future observations may be to derive the determinant forms and summation
formulae for these polynomials.
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