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Abstract: The chirality of the interaction between the local magnetic moments in small transition-
metal alloy clusters is investigated in the framework of density-functional theory. The Dzyaloshinskii–
Moriya (DM) coupling vectors Dij between the Fe atoms in Fe2X and Fe3X with X = Cu, Pd, Pt,
and Ir are derived from independent ground-state energy calculations for different noncollinear
orientations of the local magnetic moments. The local-environment dependence of Dij and the
resulting relative stability of different chiral magnetic orders are analyzed by contrasting the results
for different adatoms X and by systematically varying the distance between the adatom X and the
Fe clusters. One observes that the adatoms trigger most significant DM couplings in Fe2X, often
in the range of 10–30 meV. Thus, the consequences of breaking the inversion symmetry of the Fe
dimer are quantified. Comparison between the symmetric and antisymmetric Fe-Fe couplings shows
that the DM couplings are about two orders of magnitude weaker than the isotropic Heisenberg
interactions. However, they are in general stronger than the anisotropy of the symmetric couplings.
In Fe3X, alloying induces interesting changes in both the direction and strength of the DM couplings,
which are the consequence of breaking the reflection symmetry of the Fe trimer and which depend
significantly on the adatom-trimer distance. A local analysis of the chirality of the electronic energy
shows that the DM interactions are dominated by the spin-orbit coupling at the adatoms and that the
contribution of the Fe atoms is small but not negligible.

Keywords: Dzyaloshinskii–Moriya interaction; transition-metal clusters; density-functional theory;
chiral magnetic orders; symmetry breaking

1. Introduction

Systematic investigations of the magnetism of small clusters and low-dimensional
systems over past decades have unfolded a wealth of remarkable possibilities of tuning and
optimizing the magnetic characteristics of materials for specific technological and scientific
purposes. Besides the most basic average magnetization and magnetic order, a major focus
of attention has been dedicated to understanding the magneto-anisotropic effects, which
originate in subtle relativistic contributions to the electronic structure such as spin-orbit cou-
pling (SOC) [1]. A central property in this context is the magnetic anisotropy energy (MAE)
which measures the spin-orientation dependence of the total electronic energy, which
determines the low-temperature direction of the magnetic monodomains with respect to
the lattice structure as well as its stability in the face of finite-temperature fluctuations and
external fields [2–8]. Furthermore, recent studies have highlighted the importance of rela-
tivistic corrections on the magnetic interactions among the local atomic magnetic moments.
Indeed, the spin-orbit-driven anisotropy of the magnetic interactions is known to condition
the shape and stability of both ground-state and metastable magnetic configurations. Par-
ticularly interesting are competing interactions and antisymmetric Dzyaloshinskii–Moriya
(DM) couplings that favor the development of noncollinear magnetic orders, such as ex-
tended spin-density waves and localized chiral magnetic textures [9–13]. Consequently,
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understanding the microscopic origin of the anisotropy and chirality of the interactions
between local magnetic moments represents one of the major challenges in this field.

Symmetry and the absence thereof are obviously indissociable from magnetic aniso-
tropy. Manipulating the composition, structure, and interfaces of magnetic systems has
always been a major route in the development of artificially made magnetic materials [14–28].
Most previous theoretical studies of the electronic origin of chiral magnetism have been
focused on extended low-dimensional systems (e.g., wires, stripes, thin films, and multi-
layers) [10–13,29–38]. Yang et al. analyzed the DM interaction between nearest neighbors
in Co/Pt bilayers using first principles calculations [12]. The DM interaction was found
to be the largest at the interfacial Co layer, where the effects of the spin-orbit energy as-
sociated with the adjacent Pt atoms are strongest. The authors concluded that the DM
interaction is an indirect 3-site coupling in agreement with [9,39]. Within this interpretation,
the mechanism behind the DM coupling can be regarded as analogous to the indirect
Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction [40–42]. However, the role of the
5d substrates in the chiral properties of the 3d coatings is still not quite clear [43]. For
instance, Kashid et al. have performed a theoretical analysis of the chiral magnetic order
in free-standing planar 3d–5d biatomic metallic chains using a tight-binding model and
ab initio calculations [11]. In the case of FePt and CoPt chains, they found that the DM
interaction can compete with the symmetric Heisenberg exchange interaction and with
the local magnetocrystalline anisotropy. They also confirmed that the strength of the DM
interaction is proportional to the strength of the SOC at the 5d atoms, which confirms the
dominant role of the latter. Recently, Meyer et al. have successfully mapped the quantum
electronic calculations onto an effective atomistic spin model appropriate for ultrathin Co
and Mn films [35,44–47]. Thus, by combining electronic structure theory and real space
modeling, the stability of magnetic skyrmions in the absence of external magnetic fields
could be theoretically predicted and subsequently experimentally confirmed [35].

Studies of the magnetic anisotropy of finite clusters have been mostly focused on
the dependence of the total energy on the orientation of the magnetization of monodo-
mains [1,2,15,22–25,48]. These investigations have revealed a complicated, non-perturbative
behavior of the magnetic anisotropy energy (MAE) as a function of cluster size, structure,
bond length, and d-band filling. In particular, a considerable size-dependent enhance-
ment of the cluster MAE with respect to the corresponding crystals and thin films has
been observed, together with remarkable multiaxial energy landscapes. As in the case
of extended nanostructures, alloying has been a most valuable means of optimizing the
MAE of finite clusters. For instance, alloying magnetic 3d transition metals (TMs) with
the highly polarizable and heavier 4d and 5d elements has allowed one to optimize the
MAE of nanoalloys as a function of size and composition [14–16,21–25]. However, very
little quantitative information is currently available on the degree of anisotropy of the
magnetic interactions, particularly concerning the chiral DM couplings. It is the purpose
of the present paper to address this problem by calculating the DM interactions in small
Fe clusters. There is a particular emphasis on assessing how the DM interactions can be
triggered by breaking the point group symmetry of the clusters and quantifying the actual
changes in these chiral coupling as a function of the cluster structure.

The reminder of the paper is organized as follows. In the following Section 2, the
bilinear expansion of the electronic energy as a function of the orientations µ̂i of the
local magnetic moments at the different cluster atoms i is presented, from which the
DM pseudovectors Dij characterizing the anisotropic antisymmetric couplings between
the moments µi and µj at nearest neighbor (NN) atoms are derived. In Section 3, the
method used for obtaining Dij is outlined, including the main technical details on the
underlying density-functional calculations for different noncollinear orientations of µ̂i
and µ̂j. Our results for the DM couplings in Fe2X and Fe3X clusters with X = Cu, Pd, Pt,
and Ir are presented and discussed in Section 4. The importance of the dimer-adatom
hybridizations to the chiral interactions between the Fe atoms is quantified by varying the
dimer-adatom distance systematically. The results for Dij are correlated to the various local
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contributions to the spin-orbit (SO) energy. In addition, the DM interactions are contrasted
with the corresponding isotropic Heisenberg couplings, as well as with the anisotropy of
the symmetric couplings. Finally, Section 5 summarizes our conclusions.

2. Classical Spin Model: Symmetric and Antisymmetric Couplings

In order to derive the effective pairwise interaction between the local magnetic mo-
ments at the Fe atoms, we expand the total electronic energy of the clusters to second
order in the orientations of the local magnetic moments µi. The most general quadratic
approximation of the interaction energy adopts the form of the classical spin Hamiltonian

H = −1
2 ∑

i,j
µ̂i ·Wij µ̂j , (1)

where Wij ∈ R3×3 are the interaction matrices and µ̂i = µi/|µi| ∈ R3 are the orientations
of the local magnetic moments µi [49]. Notice that Equation (1) takes into account not
only all possible pair interactions between local magnetic moments µi and µj but also the
local contribution to the electronic energy for i = j, which is often referred to as a local
contribution to the magnetocrystalline anisotropy energy. Although fully unrestricted at
the quadratic (i.e., pairwise interaction) level, the model can in principle be extended in
order to incorporate three-spin interactions and beyond [50–52].

Without a loss of generality, H can be expressed in terms of irreducible contributions
as the sum

H = HH + HS + HDM , (2)

where the rotational invariant Heisenberg term is given by

HH = −1
2 ∑

i,j
Jij µ̂i · µ̂j (3)

with Jij = Tr
{

Wij + Wji
}

/6, the anisotropic symmetric term is given by

HS = −1
2 ∑

i,j
µ̂i ·WS

ij µ̂j , (4)

with WS
ij =

1
2
(
Wij + Wji

)
− Jji 1 = ∆Jij and the anisotropic antisymmetric term is given by

HDM = −1
2 ∑

i 6=j
µ̂i ·WA

ij µ̂j , (5)

with WA
ij = 1

2
(
Wij −Wji

)
. The focus of this work is on the antisymmetric contribution

HDM known as the Dzyaloshinskii–Moriya (DM) interaction [53–56]. This term can be
written in a geometrically more transparent form as

HDM =
1
2 ∑

i,j
Dij ·

(
µ̂i × µ̂j

)
, (6)

where Dij = −Dji ∈ R3 is a pseudovector known as the DM vector. The magnitude of
Dij depends on the details of the electronic structure and on the strength of the SOC of
the compounds [12], whereas the orientation of Dij is to a large extent conditioned by the
point-group symmetry of the nanostructure around the bond connecting i and j [54]. The
orientation of Dij (direction and sense) defines both the favored rotation sense as well
as the optimal rotation plane of the local magnetic moments. According to Equation (6)
a positive (negative) value of Dij ·

(
µ̂i × µ̂j

)
means that the sense of rotation of the local
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magnetic moments from µi toward µj is an unfavorable (favorable) configuration. For
example, if Dij is pointing along the positive z axis, then a counterclockwise (+) [clockwise
(−)] sense of rotation from µi toward µj within the xy plane yields the highest [lowest]
pair-interaction energy.

The relation between the point-group symmetry of the lattice and the possible orienta-
tion of the DM vector has been discussed by Moriya who established a number of useful
symmetry rules [54]. Three of them are particularly relevant for the following discussion.
Consider two local magnetic moments µi and µj located at ri and rj, with rij = rj − ri being
the vector connecting them and C denoting the point bisecting the segment rij. Moriya has
shown that the DM interaction satisfies the following symmetry constraints [54]:

(i) If the structure has an inversion symmetry with respect to C then Dij = 0.
(ii) If the structure has a mirror symmetry plane perpendicular to rij passing through C

then Dij is perpendicular to rij.
(iii) Dij is perpendicular to any mirror symmetry plane of the structure that includes the

bond rij connecting ri and rj.

In order to verify the validity of these rules, it suffices to recall that the local magnetic
moments, having spin and angular momentum origin, are pseudovectors while the DM
energy Dij · (µ̂i × µ̂j) is of course a scalar. Let us finally underscore that the antisymmetric
nature of the DM coupling favors noncollinear magnetic order with a precise local chi-
rality, thus providing the driving force that stabilizes spiral magnetic orders and vortex
magnetic patterns.

3. Electronic Calculations

In order to determine the local-environment dependence of the DM interaction in small
Fe clusters with non-magnetic adatoms, we perform independent density-functional theory
(DFT) calculations for different noncollinear magnetic configurations that are imposed by
constraining the directions of the local magnetic moments µi at each Fe atom. The DM
pseudovectors Dij between the Fe atoms are then obtained as a function of the geometry
of the cluster by building appropriate total energy differences between equivalent config-
urations with opposite chiralities. As an example, Figure 1a,b show two representative
magnetic configurations of Fe2X, one exhibiting counterclockwise (+) and the other clock-
wise (−) chiralities, from which the z component of the DM vector Dz

12 = (E+ − E−)/2
is obtained. The contribution of scalar and symmetric magnetic interactions Jij and WS

ij
cancel out in this energy difference, since they are independent of the chirality of otherwise
identical magnetic configurations [see Section 2]. In the case of Fe3X the interactions be-
tween all the pairs of Fe atoms have to be taken into account. One possibility to determine
Dz

12 is then to consider the magnetic configurations displayed in Figure 1c,d, from which
Dz

12 = (E+ − E−)/3
√

3 follows. The remaining components Dx
12 and Dy

12 are determined
in an analogous way by considering further magnetic configurations in which the local
magnetic moments point out of the Fe2X or Fe3 plane. The symmetric couplings WS

ij ,
the isotropic part Jij, and the anisotropies ∆Jij are obtained by performing independent
selfconsistent calculations for parallel and antiparallel orientations of the local Fe moments
along the x, y and z axes. Thus, the antisymmetric DM contributions to the total energy
vanish and the symmetric couplings can be derived by building the energy differences
between the corresponding antiparallel and parallel alignments.

The spin polarization at the adatoms, as well as the modulus of the local magnetic
moments at the Fe atoms, remain unconstrained in all the calculations. In this way, these
electronic degrees of freedom are optimized for each orientation of the Fe magnetic mo-
ments and the most stable solution of the Kohn–Sham equations is obtained [57,58]. In
practice, in the case of Fe, the sizes of local magnetic moments are largely independent
of their orientation, since changing the intra-atomic spin-density redistribution involves
relatively large energies. Indeed, the intra-atomic exchange energy ∆EX is of the order
of 1 eV, which is significantly larger than the exchange coupling constants controlling the
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orientations of µi [59–64]. This also justifies our analysis in terms of the classical spin model
introduced in Section 2.

x
y

(+)(d)(c)

1

2

3

Fe
x y

(e) hD12

1 2

(+)(a)

x
y

dFeFe

h

(+)(b)

(+)

1 2

3

X
z

Figure 1. Illustration of representative magnetic configurations in Fe2X and Fe3X clusters having
opposite chiralities indicated by (+) and (−). The orange spheres indicate the Fe atoms and the blue
spheres the adatom X. The arrows show the directions of the local magnetic moments µi. In (a,b),
corresponding to Fe2X , the magnetic moments µi at the Fe atoms turn in counterclockwise (+) or
clockwise (−) sense as we move from Fe(1) to Fe(2). Similarly, in (c,d), top views of Fe3X are shown,
where the µi turn counterclockwise (+) and clockwise (−), respectively, as we move from Fe(1) to
Fe(2). In (e) the Fe3X cluster is illustrated including the DM-interaction vector D12 and the angle γ

that it forms with the y axis.

No constraints are imposed on the magnetic moments µX
i of the adatoms X, since our

focus lies on the Fe atoms, their magnetic configurations, and their effective interactions.
Furthermore, we do not intend to determine the magnetic couplings involving the adatoms,
whose magnetic moments are small and strongly dependent on the cluster geometry. This
by no means implies that the adatom contribution to the magnetic coupling is unimportant.
In fact, significant local magnetic moments µX

i are induced at the adatoms X as a result of
the proximity with the Fe atoms, which tend to increase as the adatom-cluster distance
decreases. Although the orientations of µi are in general noncollinear, the tendency thereby
is to align µX

i parallel to µFe
i . Consequently, the adatom contribution to the changes in

the total energy as a function of the orientation of the Fe moments is central to our study.
Moreover, as already discussed, the adatoms break the inversion symmetry of the Fe dimer,
thus triggering the appearance of DM interaction between Fe atoms [54]. In the case of
Fe3, the adatom-induced symmetry breaking unfolds new components of Dij. Furthermore,
heavy open d-shell adatoms such as Pd, Pt, and Ir exhibit a particularly large SOC, which
enhances all magneto-anisotropic phenomena and, in particular, the DM couplings [9,12,54].

The first-principles calculations have been performed in the framework of Hohenberg–
Kohn–Sham’s density functional theory [65,66] as implemented in the Vienna ab initio sim-
ulation package (VASP) [67,68]. The spin-polarized Kohn–Sham equations are solved using
an augmented plane-wave basis set, taking into account the interaction between the valence
electrons and ionic cores through the projector-augmented wave (PAW) method [69]. The
exchange and correlation energy-functional is described by the Perdew–Burke–Ernzerhof
(PBE) parameterization of the generalized-gradient approximation (GGA) [70]. In order
to gain insight into the role of electron correlations on the DM interactions, we have also
performed the calculations by using the local-density approximation (LDA) [71–73] and
the GGA proposed by Perdew and Wang (PW) [74–77].

From a technical perspective, the numerical convergence and stability of the calcula-
tions is significantly improved by considering the fractional occupations of Kohn–Sham
orbitals with a Gaussian smearing. The width of the Gaussian is subsequently decreased
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stepwise in the range 0.7 eV ≥ σ ≥ 0.01 eV until the entropy contribution to the free energy
is less than 10−3 eV/atom. Concerning the expansion of the Kohn–Sham orbitals, a cut-off
energy Emax = 500 eV has been used for the plane-wave basis set. The self-consistent
relaxation of the electronic degrees of freedom is pursued until the total electronic-energy
change between subsequent optimization steps is smaller than 10−6 eV. This is sufficient
for our purposes, as we are interested in determining the energy differences of the order
of 10−4–10−3 eV. The dimensions of the supercell are chosen to be large enough (at least
12 Å) so that any spurious interactions between the cluster images are negligible. As in
any finite-cluster calculation, the wave vector is set to k = 0, since no integration in the
Brillouin zone is necessary.

In order to constrain the orientation of the local magnetic moments µi at each Fe atom
i along specific directions n̂i (|n̂i| = 1), the penalty function

∆Ep = ∑
i

ζ [µi − n̂i (n̂i · µi)]
2 (7)

is added to the usual Hohenberg–Kohn energy functional, where ζ ∈ R specifies the
weight of the penalty term ∆Ep in the Hamiltonian [78,79]. The local magnetic moments µi
entering Equation (7) are obtained by integrating the magnetization density m(r) within
the corresponding Wigner–Seitz sphere Ωi, i.e.,

µi =
∫

Ωi

m(r)dr3 . (8)

Once self-consistency is reached, the spin-orbit interactions are introduced by using the
method implemented in Ref. [80].

The equilibrium geometry of the clusters are determined by performing unconstrained
relaxations of all atomic positions until the forces are smaller than 0.01 eV/Å. The resulting
equilibrium distances are listed in Table 1. In the case of Fe3X, the Fe atoms actually form
an isosceles triangle whose shape changes somewhat as the height h between the Fe3
plane and the adatom X is varied. For simplicity, we ignore in the following these minor
distortions and consider equilateral Fe3 with the adatom X located above its center. The
effects of symmetry breaking and adatom-cluster hybridizations on the DM interaction are
then investigated as a function of the height between X and the Fe3 plane.

Table 1. Equilibrium configurations of Fe2X and Fe3X clusters with X = Cu, Pd, Pt, and Ir. The
equilibrium distances dFeFe and dFeX, as well as the height h0 between the adatom X and the center of
the Fe2 dimer or the centre of the Fe3 triangle, are given in Å. In the case of Fe3X, average values are
shown ignoring minor distortions of the Fe trimer.

Fe2Cu Fe2Pd Fe2Pt Fe2Ir Fe3Cu Fe3Pd Fe3Pt Fe3Ir

dFeFe 2.00 2.04 2.10 2.25 2.26 2.31 2.27 2.35
dFeX 2.49 2.41 2.38 2.27 2.40 2.37 2.35 2.36
h0 2.28 2.18 2.14 1.97 2.02 2.07 2.06 1.93

4. Results

This section presents and discusses our results on Fe2X and Fe3X clusters for X = Cu,
Pd, Pt, and Ir. In Section 4.1, the effects of the different adatoms as the triggering source
of the DM coupling in Fe2X are quantified by systematically varying the adatom-dimer
distance. The trends for different adatoms are contrasted. The microscopic origin of the DM
interaction is analyzed from a local perspective in Section 4.2 by computing the adatom-
resolved contributions of the SOC to the chirality energy ∆E±. In Section 4.3 the symmetric
isotropic and anisotropy interactions in Fe2X are quantified and the results are compared to
the corresponding antisymmetric DM couplings. Finally, in Section 4.4, the changes in the
modulus and orientation of the DM vector D12 between two Fe atoms, which are induced
by the adatom in Fe3X are quantified as a function of the distance between the adatom and
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the Fe3 plane. The trends for different X are identified and compared with the behavior
found in Fe2X.

4.1. DM Interaction in Fe2X Clusters

The presence of the adatom breaks the inversion symmetry of the pure dimer and
unlocks the DM interaction between the Fe atoms. In accordance with Moriya’s symmetry
considerations (see Section 2 and [54]) we obtain that D12 is perpendicular to the plane
defined by the Fe2X triangle (i.e., Dx

12 = Dy
12 = 0). The calculated z component Dz

12 for
X = Cu, Pd, Pt, and Ir are shown in Figure 2 as a function of the distance h between X and
the center of the Fe2 dimer bond. A rich variety of behaviors is found for the considered
adatoms, which have different chemical properties, d-band fillings, and the SOC strengths.

  

LDA

PW
PBE

h [Å]

D
12

z  [
m

eV
] 

h [Å]

D
12

z  [
m

eV
] 

x

y
z

(a) (c) Fe
2
Pt

Fe
2
Ir

Fe
2
Cu

(b) (d)Fe
2
Pd

D
12

z  [
m

eV
] 

D
12

z  [
m

eV
] 

Figure 2. Dzyaloshinskii–Moriya vector component Dz
12 between the Fe atoms in Fe2X clusters with

X = Cu, Pd, Pt, and Ir as a function of the distance h between X and the center of the Fe2 dimer [see
inset of (a)]. The vertical dashed lines indicate the equilibrium height h0. The symbols correspond to
independent ab initio calculations, using different approximations to the exchange and correlation
energy functional as indicated in the inset of (b).

Probably the simplest or softest way of breaking the symmetry of the Fe dimer and
thereby trigger a possible DM coupling is by adding a non-magnetic light atom with a
closed d shell similar to Cu. Figure 2a shows that the effects are, already in this case, quite
remarkable. The induced DM coupling between the Fe atoms is significant, reaching values
of about 2 meV at the equilibrium distance. Stronger effects are expected by considering
heavier 4d atoms, particularly if the d-band is no longer completely filled. This is indeed
the case when a Pd atom is added. Figure 2b shows an enhancement by about a factor 10
of the strength of the induced DM coupling between the Fe atoms, as compared to Fe2Cu.
It is, however, remarkable that the dependence of Dz

12 on the adatom-dimer distance is
qualitatively similar in these two cases. In Fe2Cu, the z component Dz

12 is positive and
largest around the equilibrium configuration (h0 ' 2.28 Å). This means that an in-plane
clockwise (−) rotation of the local magnetic moments µi at the Fe atoms is favored with
respect to a counterclockwise (+) rotation [see also Figure 1a,b]. In contrast, at large
distances, where the adatom-dimer interaction is weak, (h > 3–3.5 Å) Dz

12 changes sign and
goes over a minimum before vanishing in the limit of h→ +∞, where the consequences of
breaking the inversion symmetry become negligible. In the case of Fe2Pd a qualitatively
similar trend is observed. However, the strength of the DM coupling is significantly larger,
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particularly at short distances, where the adatom-dimer hybridization is strong. This can
be qualitatively understood by recalling that, in Pd, the 4d shell is open and the nuclear
charge is larger, which both results in a much stronger and more effective SOC.

The trend to stronger DM couplings is confirmed when the even heavier Pt and Ir
adatoms are considered. In these cases, Dz

12 reaches values of up to 20–30 meV. Furthermore,
the dependence on h and on the adatom-dimer hybridization is far richer. Indeed, in Fe2Pt
and Fe2Ir, Dz

12 oscillates as a function of h, which demonstrates interesting possibilities of
manipulating the chiral magnetic coupling through alloying. For example, in Fe2Pt, the
favored chirality changes twice as h increases: First, at a short height h ' 1.9 Å, from a
clockwise rotation (−) of µi, which corresponds to Dz

12 ≥ 0, to a counterclockwise rotation
(+), which corresponds to Dz

12 ≤ 0. Second, at larger h, the favored sense of rotation
changes again from counterclockwise (+) to clockwise (−) at h ' 2.3–2.5 Å. Notice that the
oscillations of Dz

12 are quite important in Fe2Pt, their values range from Dz
12 ' −15 meV to

10–20 meV in the counterclockwise, respectively, and clockwise sense of rotation.
The importance of d-band fillings becomes clear by comparing the results for Pt and

Ir, which have similar atomic numbers and thus comparably strong SOCs. In the case of
Fe2Ir, starting from a large negative value Dz

12 ' −20 meV at the smallest considered height
h = 1.9 Å, Dz

12 becomes even stronger at larger distances reaching its maximum absolute
value |Dz

12| ' 30 meV at a height h = 2.3–2.6 Å, which is larger than the equilibrium height
h0 = 1.97 Å (see Table 1). Around h0, Dz

12 depends linearly on h, with an important deriva-
tive ∂Dz

12/∂h, which indicates the possibility of interesting couplings between magnetic
chirality and stress or lattice vibrations. For heights beyond the largest |Dz

12|, Dz
12 increases

monotonically (Dz
12 < 0) approaching zero in the limit of large h. In this context, it is

interesting to note that a similar oscillation of the orientation of the DM vector and an
exponential decrease in the DM-interaction strength as a function of interatomic distance
have been derived from low-temperature inelastic scanning tunneling spectroscopy on a
pair of Fe atoms deposited on Pt(111) [32].

Three different local and gradient-corrected approximations to the exchange and
correlation (XC) functional have been considered in order to assess the role of correlations
on the SO energies and DM interactions. The results shown in Figure 2 show that they all
yield similar trends as a function of the distance between the nonmagnetic adatom and
the Fe dimer. The quantitative differences between the functionals are in almost all cases
clearly smaller than the changes in Dz

12 as a function of h or composition. This is quite
remarkable since the behaviors found for the various considered adatoms differ widely (see
Figure 2). Notice, however, that in the case of Fe2Pt and Fe2Ir, where the absolute values
of Dz

12 are particularly large, the quantitative differences between the results for different
functionals can be significant (up to 15 meV), which demonstrates that electron correlations
can have a significant impact on the DM couplings.

4.2. Microscopic Origin of the Dzyaloshinskii–Moriya Interactions in Fe2X Clusters

Besides quantifying the strength and orientation of the DM interactions, understanding
their microscopic origin is also of considerable interest. Indeed, a more detailed insight
on this subtle relativistic effect from a theoretical point of view should be helpful to the
experimental search for new materials relevant for technological applications. In this context,
it has been proposed [9] that the DM coupling can be regarded as an indirect interaction
between two magnetic atoms with local magnetic moments µi and µj (for example Fe or Co
atoms) mediated by a third often non-magnetic atom exhibiting strong SOC (for example Pt).
According to this picture, different relative cantings of the local magnetic moments µi and µj
result in changes of the SOC energy, which occur for the most part at the heavy non-magnetic
atoms. This dominant dependence of the contribution of the nonmagnetic, though strongly
spin-polarizable atoms, to the SO energy is regarded as the driving force behind the DM
interaction [12]. A further interesting alternative perspective has been proposed in [13]. In
this case, the DM interaction is regarded as the result of spin-flip hoppings of electrons
between the magnetic moments µi and µj, whereby the spin flips are triggered by spin-orbit
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scattering at the non-magnetic nearby atoms [13]. Moreover, previous theoretical studies
on 3d TM chains, monolayers and multilayers deposited on 5d substrates have shown that
the chiral coupling between 3d TM atoms are often associated with changes in the SOC
energy originating mainly at the adjacent 5d atoms of the support, rather than at the actual
magnetic materials [9,11,13,43]. It is therefore very interesting to investigate if a similar
situation applies to the chiral properties triggered on Fe dimers by adatoms.

In order to clarify the origin of the DM interaction in the Fe2X clusters, we have
analyzed our ab initio calculations from a local perspective. In Figure 3, the results are
given for the changes in the SO energy ∆ESO = ESO

+ − ESO
− upon changing the chirality of

the magnetic configuration in Fe2X from clockwise [(−), Figure 1b] to counterclockwise
[(+), Figure 1a]. First of all, one observes that, in the case of Cu and Pd, the chirality
of the spin-orbit energy ∆ESO accurately accounts for the corresponding chirality of the
total electronic energy ∆E± = E+ − E−. Some deviations are found in the case of the Pt
adatom while, in the case of Ir, the quantitative discrepancies between ∆ESO and ∆E±
are significant. This demonstrates that the changes in the kinetic and Coulomb energies
of the electrons as a function of chirality, possibly related to redistributions of the spin-
and orbital-polarized density, cannot be neglected when heavy TM atoms are involved.
Particularly, in the case of Fe2Ir at a relatively large Ir-dimer distance (h ≥ 2.8 Å), the
actual DM couplings derived from ∆E± are orders of magnitude larger than those derived
from the spin-orbit contributions ∆ESO alone. Nevertheless, it also true that, except in
Fe2Ir, ∆ESO is in general able to account for both the sign and approximate strength of Dz

12,
including the non-monotonic behavior as a function of h found in Fe2Pt. Concerning the
atom specific contributions to ∆ESO, one observes that the adatoms dominate the chirality
of the spin-orbit energy, not only for 4d and 5d TMs but also in the case of Cu. Notice,
moreover, that the contribution of the Fe atoms is sometimes significant. In particular, in
the case of Cu, the chirality of the SO energy at the Fe atoms is responsible for the change
of sign of Dz

12 for h > 3.5 Å.
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Figure 3. Local contributions to the chirality of the spin-orbit (SO) energy ∆ESO(i) = ESO
+ (i)− ESO

− (i)
at the different atoms i in Fe2X as a function of the adatom-dimer distance h. Results are given for the
Fe(1) atom (red circles), the Fe(2) atom (green triangles), and the adatom X (blue squares). The plus
signs and crosses show, respectively, the chirality of the SO energy ∆ESO = ∑i ∆ESO(i) and of the
total electronic energy ∆E±. Notice the dominant role played by the changes in the local SOC energy
at the adatoms.
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The results shown in Figure 3 also provide a useful insight on the role of the d-band
filling of the adatoms X regarding the total energy asymmetry ∆E±. One observes that
Fe2Cu, the lightest adatom with a closed 3d shell, exhibits the smallest |∆E±| ≤ 5 meV
among the considered clusters. Pd and Pt, which have a similar d-band filling, yield
comparable largest values of |∆E±| ' 25–35 meV, despite Pt being much heavier than Pd.
In contrast, Ir, which has one more d hole than Pt, shows a greatly increased maximum
|∆E±| ' 63 meV. This is consistent with the conclusions drawn by Belabbes et al., in whose
work the DM interactions are regarded as the result of spin-flip hoppings between magnetic
compounds triggered by spin-orbit scattering at often heavy non-magnetic elements [13].
As these authors point out, active d-band states at both the magnetic and intermediate
nonmagnetic alloy components are necessary for the spin-flip processes to occur. Therefore,
a lower d-band filling at the adatoms facilitates the indirect spin-flip hoppings between the
Fe atoms, thus resulting in a larger DM coupling.

4.3. Symmetric Magnetic Interactions in Fe2X Clusters

The stability of noncollinear magnetic configurations and the morphology of spin
textures such as domain walls, spin-density waves, and skyrmions are conditioned by the
importance of the antisymmetric DM couplings Dij, which favor noncollinear spin arrange-
ments [see Equation (6)], relative to the symmetric isotropic couplings Jij, which, in the ab-
sence of frustrations, favor collinear alignments of the local moments [see Equation (3)]. Fur-
thermore, the anisotropies ∆Jij of the symmetric couplings including the local anisotropies
∆Jii define, together with Dij, the shape and orientation of the magnetic configurations in
both collinear and noncollinear situations [see Equation (4)]. It is therefore very interesting
to analyze the dependence of Jij and ∆Jij on the local environment of the magnetic moments
in Fe2X and to compare them with the corresponding DM couplings.

In Figure 4, the symmetric Heisenberg interactions Jαα
12 in Fe2X are shown as a function

of the distance h between Fe2 and the adatom X = Cu, Pd, Pt, and Ir for the different
orientations α = x, y and z of the Fe moments µi. These couplings are given by the
difference between the electronic energies obtained in independent calculations for parallel
and antiparallel alignments of the local magnetic moments along α [see Equation (4)].
The corresponding isotropic couplings Jij =

1
3 ∑α Jαα

ij are shown as well. In Fe2Cu and
Fe2Pd, the dependencies of Jαα

12 on h are qualitatively similar. In contrast to the results
for Dz

12 shown in Figure 2a,b, Jαα
12 decreases with decreasing dimer-adatom distance. In

other words, Jαα
12 decreases as the hybridization between the Fe d-orbitals and the adatom

increases. This trend to decouple the Fe local magnetic moments by the adatom contrasts
strongly with the behavior found for the DM interaction, where the adatom plays the role
of a mediator, enhancing Dz

12 as it approaches the dimer. In the case of Fe2Pt and Fe2Ir, the
symmetric couplings are further reduced in comparison with Fe2Cu and Fe2Pd. Moreover,
one observes that Jαα

12 oscillates strongly as a function of h deviating by about 10% from
its large-h value. Similar strong oscillations have been observed in Dz

12 of Fe2Pt and Fe2Ir
[Figure 2c,d], which reflects a much stronger modification of the electronic properties due
to the presence of these adatoms. However, note that the presence of the adatom does
not result in a clear enhancement of the symmetric Heisenberg coupling Jαα

12 , as it is the
case for Dz

12. In fact, the symmetric couplings Jαα
12 are not triggered, despite being certainly

affected by the symmetry breaking adatoms. They are already present in the isolated Fe
clusters [2,81,82].

For large h, in the limit of isolated Fe2, one observes that J12 is finite and positive, which
corresponds to the known ferromagnetic alignment of the Fe moments in the dimer ground
state [81–83]. Notice that the large-h value of J12 decreases as we move from X = Cu to X = Ir.
This is a consequence of the fact that the considered Fe-Fe distance, assumed for simplicity
to be independent of h, is larger for the heavier adatoms (see Table 1). The quantitative
values of J12 are in the range of 0.4–0.6 eV. They are larger than typical Fe-bulk values,
which is in agreement with the temperature dependence of the average magnetic moment
of Fe2 obtained in functional-integral d-band-model calculations [82]. The comparison
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with the DM couplings reported in Figure 2, which are of the order of 1–30 meV, shows
that a misalignment of Fe moments by an angle β = 2Dz

12/J12 of only 1/100–1/10 radians
yields exchange energies comparable to the DM energy. Previous theoretical studies have
shown that the ratio β between the DM and exchange couplings depends strongly on the
considered magnetic material and its interfaces. The values of β of the order of 1/100, as in
this work, are not uncommon [44,84–86]. However, the situations have been also found in
which β is of the order of 1 or even larger [32,87,88].
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Figure 4. Symmetric anisotropic Heisenberg coupling constants Jαα
12 = (Wαα

12 + Wαα
21 )/2 between Fe

magnetic moments pointing along the direction α = x, y and z in Fe2X clusters. Results are given
for X = Cu, Pd, Pt, and Ir as a function of the distance h between the adatom X and the center of the
Fe2 dimer. See Equations (1)–(5) and the inset of (b). The black full curves show the corresponding
isotropic couplings J12 = 1

3 ∑α Jαα
12 . The dashed horizontal lines for large h indicate the calculated

J12 for the isolated dimer at the corresponding equilibrium distances given in Table 1. The vertical
dashed lines indicate the equilibrium height h0.

The anisotropy of the symmetric couplings ∆Jα
12 = Jαα

12 − J12, shown in Figure 5 reveals
the SOC effects the exchange couplings. One observes that ∆Jα

12 is quantitatively compa-
rable, though it is in general weaker than Dz

12 for the corresponding adatom. Although
both symmetric and antisymmetric anisotropic interactions are a consequence of SOC, the
effect of the adatoms is clearly stronger on the DM couplings than on the anisotropy of
the Heisenberg couplings, particularly in the case of the heavier adatoms having strong
SOC (e.g., Pt and Ir). In the case of Cu and Pd, the anisotropies ∆Jα

12 are very small, of the
order of 0.2–0.6 meV, with an even weaker dependence on h. In fact, they are very similar
to the anisotropies in the isolated dimer: ∆Jx

12 ' −0.6 meV and ∆Jy
12 = ∆Jz

12 ' 0.25 meV.
In contrast, ∆Jα

12 becomes orders of magnitude stronger when the heavier Pt and Ir atoms
are added (see Figure 5). Accordingly, the distance dependence of ∆Jα

12 is also much
stronger baring no relation to the values in the isolated dimer even at a relatively large
adatom-dimer distance.
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Figure 5. Anisotropy of the symmetric Heisenberg coupling constants ∆Jα
12 = (Wαα

12 + Wαα
21 )/2− J12

between Fe magnetic moments pointing along the direction α = x, y and z in Fe2X clusters. See
Equations (1)–(5) and the inset of Figure 4b. Results are given for X = Cu, Pd, Pt, and Ir as a function of
the distance h between the adatom X and the center of the Fe2 dimer. The dashed horizontal lines for
large h correspond to ∆Jx

12 (red) and ∆Jy
12 = ∆Jz

12 (purple) for the isolated dimer at the corresponding
equilibrium distances given in Table 1. The vertical dashed lines indicate the equilibrium height h0.

4.4. DM Interaction in Fe3X Clusters

The Fe3X clusters with an equilateral basis exhibit mirror symmetry planes perpendic-
ular to the bonds connecting the Fe atoms and passing through the middle of the vectors rij
connecting them [see Figure 1]. In accordance with Moriya’s symmetry considerations (see
Section 2 and [54]), we obtain that D12 is perpendicular to r12 (i.e., Dx

12 = 0). In contrast
to Fe2X, the adatom affects not only the absolute value of the D12 but also its orientation.
In Figure 6, the absolute value |D12| and the angle γ between D12 and the positive y axis
are shown as a function of the distance h between X and the center of the Fe3 triangle. As
shown in Figure 1e, the positive y axis is the direction perpendicular to the bond between
Fe(1) and Fe(2) pointing toward Fe(3) within the Fe-trimer plane.

|D
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γ 
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3
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3
Pd
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3
Pt
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3
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Fe
3
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Figure 6. (a) Absolute value of the Dzyaloshinskii–Moriya vector D12 between a pair of Fe atoms in
Fe3X clusters with X = Cu, Pd, Pt, and Ir and the Fe3 triangle as a function of the distance h between
the adatom X and the center of the Fe3 triangle. (b) Angle γ between D12 and the positive y axis
as a function of h [see Figure 1c–e]. For symmetry reasons Dx

12 = 0. The symbols are the result of
independent DFT calculations, whereas the lines connecting them are a guide to the eye.
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In Fe3Cu and Fe3Pd, the absolute value of the DM vector depends weakly on h
remaining in the range |D12| = 3–6 meV. Notice that in Fe3X |D12| does not vanish for large
h, as in Fe2X, since the inversion symmetry with respect to the center of the bond between
Fe(1) and Fe(2) is already broken by the presence of Fe(3). In fact, calculations for Fe3 yield
Dz

12 ' 2.6 meV in good agreement with the results for Fe3X at large h. The DM coupling
strengths in Fe3Cu and Fe3Pd are very similar, although the spin-orbit coupling in Pd is
much larger than in Cu. This behavior is completely different from what is observed in
Fe2Cu and Fe2Pd, where |D12| is much stronger in the case of Pd [see Figure 2a,b]. One
concludes that the hybridization with the additional Fe atom in Fe3X critically modifies the
DM interaction between the other two Fe atoms. Therefore, besides the properties of the
adatoms, the DM interaction is strongly affected by the local environment of the atoms, as
given by the geometry of the nanoclusters and the resulting hybridizations.

Concerning the orientation of D12, the differences between Fe3Cu and Fe3Pd become
more significant quantitatively, although some common qualitative trends are shared. At
short distances, D12 is tilted pointing toward the adatom and forming an angle γ = 33°
with the y axis for Cu and γ = 54° for Pd [see Figure 6b as well as Figure 1e]. As the
distance h increases, D12 move rapidly toward the normal to the Fe3 plane in the direction
of the adatom, showing some oscillations and, in particular, a maximum γ = 122° for
Fe3Pd at h ' 3.4 Å. Finally, γ ' 90° is reached at large adatom-cluster distances, which
corresponds to the result obtained for D12 in the case of pure Fe3. The geometry of the
clusters qualitatively conditions the orientation of D12, whereas the Cu or Pd adatoms are
important in order to define the precise direction of the DM vector with respect to the
cluster structure. It is important to note that the orientation of D12 (direction and sense)
defines both the favored rotation sense as well as the optimal rotation plane of the local
magnetic moments of the interacting atoms. For example, if D12 is pointing along the z
axis, a clockwise (−) [counterclockwise (+)] rotation direction within the xy plane is the
most [least] favorable.

The significantly heavier Pt and Ir adatoms yield distinctive strong distance depen-
dencies of D12. In the case of Fe3Pt, the absolute value |D12| exhibits oscillations be-
tween the maxima |D12| ' 20–22 meV at h = 2.1 Å, 2.9 Å and 3.3 Å and the minima
|D12| ' 13–14 meV at h = 2.3 Å and 3.2 Å. In the case of Fe3Ir, |D12| increases for small
h from |D12| ' 11 meV at h = 1.9 Å to D12 ' 32 meV at h = 2.3 Å. As in the case of
Fe2X, Ir yields the strongest DM couplings among the considered Fe3X. For large distances,
|D12| rapidly decreases to D12 ' 7 meV at h = 3.5 Å with an intermediate local maximum
D12 ' 17 meV at h = 2.9 Å. Notice that the influence of the Pt and Ir adatoms is still
significant, even at the largest considered h. The fact that Pt and Ir show such different
behaviors, although the atomic numbers are similar, emphasizes the role of the d-band
filling on the DM coupling, in agreement with the conclusion drawn for Fe2X clusters.

The Pt and Ir adatoms also have a major influence on the orientation of D12. In the case
of Fe3Pt and at short distances h ' 2.1 Å, D12 is close to the positive y axis with γ ' 14°. As
the distance h is increased, D12 rapidly rotates to γ ' 138° at h ' 2.3 Å, with its component
Dy

12 now being negative. For even larger h, D12 rotates back, first in the direction of the
normal to the Fe3 plane and then further toward the positive y axis, with γ almost linearly
decreasing until γ ' 53° is reached at h ' 3.2 Å. Finally, this is followed by an increase
toward γ ' 92° at h ' 3.4 Å. In the case of Fe3Ir, the orientation dependence is far smoother.
Starting from γ ' 128° at h ' 1.9 Å, D12 gradually rotates toward the negative y axis
reaching γ ' 178° at h ' 2.7 Å, i.e., almost parallel to the negative y axis. Subsequently,
D12 reorients itself toward the z axis and beyond it, until γ ' 50° is reached at h ' 3.7 Å.
At even larger h, D12 rotates again approaching the normal to the Fe3 plane with γ ' 104°
at h ' 4 Å. In summary, both the absolute value as well as the orientation of D12 exhibit
non-monotonous behaviors as a function of h. Therefore, they open the most interesting
possibilities of manipulating the chirality in a magnetic nanostructure.
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5. Conclusions

The chirality of the magnetic interactions between Fe atoms in Fe2X and Fe3X clusters
with X = Cu, Pd, Pt, and Ir has been investigated in the framework of density-functional
theory. In Fe2X clusters, the adatoms trigger the DM interaction by breaking the inversion
symmetry of the dimer, thereby unraveling a rich variety of chiral magnetic behaviors that
strongly depend on the nature of the adatom as well as on their distance to the Fe atoms.
Three different local and gradient-corrected approximations to the exchange and correlation
functional have been considered, which yield qualitatively very similar trends, as well some
significant quantitative differences. The microscopic origin of the adatom-induced DM
coupling has been investigated by computing the contributions of the different atoms to the
chirality of the spin-orbit energy in Fe2X. The results show that the DM couplings originate
primarily on the spin-orbit energy of the adatoms, even in the case of a light atom such as
Cu, which has a complete d shell. These trends are consistent with previous interpretations
of the DM couplings as the result of indirect interactions with heavy open-d-shell atoms [9].

Adatoms showing stronger spin-orbit coupling generally result in stronger and more
interesting DM couplings. Furthermore, the d-band filling of the adatom has also been
found to be a most relevant parameter for controlling the chiral magnetic properties of
the clusters. In fact, the strength of spin-orbit coupling alone is not enough in order to
define the significance of the symmetry breaking effect. In particular, we have found that
increasing the number of d holes upon changing Pt by Ir results in stronger and more
complex DM interactions. Comparison between the symmetric and antisymmetric Fe-Fe
couplings in Fe2X shows that the DM couplings are about two orders of magnitude weaker
than the isotropic Heisenberg interactions. However, they are in general stronger and more
sensitive to dimer-adatom hybridizations than the anisotropy of the symmetric couplings.

The results reported in this work motivate further investigations on larger clusters
and nanoalloys in order to understand the size and environment dependence of the DM
interaction. The role of cluster symmetry and the possibilities of tuning it by means of
alloying should be particularly emphasized. Furthermore, in order to stress the role of the d-
band filling, it is interesting to expand the investigation to other magnetic transition metals,
for example, Ni, Co, Mn, and Cr. In particular, Mn and Cr, with a nearly half-filled d-band,
are promising candidates for an exceptionally strong DM coupling [13]. Finally, a more
thorough analysis of the anisotropy of the magnetic interactions in small clusters requires
the examination of all contributions to the interaction energy, including the symmetric and
thus nonchiral interactions Jij and WS

ij for different adatoms. Using these ab initio-derived
interactions in the framework of phenomenological spin models, it would be possible to
investigate the magnetic energy landscapes of the clusters, including metastable magnetic
configurations as well as the relevant transition states connecting them. In this way, a
quantitative material specific study of dynamical processes such as magnetic relaxation
and magnetization reversals would be possible.
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