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Abstract: The coupling of baryonic current to the derivative of the curvature scalar, R, inherent to
gravitational baryogenesis (GBG), leads to a fourth-order differential equation of motion for R instead
of the algebraic one of general relativity (GR). The fourth-order differential equation is generically
unstable. We consider a possible mechanism of stabilization of GBG by the modification of gravity,
introducing an R2 term into the canonical action of GR. It is shown that this mechanism allows
for the stabilization of GBG with bosonic and fermionic baryon currents. We establish the region
of the model parameters leading to the stabilization of R. Still, the standard cosmology would be
noticeably modified.

Keywords: baryogenesis; modified gravity; baryonic number

1. Introduction

An excess of matter over antimatter in our Universe is crucial for our very existence and
is well-supported by various observation. The local Universe is clearly matter-dominated.
The amount of antimatter is very small, and it can be explained as the result of high-energy
collisions in space. On the other hand, matter and antimatter seem to have similar proper-
ties; therefore, we could expect a matter–antimatter symmetric universe. The existence of
large regions of antimatter in our neighbourhood would produce high-energy radiation
created by matter–antimatter annihilation on the boundaries between matter and antimatter
domains, which is not observed. A satisfactory model of our Universe should be able to
explain the origin of the matter–antimatter asymmetry. Any initial asymmetry at inflation
could not solve the problem of observed excess of matter over antimatter, because the
energy density associated with the observed nonzero baryonic number density would not
allow for a sufficiently long inflation.

The term baryogenesis is used to indicate the generation of the excess of matter
(baryons) over antimatter (antibaryons) or vice versa.

In 1967, Andrey Sakharov formulated three conditions, today known as Sakharov’s
principles [1], necessary to produce a matter–antimatter asymmetry in the initially symmet-
ric universe. These conditions include:

1. Nonconservation of baryonic number;
2. Breaking of the symmetry between particles and antiparticles;
3. Deviation from thermal equilibrium.

However, not all of the three Sakharov principles are strictly necessary. For example,
spontaneous baryogenesis (SBG) and gravitational baryogenesis (GBG) do not demand
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an explicit C and CP violation and can proceed in thermal equilibrium. Moreover, these
mechanisms are usually most efficient in thermal equilibrium.

The statement that the cosmological baryon asymmetry can be created by spontaneous
baryogenesis in thermal equilibrium was mentioned in the original paper by A. Cohen
and D. Kaplan in 1987 [2] and in the subsequent papers by A. Cohen, D. Kaplan, and
A. Nelson [3,4] (for a review, see [5–8]).

The term “spontaneous” is related to a spontaneous breaking of the underlying sym-
metry of the theory, which ensures the conservation of the total baryonic number in the
unbroken phase. This symmetry is supposed to be spontaneously broken, and in the broken
phase, the Lagrangian density acquires the term

LSBG = (∂µθ)Jµ
B , (1)

where θ is a (pseudo)Goldstone field, and Jµ
B is the baryonic current of matter fields, which

becomes nonconserved as a result of the symmetry breaking.
For a spatially homogeneous field, θ = θ(t), the Lagrangian is reduced to a simple form

LSBG = θ̇ nB , nB ≡ J0
B. (2)

Here, nB is the baryonic number density, so it is tempting to identify θ̇ with the chemical
potential, µB, of the corresponding system. However, such an identification is questionable [9,10].
It depends upon the representation chosen for the fermionic fields and is heavily based on
the assumption θ̇ ≈ const. In Ref. [9], the assumption θ̇ ≈ const was relaxed.

Stimulated by spontaneous baryogenesis, the idea of gravitational baryogenesis was
put forward [11]. The scenario of SBG was modified by the introduction of the coupling of
the baryonic current to the derivative of the curvature scalar R:

SGBG = − 1
M2

∫
d4x
√
−g (∂µR)Jµ

B , (3)

where g is the determinant of the space–time metric tensor and the mass parameter M
determines the energy scale of baryogenesis. There are a lot of articles on the subject, and a
partial list of references is included in Refs. [12–16]. According to these papers, the GBG
mechanism can successfully explain the magnitude of the cosmological baryon asymmetry
of the universe.

However, it was argued in Refs. [17,18] that the backreaction of the created nonzero
baryonic density on the space–time curvature led to a strong instability of the cosmological
evolution. In this paper, we show that the problem of stability can be solved by adding to
the Hilbert–Einstein action the quadratic in curvature term.The underlying gravitational
action takes the form:

SGrav = −
M2

Pl
16π

∫
d4x

√
−g

(
R− R2

6M2
R

)
, (4)

where MPl = 1.22 · 1019 GeV is the Planck mass, and we use the metric signature (+,−,−,−).
The R2 term (among many others) in the canonical action of GR appears as a result

of one-loop corrections to the energy–momentum tensor of matter in curved spacetime
as was first found in [19]. Subsequently, this approach was developed by V. T. Gurovich
and A. A. Starobinsky [20]. Afterwards, it was noticed by A. A. Starobinsky [21] that the
R2 term would lead to a successful cosmological inflationary model, albeit with a large
coefficient (MPl/MR)

2. This is now a very popular inflationary scenario, since it predicts a
small amplitude of the relic gravitational waves at low frequencies in agreement with CMB
restrictions.

As is known, the R2 term leads to the excitation of the scalar degree of freedom,
named scalaron, and MR is the scalaron mass. In the very early universe, the R2 term
could generate inflation [21] and density perturbations. The amplitude of the observed
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density perturbations demands that MR = 3 · 1013 GeV [22] if the scalaron is the inflaton.
Otherwise, MR > 3 · 1013 GeV is allowed. Below, we presume that the scalaron is the
inflaton.

2. Instability Problem of Gravitational Baryogenesis

The essential ingredient of gravitational baryogenesis is the coupling of the baryonic
current to the derivative of the curvature scalar ∂µR (3). Taken over the canonical cosmolog-
ical Friedmann–Lemaitre–Robertson–Walker background, this interaction can successfully
fulfil the task of generating the proper value of the baryon asymmetry of the universe.

However, any curvature-dependent term in the Lagrangian of the theory would
modify the equations of general relativity (GR). The modified GR equations have been
analysed in Refs. [17,18]. Since interaction (3) is not just linear in the curvature term
multiplied by a constant, it leads to higher-order equations describing the evolution of
gravitational fields. Higher-order equations of motion are typically unstable with respect
to small perturbations. According to the results of Refs. [17,18], it indeed happens in the
frameworks of the GBG scenario and the characteristic time of the exponential instability is
much shorter than the cosmological time. It creates a serious problem for the realisation of
the GBG mechanism.

In this work, we suggest to consider the possible stabilisation of GBG and prove that
it can be realised, although the resulting cosmological model suffers from too large a value
of R, much larger than that in the classical Friedmann cosmology. Possible ways to cure
this shortcoming are mentioned.

3. Stabilisation of Gravitational Baryogenesis in Modified Gravity
3.1. Bosonic Case

Let us first consider the case when a baryonic number is carried by a complex scalar
field φ [17]. The total action has the form:

Stot[φ] = −
∫

d4x
√
−g

[
M2

Pl
16π

(
R− R2

6M2
R

)
+

1
M2 (∂µR)Jµ

(φ)
− gµν∂µφ ∂νφ∗ + U(φ, φ∗)

]
+Smatt , (5)

where U(φ, φ∗) is the potential of field φ and Smatt is the matter action which does not
include the field φ. In Equation (5), R(t) is the classical curvature field, while φ(~x, t) is the
quantum operator of light scalar particles.

We assume that the potential U(φ, φ∗) is not invariant with respect to phase transfor-
mation φ→ exp (iqβ)φ and thus the corresponding current

Jµ

(φ)
= iq gµν(φ∗∂νφ− φ∂νφ∗) (6)

is not conserved. Here, q is the baryonic number of field φ. The nonconservation of the
current is necessary for the proper performance of the model, otherwise SGBG in Equation (3)
can be integrated away by parts.

Varying action (5) over gµν, we come to the following equations:

M2
Pl

16π

[
Rµν −

1
2

gµνR− 1
3M2

R

(
Rµν −

1
4

gµνR + gµνD2 − DµDν

)
R

]

− 1
M2

[(
Rµν − (DµDν − gµνD2)

)
Dα Jα

(φ) +
1
2

gµν Jα
(φ) DαR− 1

2

(
J(φ)νDµR + J(φ)µDνR

)]
−1

2
(

Dµφ Dνφ∗ + Dνφ Dµφ∗
)
+

1
2

gµν[Dαφ Dαφ∗ −U(φ)]−(Dµφ)(Dνφ∗)

=
1
2

T(matt)
µν , (7)
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where Dµ is the covariant derivative in metric gµν (of course, for scalars Dµ = ∂µ) and

T(matt)
µν is the energy–momentum tensor of matter obtained from action Smatt.

Taking the trace of equation (7) with respect to µ and ν and changing the sign, we
obtain:

M2
Pl

16π

(
R +

1
M2

R
D2R

)
+

1
M2

[
(R + 3D2)Dα Jα

(φ) + Jα
(φ) DαR

]
− Dαφ Dαφ∗ + 2U(φ)

= −1
2

T(matt)= 0 , (8)

where T(matt) = gµνT(matt)
µν is the trace of the energy–momentum tensor of matter. For

the usual relativistic matter, T(matt) = 0, while for scalar field φ, the trace of the energy–
momentum tensor is nonzero:

Tµ
µ (φ) = −2Dαφ Dαφ∗ + 4U(φ). (9)

The equation of motion for field φ is:

D2φ +
∂U
∂φ∗

= − iq
M2

(
2DµR Dµφ + φD2R

)
. (10)

According to definition (6) and Equation (10), the current divergence is:

Dµ Jµ =
2q2

M2

[
DµR (φ∗Dµφ + φDµφ∗) + |φ|2D2R

]
+ iq

(
φ

∂U
∂φ
− φ∗

∂U
∂φ∗

)
. (11)

For a homogeneous curvature scalar R(t) in a spatially flat FLRW-metric

ds2 = dt2 − a2(t)dr2 (12)

Equation (8) is reduced to:

M2
Pl

16π

[
R +

1
M2

R
(∂2

t + 3H∂t)R

]
+

1
M2

[
(R + 3∂2

t + 9H∂t)Dα Jα
(φ) + Ṙ J0

(φ)

]
+2U(φ)− (Dαφ)(Dαφ∗) = 0. (13)

where J0
(φ)

is the baryonic number density of the φ-field, H = ȧ/a is the Hubble parameter,
and the divergence of the current is given by the expression:

Dα Jα
(φ) =

2q2

M2

[
Ṙ (φ∗φ̇ + φφ̇∗) + (R̈ + 3HṘ) φ∗φ

]
+ iq

(
φ

∂U
∂φ
− φ∗

∂U
∂φ∗

)
. (14)

As we see in what follows, the last two terms in Equation (13) do not have an essential
impact on the cosmological instability found in Ref. [17] and are disregarded below. Indeed,
as shown in Ref. [17], the field φ does not exponentially rise together with R and thus can
be neglected in comparison with the terms containing R. In the case considered here of
a modified R2-gravity, the curvature also initially strongly rises before the R2 term starts
to operate and, in this sense, the situation is the same as that studied in Ref. [18]. In
fact, Equation (15) is a good argument in favour of the subdominant nature of the terms
containing φ above.

Let us note that the statement of exponential instability of R(t) [17] does not de-
pend on the conservation or nonconservation of the current from the potential term
(φ∂U/∂φ− φ∗∂U/∂φ∗) in Equation (14). However, if the current from this term is con-
served, then the baryon asymmetry is not generated. On the other hand, the term in square
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brackets in Equation (14) does not lead to the generation of the baryon asymmetry but
leads to the exponential instability of R(t). Below, we ignore the last term of Equation (14).

Performing thermal averaging of the normal-ordered bilinear products of field φ in
the high temperature limit (see Appendix of Ref. [17]) in accordance with equations:

〈φ∗φ〉 = T2

12
, 〈φ∗φ̇ + φ̇∗φ〉 = 0 , (15)

and using Equation (14), we obtain the fourth-order differential equation:

M2
Pl

16π

(
R +

1
M2

R
D2R

)
+

q2

6M4

(
R + 3∂2

t + 9H∂t

)[(
R̈ + 3HṘ

)
T2
]
+

1
M2 Ṙ 〈J0

(φ)〉

= −2U(φ) + (Dαφ)(Dαφ∗). (16)

Here, 〈J0
(φ)
〉 is the thermal average value of the baryonic number density of φ, which is

supposed to vanish initially, but created through the process of gravitational baryogenesis.
This term can be neglected because the baryon asymmetry is normally quite small. Even if
it is not small, it does not have a considerable impact on the explosive rise of the curvature
scalar. As we see in what follows, the evolution of R(t) proceeds much faster than the
cosmological evolution, that is R̈/Ṙ� H. Consequently, we neglect the terms proportional
to R with respect to the terms proportional to the second derivative of R, R̈. We also
consider the terms of the type HR as small with respect to dR/dt. We can check that this
presumption is true a posteriori with the obtained solution for R(t).

Keeping only the dominant terms we simplify the above equation to:

d4R
dt4 +

κ4

M2
R

d2R
dt2 + κ4R = −Tµ

µ (φ)
M4

q2T2 , (17)

where

κ4 =
M2

Pl M
4

8πq2T2 . (18)

While studying the instability of the solution, we do not take into account the r.h.s. of
Equation (17) which does not depend upon R. Looking for the solution of Equation (17) in
the form R = Rin exp(λt), we obtain the characteristic equation:

λ4 +
κ4

M2
R

λ2 + κ4 = 0 (19)

with the eigenvalues λ defined by the expression:

λ2 = − κ4

2M2
R
± κ2

√
κ4

4M4
R
− 1. (20)

There is no instability if λ2 < 0 and Equation (17) has only oscillating solutions.
It is realised if κ4 > 4M4

R. Using the expression in Equation (18) for κ4 and taking
MR = 3 · 1013 GeV, we find the stability condition

M > 3 · 104 GeV
(

q T
GeV

)1/2
, (21)

which is fulfilled for all interesting values of M.
The value of λ depends upon the relation between κ and MR. If κ ∼ MR, then the

frequency of the oscillations of curvature is of the order of MR and |λ| ∼ MR. If κ � MR,
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then there are two possible solutions |λ| ∼ MR and |λ| ∼ κ(κ/MR)� MR. High-frequency
oscillations of R would lead to an efficient gravitational particle production and, as a result,
to a damping of the oscillations.

In fact, both conditions R̈/Ṙ� H and Ṙ/R� H are essentially the same at the stage
of exponential rise of R ∼ exp(λt), since the r.h.s in both cases is just λ. Since H drops
down with decreasing temperature and λ ∼ (MPl M2/(TMR)) on the opposite rises up,
these conditions should be true at sufficiently small temperatures.

3.2. Fermionic Case

In this section, we consider the case when a baryonic number is carried by fermions.
The gravitational part of the action has the form as in Equation (4), while the fermionic part
of the action is the same as in Refs. [10,18]:

L[Q, L] =
i
2
(Q̄γµ∇µQ−∇µQ̄ γµQ)−mQQ̄ Q

+
i
2
(L̄γµ∇µL−∇µ L̄γµL)−mL L̄ L

+
g

m2
X
[(Q̄ Qc)(Q̄L) + (Q̄cQ)(L̄Q)] +

d
M2 (∂µR)Jµ + Lmatt , (22)

where Q is the quarklike field with nonzero baryonic number BQ, Qc is the charged
conjugated quark operator, L is another fermionic field (lepton), and ∇µ is the covariant
derivative of the Dirac fermions in tetrad formalism. The quark current is Jµ = BQQ̄γµQ
with γµ being the curved space gamma matrices, and Lmatt describes all other forms of
matter. The four-fermion interaction between quarks and leptons is introduced to ensure
the necessary nonconservation of the baryon number with mX being a constant parameter
with dimension of mass and g being a dimensionless coupling constant. In the term
describing the interaction of the baryonic current of fermions with the derivative of the
curvature scalar, M is a constant parameter with a dimension of mass and d = ±1 is a
dimensionless coupling constant which is introduced to allow for an arbitrary sign of the
above expression.

Gravitational equations of motion with an account of R2/M2
R-term in analogy with

Equation (7) take the form:

M2
Pl

8π

[
Rµν −

1
2

gµνR− 1
3M2

R

(
Rµν −

1
4

gµνR + gµνD2 − DµDν

)
R

]
=

gµν

2
g

m2
X
[(Q̄ Qc)(Q̄L) + (Q̄cQ)(L̄Q)]

+
i
4
[
Q̄(γµ∇ν + γν∇µ)Q− (∇νQ̄ γµ +∇µQ̄ γν)Q

]
+

i
4
[
L̄(γµ∇ν + γν∇µ)L− (∇ν L̄ γµ +∇µ L̄ γν)L

]
− 2d

M2

[
Rµν + gµνD2 − DµDν

]
Dα Jα +

d
2M2

(
Jµ∂νR + Jν∂µR

)
+ Tmatt

µν . (23)

Taking the trace of Equation (23) with an account of fermion equations of motion, we
obtain:

−
M2

Pl
8π

(
R +

1
M2

R
D2R

)
= mQQ̄Q + mL L̄L +

2g
m2

X
[(Q̄ Qc)(Q̄L) + (Q̄cQ)(L̄Q)]

− 2d
M2 (R + 3D2)Dα Jα + Tmatt , (24)

where Tmatt is the trace of the energy momentum tensor of all other fields. In the early
universe when various species are relativistic, we can take Tmatt = 0. The average expec-
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tation value of the quark–lepton interaction term proportional to g is also small, so the
contribution of all matter fields may be neglected and hence the only term which remains
in the r.h.s. of Equation (24) is that proportional to Dα Jα.

A higher-order differential equation for R is obtained after we substitute the current
divergence, Dα Jα, calculated from the kinetic equation in the external field R [18], into
Equation (24). For the spatially homogeneous case,

Dα Jα = (∂t + 3H)nB = Icoll
B , (25)

where the collision integral, Icoll
B , in the lowest order of perturbation theory is equal to:

Icoll
B = −3Bq(2π)4

∫
dνq1,q2 dνq̄3,l4 δ4(q1 + q2 − q3 − l4)[

|A(q1 + q2 → q̄3 + l4)|2 fq1 fq2 − |A(q̄3 + l4 → q1 + q2)|2 fq̄3 fl4

]
. (26)

Here, A(a→ b) is the amplitude of the transition from state a to state b, BQ is the baryonic
number of quark, fa is the phase-space distribution (the occupation number), and

dνq1,q2 =
d3q1

2Eq1(2π)3
d3q2

2Eq2(2π)3 , (27)

where Eq =
√

q2 + m2 is the energy of a particle with three-momentum q and mass m. The
element of the phase space of the final particles, dνq̄3,l4 , is defined analogously.

We choose such representation of the quark operator, Q, for which the interaction of
the baryonic current with the derivative of the curvature scalar in Equation (22) vanishes
but reappears in the quark–lepton interaction term:

2g
m2

X

[
e−3idBQR/M2

(Q̄ Qc)(Q̄L) + e3idBQR/M2
(Q̄cQ)(L̄Q)

]
. (28)

We make the simplifying assumption that the evolution of R can be approximately described
by the law

R(t) ≈ R(t0) + (t− t0)Ṙ. (29)

We assume that Ṙ(t) slowly changes at the characteristic time scale of the reactions, which
contribute to the collision integral (26), and so we can approximately take Ṙ ≈ const.

According to the rules of quantum field theory, the reaction probability is given by
the square of the integral over space and time of the amplitude of the corresponding
process. In the case of a time-independent interaction, it leads to the energy conservation,
ΣEin = ΣE f in. If the interaction depends upon time, the energy evidently is nonconserved
and in our case, e.g., for the reaction q1 + q2 → q̄3 + l4, the energy balance has the form:

E(q1) + E(q2) = E(q3) + E(l4) + 3dBQṘ/M2. (30)

In kinetic equilibrium, the phase-space distribution of fermions has the form

f =
1

e(E/T−ξ) + 1
≈ e−E/T+ξ , (31)

where ξ = µ/T is the dimensionless chemical potential, different for quarks, ξq, and leptons,
ξl . In the thermal equilibrium case, the condition of conservation of chemical potentials is
fulfilled, that is, Σ ξin = Σ ξ f in. In particular, it demands that chemical potentials of particles
and antiparticles are equal by magnitude and have opposite signs: ξ = −ξ̄, as follows,
e.g., from the consideration of particle–antiparticle annihilation into different numbers of
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photons. If energy is not conserved, due to the time-dependent R(t), the conservation of
chemical potentials is also broken, as we see in what follows.

We assume that ξ � 1 and hence, distribution (31) turns into:

f ≈ e−E/T(1 + ξ). (32)

We also assume that 3d BQṘ/(M2 T) � 1 and correspondingly, the balance of chemical
potentials in equilibrium for the reactions q1 + q2 ↔ q̄3 + l4 leads to:

3ξq − ξl −
3d BQṘ(t)

M2 T
= 0. (33)

Following Ref. [18], we express

nB ≈
gsBQ

6
ξqT3, (34)

where gs is the number of quark spin states. Since we are studying the instability of R
whose timescale is presumed to be much smaller than the expansion rate of the Universe,
we approximate

Dα Jα ≈ ṅB ≈
gsBQ

6
ξ̇qT3 (35)

≈
gsBQ

6
ξ̇

eq
q T3, (36)

ξ
eq
q is obtained from Equation (33), using the conservation of the sum of baryonic and

leptonic numbers, which implies ξl = −ξq/3. Then,

ξ
eq
q =

9d BQṘ(t)
10M2 T

. (37)

Substituting Equation (37) in Equation (36) and neglecting the Ṫ-term, Equation (24) gives
the following fourth-order differential equation for the curvature scalar:

d4R
dt4 +

κ4
f

M2
R

d2R
dt2 + κ4

f R = 0, (38)

where

κ4
f =

5M2
Pl M

4

36πgsB2
QT2

. (39)

Once again, we consider terms containing R as small with respect to the terms containing
R̈. The value of κ f is only slightly numerically different from κ in Equation (18) and has the
same dependence upon the essential parameters, so the solutions of Equations (17) and (38)
practically coincide.

4. Discussion

We showed that as discovered in Refs. [17,18], the exponential instability of the curva-
ture scalar inherent to the mechanism of gravitational baryogenesis could be successfully
cured in modified gravity. There is an immense number of papers dedicated to gravitational
baryogenesis but in none of them the problem of instability was considered. The length of
our submission does not allow us the quote them all. A complete list of the literature is a
task for a review paper.
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The special form of gravity modification by the introduction of an R2 term into
the canonical Hilbert–Einstein action of general relativity was explored as a workable
mechanism. However, the stabilized asymptotic value of R was extremely large and
together with possibly successful baryogenesis would still strongly perturb canonical
cosmology. At the present stage, a comparison with the data does not make much sense but
further development indicated below may result in a model leading to a realistic cosmology
and tested by astronomical observations. Possible ways out of this problem could either be a
more complicated model of F(R) gravity or a proper account of particle production created
by the high-frequency oscillations of R(t). Both options open interesting possibilities for
future research.
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