
Citation: Xu, X.; Luo, H.; Chen, W.;

Gao, L. Containment Control

Problem of Linear Multiagent

Systems with External Disturbance

and DoS Attacks. Symmetry 2023, 15,

384. https://doi.org/10.3390/

sym15020384

Academic Editors: Sergei D.

Odintsov and Carlo Cattani

Received: 3 December 2022

Revised: 14 January 2023

Accepted: 28 January 2023

Published: 1 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Containment Control Problem of Linear Multiagent Systems
with External Disturbance and DoS Attacks
Xiaole Xu 1, Huan Luo 2, Wenhai Chen 2 and Lixin Gao 2,*

1 Institute of Information Technology, Wenzhou Polytechnic, Wenzhou 325035, China
2 Institute of Intelligent Systems and Decision, Wenzhou University, Wenzhou 325027, China
* Correspondence: lxgao@wzu.edu.cn

Abstract: This work investigates the containment control for linear multiagent systems. We assume
that the systems are subject to periodic energy-limited denial-of-service (DoS) attacks, which prevent
agent-to-agent data transmission. It is assumed that the DoS attacks occur periodically based on
the time sequence method. It is also assumed that some devices can be used to predict the duration
of DoS attacks and uniform lower bound of communication areas. To achieve containment control,
state and disturbance estimators are proposed for each following agent to estimate the relative
state information. Under suitable conditions, the containment control problem can be solved with
the designed controllers and observers. Finally, we provide a simulation result to confirm the
theoretical analysis.
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1. Introduction

In recent years, the challenge of coordinated control for multiagent systems has at-
tracted significant research attention due to its several potential applications in spacecraft
formation flying, sensor networks, cooperative surveillance, etc. As one of the many
cooperation issues, consensus has received wide attention in the past decades. Current
research on consensus can be roughly divided into two types, i.e., consensus without a
leader [1,2] and consensus with one or multiple leaders. For a single leader case, the follow-
ers eventually converge to the state of the leader, a phenomenon called consensus tracking
or leader-following consensus problem [3–5]. However, for multiple leaders, the followers
eventually converge to a convex hull spanned by the leaders, called the containment control
problem [6–8]. In [6], based on the output of adjacent agents, a distributed dynamic output
feedback controller was developed to address the challenge of distributed containment
control and provided a necessary and sufficient condition, which was only related to the
spectral properties of the topology matrix. The problem of containment control laws was
solved for both continuous-time and discrete-time cases in [7]. Considering the unknown
leaders, two distributed control protocols based on state feedback and dynamic output
feedback were locally designed, and the challenge of adaptive containment control for
MASs was solved in [8].

Due to external disturbances, the consensus disturbance rejection problem has at-
tracted substantial attention. In [9], two distributed protocols were designed for a Lipschitz
multiagent system, i.e., one was to attain global consensus without external disturbances,
whereas the other was to reach consensus with a guaranteed H∞ performance. Considering
the input delays and disturbances of the system, a controller based on a predictor and
disturbance observer was designed for each follower [10]. Consensus could be achieved
and all signals in the closed-loop dynamics were eventually and uniformly bounded with
the designed distributed protocol. Wang analyzed the consensus disturbance rejection
problem for multiple-input multiple-output (MIMO) linear MASs in [5], and consensus was
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achieved and the external disturbance was suppressed with suitable control parameters
and a large average dwell time.

System security is an intriguing and important issue. Network security issues have
been broadly studied over the past decade [11,12]. When a multiagent system is attacked,
data exchange among agents is interrupted or destroyed, resulting in the instability of the
entire system [13–16]. Generally, two types of attacks exist in a multiagent system, i.e., one
is to attack the dynamic behavior (or closed-loop dynamics) of the agents, whereas the
other is to attack the communication among the agents. Any attack will seriously influence
the consensus properties of the whole system. The second case includes denial-of-service
(DoS) attacks as in [13–15]. Considering channel interference by an energy-constrained
attacker, optimal DoS attack schedules were constructed in [13] to maximize the expected
average estimation error. To minimize unnecessary network traffic, Zha et al. proposed
a distributed event-triggered secure consensus control for multiagent systems (MASs)
subject to DoS attacks [14]. A secure consensus comprising two different measurements
was proposed in [15]. The formation control problem for nonlinear multiagent systems
(MASs) under DoS attacks was emphatically studied in [16], and the distributed hybrid
event-triggering strategies (HETSs) could be applied to preserve formation control.

With this background, we explore the challenge of containment control for the multia-
gent system with external disturbances and DoS attacks. The contributions of this paper
are summarized as follows: (1) The containment control problem of linear MASs with an
external perturbation is considered, unlike [5], which only analyzed consensus tracking
problems for linear MASs with deterministic disturbances. (2) Three observers are designed
to solve the containment control problem, unlike [5,17], which assessed the consensus
challenge in a secure network environment. This paper suggests that data exchange among
agents is interrupted due to DoS attacks. Data interruption among agents affects the connec-
tivity of the entire network. Therefore, the convergence of the system cannot be guaranteed.
Therefore, we provide a summary based on [5] to expand its scope of application.

The subsequent sections are organized as follows. Section 2 introduces the relevant
graph theory and the preliminary work. In Section 3, a containment control protocol based
on three different observers, with or without attacks is proposed. Simulation examples are
provided for the efficacy of the protocol in Section 4. Section 5 presents the conclusions and
our future work.

2. Preliminaries and Problem Statement
Notations and Preliminary Results

The notations used in this paper are standard. R and C represent the real number
set and complex number set, respectively. Rm×n is the set of m× n real matrices. I repre-
sents an identity matrix with a compatible dimension. T(orH) denotes transpose (conju-
gate transpose). diag(g1, g2, . . . , gn) represents a diagonal matrix with diagonal elements
gi (i = 1, 2, . . . , n). Provided that the matrix A has n real eigenvalues, the largest and small-
est eigenvalues are denoted by λmax(A) and λmin(A), respectively. For symmetric matrices
A and B, A > (≥)B means that A− B is positive (semi-)definite. The n×m-dimensional
zero matrix is denoted by 0n×m. ‖ • ‖ denotes the Euclidean norm, and ⊗ denotes the
Kronecker product.

For the multiagent systems, a weighted graph G = {V , ε,A} can be used to represent
the interaction relationships among N + M agents, where V = {1, 2, · · · , N + M} is a
node set, ε ⊂ V × V represents an edge set, and an adjacency matrix is A = [aij] ∈
R(N+M)×(N+M). We assume that agents 1 to N and agents N + 1 to N + M are followers
and leaders, respectively, and each follower has at least one neighbor, but the leaders
have no neighbors. Of note, (i, j) ∈ ε indicates that agent j can obtain the information
from agent i. The elements in A are non-negative, i.e., aij > 0 if and only if (i, j) ∈ ε and
aij = 0 otherwise. At the same time, self-loops do not exist, i.e., aii = 0, ∀i ∈ V . A directed
path from agent i to agent j is a sequence of edges of the form (vi, vp), (vp, vq), . . . , (vr, vj).
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Here, D = diag(d1, d2, · · · , dN+M) denotes a degree matrix, where di =
N+M

∑
j=1

aij. Then,

the Laplacian matrix of graph G is defined as

L =

[
L1 L2

0M×N 0M×M

]
where L1 ∈ RN×N and L2 ∈ RN×M.

Assumption 1. For each follower, there is at least one leader that gives a directed path to the follower.

Lemma 1 ([18]). If Assumption 1 holds, then all the eigenvalues of L1 have positive real parts, each
entry of −L−1

1 L2 is nonnegative, and the sum of elements in each row of −L−1
1 L2 is equal to one.

Moreover, there exists a diagonal matrix φ = diag(φ1, φ2, · · · , φN) with φi > 0, i = 1, 2, · · · , N
such that φL1 + LT

1 φ > 0N , where LT
1 φ = 1N .

Obviously, there is φ(L1 + φ−1LT
1 φ) > 0 from the above Lemma 1 that is Ω =

L1 + φ−1LT
1 φ > 0. Then, there exists an orthogonal matrix Ū, such that ŪTΩŪ =

diag(ρ1, ρ2, · · · , ρN). Therefore, we can let ρ0 = min{ρ1, ρ2, · · · , ρN}, and clearly, ρ0 > 0.

Definition 1 ([18]). A set C ⊆ RN is convex if (1− λ)x + λy ∈ C, for any x, y ∈ C, and any
λ ∈ [0, 1]. For a finite set of points X = {x1, . . . , xq}, it the convex hull is defined as Co(X) =

{
q
∑

i=1
aixi|xi ∈ X, ai ∈ RN , ai ≥ 0,

q
∑

i=1
ai = 1}.

Herein, we consider multiagent systems comprising N followers and M leaders. Let
F = {1, 2, · · · , N} be the set of followers and L = {N + 1, N + 2, · · · , N + M} be the set
of leaders. Here, all followers are assumed homogeneous, and their dynamics are given by

ẋi(t) = Axi + Bui(t) + Ddi(t),
yi(t) = Cxi(t), i ∈ F .

(1)

and the dynamics of the leaders are described by

ẋi(t) = Axi(t),
yi(t) = Cxi(t), i ∈ L (2)

where xi(t) ∈ Rn is the agent i’s state, ui(t) ∈ Rp is the agent i’s control input and yi(t) ∈ Rq

is the agent i’s measured output. A, B, C, and D are system matrices with appropriate
dimensions. di(t) ∈ Rr is the external disturbance, generated by a linear exogenous system
with the form

ḋi(t) = Sdi(t), i ∈ F . (3)

where S is a constant matrix.
Then, we address the containment control problem of multiagent systems (1) and (2),

which are defined as follows.

Definition 2. For multiagent systems (1) and (2), containment control is achieved if the state of all
followers asymptotically converges to the convex hull composed by the leaders as time goes infinity.
That is, limt→∞ ‖xi − Co(xj)‖ = 0 holds for all i ∈ F , j ∈ L.

We always assumed that the state of the agent was difficult to obtain and the output
of the agent could be obtained directly. To achieve the control objective, the relative
output information was used based on the design of the observers and controller. With the
developed control laws, the final state of the followers should converge asymptotically to
the convex combination formed by the leaders, and the external disturbances should be
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suppressed. To complete further research, the following results and assumptions are given
first, which are used later.

Lemma 2 ([19]). Let S be a symmetric matrix partitioned into the block form S =

(
S11 S12
S21 S22

)
,

where S11 and S22 are symmetric and square, respectively. Then, S < 0 if and only if

S11 < 0, S22 − S21S−1
11 S12 < 0

or equivalently
S22 < 0, S11 − S12S−1

22 S21 < 0

Lemma 3 ([20]). Suppose that Ω ∈ Rn×n is a Hermitian matrix, such that λmin(Ω)I ≤ Ω ≤
λmax(Ω)I, where λmax(Ω), λmin(Ω) is, respectively, the maximum and minimum eigenvalue of Ω.

Lemma 4 ([21]). Given a symmetric positive definite matrix P, the following inequality holds

2xTy ≤ xT Px + yT P−1y, (4)

where x, y ∈ Rn and P is a positive matrix.

Assumption 2. The exosystem matrix S has different eigenvalues and only an imaginary part,
meanwhile (S, D) is observable.

Assumption 3. The system matrix D for the disturbance in (1) satisfies the matching condition
that there is a matrix E ∈ Rp×r such that D = BE.

Assumption 4 ([5]). The matrix triplet (A, B, C) meets

(i) rank(CB) = rank(B) = p,

(ii) rank(Ω) = n + p, where Ω =

[
sI − A B

C 0

]
, ∀s ∈ C, Re(s) ≥ 0.

Let ξi(t) = ∑
j∈F ⋃L aij(t)(xi(t) − xj(t)) be a relative state vector, i ∈ F , where the

weight aij(t) is chosen as follows in our problem:

aij(t) =

{
αij if agent i is connected to agent j
0 otherwise,

(5)

where αij > 0 (i ∈ F , j ∈ F ⋃L) is the connection weight constant between agent i and
agent j. For the considered multiagent system, it was assumed that the interconnection
topology switched in a finite possible directed graph. The set of all possible topology graphs
was denoted as M̃ = {G1,G2, . . . ,GM}, with index set P = {1, 2, . . . , M}. The switching
signal σ : [0, ∞) −→ P was used to represent the index of the topology digraph, i.e., at
each time t, the underlying graph was Gσ(t). Define

λ̄ = max(λmax(LT
1iL1i)|i ∈ P)

Then, we introduced the error vector for the followers

ξ(t) = (L1σ(t) ⊗ In)xF + (L2σ(t) ⊗ In)xL. (6)

in which
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ξ(t) = (ξT
1 , ξT

2 , · · · , ξT
N)

T ,

xL = (xT
N+1(t), xT

N+2(t), · · · , xT
N+M(t))T ,

xF = (xT
1 (t), xT

2 (t), · · · , xT
N(t))

T .

It can be seen from Lemma 1 that the containment can be realized if ξ(t) → 0, i.e.,
xF → (L−1

1σ(t)L2σ(t) ⊗ In)xL, as t→ ∞.

3. Main Results

Since we could not obtain the state of agent i directly, we could only use the output yi
to design control protocols. In order to achieve the control objective, an observer (7) was
adopted to estimate the relative state ξi(t) by agent i

ξ̂i(t) = ωi(t)− H( ∑
j∈F ⋃L aij(t)(yi(t)− yj(t)))

ω̇i(t) = (GA− FC)ωi(t) + (F(I + CH)− GAH)

( ∑
j∈F ⋃L aij(t)(yi(t)− yj(t))),

(7)

where ωi(t) ∈ Rn is the internal state, H = −B[(CB)T(CB)]−1(CB)T , G = I + HC, and F ∈
Rn×q was chosen such that GA− FC was stable.

Remark 1. The first condition of Assumption 4 can ensure the existence of H and we can conclude
that GB = 0 and GD = 0. At the same time, the second condition of Assumption 4 can guarantee
that the matrix pair (GA, C) is detectable, and that F exists. Therefore, there is a W > 0n such that

(GA)TW + W(GA)− 2CTC < 0n×n. (8)

Then, we can design F = −W−1CT . Moreover, (A, B) is controllable from the second condition of
Assumption 4.

In this part, the following observer was constructed to recover xi

˙̂xi = Ax̂i + Bui + Dd̂i − τ0(τi + 1)RC(δi − ξ̂i)
τ̇i = (δi − ξ̂i)

TΓ(δi − ξ̂i)
(9)

where δi(t) = ∑
j∈F∪L

aij(t)(x̂i(t)− x̂j(t)), Γ = P1, and τ0 is a positive constant.

From (7) and (9), the disturbance observer was designed as

żi(t) = Szi(t) + (SQ−QA)ξ̂i(t)−QBKδi(t),
d̂i(t) = zi(t) + Qξ̂i(t),

(10)

where d̂i(t) is the state of the disturbance observer and zi(t) is the internal state of the
disturbance observer, and the gain matrices Q and K are given later.

Then, the distributed dynamic adaptive feedback control was given with the form

ui = Kx̂i − Ed̂i (11)

The design objective of this paper was to construct suitable gain matrices K, R, and Q
to achieve containment control with the proposed protocols.

3.1. Containment Control of MASs with Directed Communication Graph without Attacks

In this part, we give one theorem for solving the containment control problem of MASs
(1) and (2) under a directed communication topology.
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Theorem 1. Consider the multiagent system (1) and (2) with exogenous disturbance systems
(3). Suppose that Assumptions 1–4 are satisfied. Gain matrices K, R and Q can be chosen as
K = −α1BT P1, R = P−1

1 CT , Q = α2P−1
2 DT , where P1 > 0 and P2 > 0 satisfy (12)–(14)

AT P1 + P1 A− P1BBT P1 + In ≤ −In (12)

AT P1 + P1 A− CTC + In ≤ 0 (13)

ST P2 + P2S− DT D + In < 0 (14)

with α1 = 1
2 , α2 > 0. and the following conditions hold:

γ1 ≥
τ2

0 λ̄λmax(CTC)
τ0ρ0

2 −
1

1+τ̃

α2 ≥ 1 + γ2 +
4γ1λ̄

τ0ρ0λmin(CP−1
1 P−1

1 CT)

(15)

in which γ1 and γ2 are positive constant and τ̃ = max(τ1, τ2, . . . , τN). Then, the containment
control of MASs (1) and (2) can be achieved via the control protocol (11).

Proof. For convenience, let d̂(t) = [d̂T
1 (t), d̂T

2 (t), · · · , d̂T
N(t)]

T , d(t) = [dT
1 (t), dT

2 (t), · · · ,
dT

N(t)]
T , ξ̂(t) = [ξ̂T

1 (t), ξ̂T
2 (t), · · · , ξ̂T

N(t)]
T , and δ(t) = [δT

1 (t), δT
2 (t), · · · , δT

N(t)]
T . Then, we

can obtain the following closed-loop error dynamics

ξ̇(t) = (IN ⊗ A)ξ(t) + (IN ⊗ BK)δ(t)− (L1σ(t) ⊗ D)d̃(t), (16)

where d̃(t) = d̂(t)− d(t), and x̂F (t) = [x̂T
1 (t), x̂T

2 (t), · · · , x̂T
N(t)]

T .
By (7) and (11), we can get

˙̂ξ(t) = (IN ⊗ A)ξ̂(t) + (IN ⊗ (GA− FC− A))(ξ̂(t)− ξ(t))

+ (IN ⊗ BK)δ(t)− (L1σ(t) ⊗ D)d̃(t).
(17)

δ̇(t) = (IN ⊗ (A + BK))δ(t)− τ0(L1σ(t)(τ + IN)⊗ RC)η. (18)

where η(t) = δ(t)− ξ̂(t).
Let ξ̃(t) = ξ̂(t)− ξ(t), according to the above formula, we get

˙̃ξ(t) = (IN ⊗ (GA− FC))ξ̃. (19)

η̇ = (IN ⊗ A− τ0L1σ(t)(τ + IN)⊗ RC)η + (L1σ(t) ⊗ D)d̃− (IN ⊗ (GA− FC− A))ξ̃. (20)

where τ = diag(τ1, τ2, · · · , τN).
Combining (10) and (3), we have

˙̃d(t) = (IN ⊗ S− L1σ(t) ⊗QD)d̃(t) + (IN ⊗Q(GA− FC− A))ξ̃. (21)

It is easy to see that if limt→∞ δ = 0, limt→∞ d̃ = 0, limt→∞ ξ̃ = 0, and limt→∞ η̃ = 0,
then limt→∞ ξ = 0, which means that the containment control is achieved. Thus, the con-
tainment control problem of MASs (1) and (2) is transformed into the stability problem of
error systems (18)–(21).

Let σ(t) = p, and for any τ ∈ [tj, tj+1), j = 0, 1, . . ., consider the following multiple
Lyapunov function (22) for error systems (18)–(21)

V(t) = V1(t) + V2(t) + V3(t) + V4(t). (22)
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in which

V1(t) = δT(t)(φ⊗ P1)δ(t)

V2(t) = d̃T(t)(φ⊗ P2)d̃(t)

V3(t) = ξ̃T(t)(φ⊗ P3)ξ̃(t)

V4(t) =
γ1

2

N

∑
i=1

Φi(τi + 2)τi

where P3 satisfies the LMI

(GA− FC)T P3 + P3(GA− FC) + (β + 1)In < 0 (23)

and β = 4γ1λmax((GA−FC−A)T(GA−FC−A))λ̄

τ0ρ0λmin(CP−1
1 P−1

1 CT)
+ 1

γ2
λmax((GA− FC− A)T(GA− FC− A)).

Then, taking the derivative of V1, V2, V3, V4 and using Lemma 4, we can get

V̇1 = δT(φ⊗ (P1(A + BK) + (A + BK)T P1))δ− 2δT(φ⊗ P1)(τ0L1p(τ + IN)⊗ RC)η

≤ δT(φ⊗ (P1 A + AT P1 − 2α1P1BBT P1))δ + δT(φ⊗ In)δ

+ τ2
0 λ̄λmax(CTC)ηT(φ(IN + τ)2 ⊗ CTC)η

(24)

V̇2 = d̃T(φ⊗ (P2S + ST P2)− α2(φL1p + LT
1pφ)⊗ DT D)d̃ + 2d̃T(φ⊗ DT(GA− FC− A))ξ̃

≤ d̃T(φ⊗ (P2S + ST P2 − α2(φL1p + LT
1pφ)DT D))d̃ + γ2d̃T(φ⊗ DT D)d̃

+
λmax((GA− FC− A)T(GA− FC− A))

γ2
ξ̃T(φ⊗ In)ξ̃.

(25)

V̇3 = ξ̃T(φ⊗ ((GA− FC)T P3 + P3(GA− FC)))ξ̃. (26)

V̇4 = γ1

N

∑
i=1

Φi(1 + τi)τ̇i

= 2γ1ηT(φ(IN + τ)⊗ P1)η̇

= γ1ηT(φ(IN + τ)⊗ (AT P1 + P1 A)− τ0(IN + τ)(φL1p + LT
1pφ)(IN + τ)⊗ CTC)η

+ 2γ1ηT(φ(IN + τ)L1p ⊗ P1D)d̃− 2γ1ηT(φ(IN + τ)L1p ⊗ P1(GA− FC− A))ξ̃

(27)

According to Lemma 4, the following equalities hold

2γ1ηT(φ(IN + τ)L1p ⊗ P1D)d̃ ≤γ1τ0ρ0

4
ηT(φ(IN + τ)2 ⊗ CTC)η

+
4γ1λ̄

τ0ρ0λmin(CP−1
1 P−1

1 CT)
d̃T(φ⊗ DT D)d̃

(28)

−2γ1ηT [φ(IN + τ)L1 ⊗ P1(GA− FC− A)]ξ̃ ≤ γ1τ0ρ0

4
ηT(φ(IN + τ)2 ⊗ CTC)η

+
4γ1λ̄λmax(GA− FC− A)T(GA− FC− A)

τ0ρ0λmin(CP−1
1 P−1

1 CT)
ξ̃T(φ⊗ In)ξ̃

(29)

According α1 = 1
2 and conditions (42), we can obtain
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V̇ ≤ δT(φ⊗ (P1 A + AT P1 − P1BBT P1 + In)δ + ηT(γ1φ(IN + τ)⊗ (P1 A + AT P1 − CTC))η

+ d̃T(φ⊗ (P2S + ST P2 − DT D))d̃ + ξ̃T(φ⊗ ((GA− FC)T P3 + P3(GA− FC) + βIn))ξ̃

≤ − 1
λmax(P1)

δT(φ⊗ P1)δ
T − 1

λmax(P2)
d̃T(φ⊗ P2)d̃

− 1
λmax(P3)

ξ̃T(φ⊗ P3)ξ̃ − ηT(
γ1
2

φ(2 ∗ IN + 2τ)⊗ In)η

≤ − 1
λmax(P1)

V1 −
1

λmax(P2)
V2 −

1
λmax(P3)

V3 − ηT(
γ1
2

φ(2 ∗ IN + τ)⊗ In)η

≤ − 1
λmax(P1)

V1 −
1

λmax(P2)
V2 −

1
λmax(P3)

V3 −V4

≤ −l1V

(30)

where l1 = min( 1
λmax(P1)

, 1
λmax(P2)

, 1
λmax(P3)

, 1). Obviously, based on LMIs (12)–(14) and (23),

we have V̇ < 0. Therefore, through Lyapunov’s theory, we can get lim
t→∞

V(t) = 0, so

δ(t) → 0, η(t) → 0, d̃(t) → 0, and ξ̃(t) → 0. Then, according to the definition of δ(t),
the MASs (1) and (2) with external disturbance systems (3) achieve containment control
with the control protocol (11). This completes the proof.

Remark 2. If there is no external perturbation, that is di(t) = 0, ∀i ∈ F , the considered systems
(1) and (2) can still achieve containment control with the designed control protocol (11) which is
based on observers (9) and (10). Thus, the control protocol designed in this paper applies to more
general systems because it is based on the relative output.

Remark 3. Unlike article [5], which only discussed the case of a single leader, this paper primarily
considered the problem of containment control for multiple leaders. Obviously, when M = 1,
the considered system in this paper becomes the system in [5], and the system can achieve the
consensus if the conditions of Theorem 1 are satisfied. Moreover, article [17] only considered the
consensus problem based on output feedback in the undirected communication topology. In this
regard, this paper discussed the containment control problem based on adaptive observers in the
directed communication topology, which means matrix L1 associated with G is not the symmetric
matrix, so it is more difficult to obtain the conditions for consensus.

3.2. Containment Control of MASs with DoS Attacks

In this part, the secure containment control problem is considered for systems (1) and
(2) under denial-of-service (DoS) attacks. We make the following assumptions to make it
easier to deal with the problem.

Assumption 5. The attackers have limited energy. They can only attack the network a limited
number of times instead of unlimited times, and the duration for each attack is upper-bounded.

Assumption 6. When the attack occurs, all communication among agents is interrupted.

Remark 4. It is reasonable to assume that the energy of the attackers is limited in Assumption 5
since it represents several practical scenarios. For instance, many digital devices used as attack tools
work with batteries, and their attack times are limited due to limited battery energy. The challenge
of energy-constrained attacks has been recently discussed, see [13] for more details. Assumption 6,
which can also be found in [22], is often a reality in practice.

Based on Assumptions 5 and 6, we can divide the first-period n = 1, [0, T] into two
areas as shown in Figure 1, where the red area represents the communication area Πs
(Πs = [0, h]) without the DoS attacks, the green area Πα (Πα = [h, T)) indicates the area
where data transmission between agents is interrupted because of the DoS attacks.

Assumption 7. For every attack period [(n− 1)T, nT], n = 1, . . ., the period T has been identified.
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Figure 1. Attack strategy based on a time-sequence way with n = 1.

Since, for t ∈ [(n − 1)T + h, nT], the data exchange among agents is interrupted
by cyberattacks, and the agents cannot communicate with their neighbors, the adaptive
observer (9) can be modified as

˙̂xi =

{
Ax̂i + Bui + Dd̂i − τ0(τi + 1)RC(δi − ξ̂i) t ∈ [(n− 1)T, (n− 1)T + h)
Ax̂i + Bui + Dd̂i t ∈ [(n− 1)T + h, nT)

(31)

where τ̇i = (δi − ξ̂i)
TΓ(δi − ξ̂i), and thecontroller is still designed as ui = Kx̂i − Ed̂i

The disturbance observers (10) and (7) are modified as

˙̂di(t) =

{
żi(t) + Q ˙̂ξi(t) t ∈ [(n− 1)T, (n− 1)T + h)
Sd̂i(t) t ∈ [(n− 1)T + h, nT)

(32)

where żi(t) = Szi(t) + (SQ−QA)ξ̂i(t)−QBKδi(t),

δ̇(t) = (IN ⊗ (A + BK))δ(t) (33)

˙̂ξi(t) =

ω̇i(t)− H( ∑
j∈F ⋃L aij(t)(ẏi(t)− ẏj(t))) t ∈ [(n− 1)T, (n− 1)T + h)

(IN ⊗ A)ξ̂(t) t ∈ [(n− 1)T + h, nT)
(34)

where ω̇i(t) = (GA− FC)ωi(t) + (F(I + CH)− GAH)( ∑
j∈F ⋃L aij(t)(yi(t)− yj(t)))

Taking the same step as Section 3.1, we get

˙̃d(t) =

(IN ⊗ S− L1σ(t) ⊗QD)d̃(t) + (IN ⊗Q(GA− FC− A))ξ̃ t ∈ [(n− 1)T, (n− 1)T + h)

(IN ⊗ S)d̃(t) t ∈ [(n− 1)T + h, nT)
(35)

δ̇(t) =

(IN ⊗ (A + BK))δ(t)− τ0(L1σ(t)(τ + IN)⊗ RC)η t ∈ [(n− 1)T, (n− 1)T + h)

(IN ⊗ (A + BK))δ(t) t ∈ [(n− 1)T + h, nT)
(36)

η̇(t) =


(IN ⊗ A− τ0L1σ(t)(τ + IN)⊗ RC)η + (L1σ(t) ⊗ D)d̃

−(IN ⊗ (GA− FC− A))ξ̃ t ∈ [(n− 1)T, (n− 1)T + h)

(IN ⊗ A)η + (IN ⊗ BK)δ t ∈ [(n− 1)T + h, nT)

(37)

˙̃ξ(t) =

{
(IN ⊗ (GA− FC))ξ̃ t ∈ [(n− 1)T, (n− 1)T + h)
(IN ⊗ A)ξ̃ + (IN ⊗ BK)δ t ∈ [(n− 1)T + h, nT)

(38)

Then, we can establish the following result.
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Theorem 2. Provided that Assumptions 1–7 hold, consider there must exist 0 < v < 1, such that
if h > vT, the MASs (1) and (2) with exogenous disturbance systems (3) can reach consensus by
employing the observer (34), the adaptive state estimator (31), and the disturbance observer (32)
based on control protocol (11) with K = −α1BT P1, R = P−1

1 CT , Q = α2P−1
2 DT , in which α1 = 1

2
and α2 are positive constants, and P1 > 0, P2 > 0 are obtained by solving LMIs (39)–(41):

AT P1 + P1 A− P1BBT P1 + In ≤ −In (39)

AT P1 + P1 A− CTC + In ≤ 0 (40)

ST P2 + P2S− DT D + In < 0 (41)

Then, the following conditions hold:

γ1 ≥
τ2

0 λ̄λmax(CTC)
τ0ρ0

2 −
1

1+τ̃

α2 ≥ 1 + γ2 +
4γ1λ̄

τ0ρ0λmin(CP−1
1 P−1

1 CT)

(42)

in which γ1 and γ2 are positive constants and τ̃ = max(τ1, τ2, . . . , τN).

Proof. Use the same Lyapunov function as for (22), in the communication area, for t ∈
[(n− 1)T, (n− 1)T + h], from (30), we can obtain V̇ ≤ −l1V

Now, considering t ∈ [(n− 1)T + h, nT], we take the derivative of V1, V2, V3, V4

V̇1 = δT(φ⊗ (P1(A + BK) + (A + BK)T P1))δ

≤ δT(φ⊗ (P1 A + AT P1 − 2α1P1BBT P1))δ

≤ − 1
λmax(P1)

δT(φ⊗ P1)δ

(43)

V̇2 = d̃T(φ⊗ (P2S + ST P2)d̃ ≤
λmax(DT D)

λmin(P2)
d̃T(φ⊗ P2)d̃ (44)

V̇3 = ξ̃T(φ⊗ (AT P3 + P3 A))ξ̃ + 2ξ̃T(φ⊗ P3BK)δ (45)

2ξ̃T(φ⊗ P3BK))δ ≤ξ̃T(φ⊗ λmax((BK)T BK)))ξ̃ + δT(φ⊗ λ2
max(P3))δ

≤ξ̃T(φ⊗ λmax((BK)T BK)))ξ̃ +
λ2

max(P3)

λmin(P1)
δT(φ⊗ P1)δ

(46)

V̇4 = γ1

N

∑
i=1

Φi(1 + τi)τ̇i

= 2γ1ηT(φ(IN + τ)⊗ P1)η̇

= γ1ηT(φ(IN + τ)⊗ (AT P1 + P1 A)η − 2γ1ηT(φ(IN + τ)⊗ P1BK)δ

(47)

− 2γ1ηT(φ(IN + τ)⊗ P1BK)δ ≤ γ1δT(φ(IN + τ)⊗ In)δ

+ γ1ηT(φ(IN + τ)⊗ (λ2
max(P1)λmax((BK)T BK)In))η

(48)

V̇4 ≤ γ1ηT(φ(IN + τ)⊗ (AT P1 + P1 A + λ2
max(P1)λmax((BK)T BK)In)η +

γ1(1 + τ0)

λmin(P1)
δT(φ⊗ P1)δ

≤ γ1

2
ηT(φ(2 ∗ IN + 2τ)⊗ ((λ2

max(P1) + 1)(λmax((BK)T BK))In)η +
γ1(1 + τ0)

λmin(P1)
δT(φ⊗ P1)δ

≤ γ1

2
ηT(φ(4 ∗ IN + 2τ)⊗ ((λ2

max(P1) + 1)(λmax((BK)T BK))In)η +
γ1(1 + τ0)

λmin(P1)
δT(φ⊗ P1)δ

≤ 2(λ2
max(P1) + 1)(λmax((BK)T BK)

λmin(P1)
V4 +

γ1(1 + τ0)

λmin(P1)
δT(φ⊗ P1)δ

(49)

V̇ ≤ l2δT(φ⊗ P1)δ + l2d̃T(φ⊗ P2)d̃ + l2ξ̃T(φ⊗ P3))ξ̃ + l2V4 = l2V > 0 (50)
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where l2 = max( −1
λmax(P1)

+ λ2
max(P3)+γ1+γ1τ0

λmin(P1)
, λmax(DT D)

λmin(P2)
,

λmax(AT P3+P3 A+λmax((BK)T BK)In)
λmin(P3)

, 2(λ2
max(P1)+1)(λmax((BK)T BK)

λmin(P1)
)

(1) For 0 ≤ t < h, V(t) ≤ V(0)exp(−l1t) and V(h) ≤ V(0)exp(−l1h).
(2) For h ≤ t < T, V(t) ≤ V(h)exp(l2(t− h)) ≤ V(0)exp(−l1h + l2(t− h)) and V(T) ≤

V(0)exp(−l1h + l2(T − h)).
(3) For T ≤ t < T + h, V(t) ≤ V(T)exp(−l1(t − T)) ≤ V(0)exp(−l1h − l1(t − T) +

l2(T − h)) and V(T + h) ≤ V(0)exp(−2l1h + l2(T − h)).
(4) For T + h ≤ t < 2T, V(t) ≤ V(T + h)exp(l2(t− T − h)) ≤ V(0)exp(−2l1h + l2(T −

h) + l2(t− T − h)) and V(2T) ≤ V(0)exp(−2l1h + 2l2(T − h))

By induction, we have

(5) For kT ≤ t < kT + h, i.e., t−h
T < k ≤ t

T

V(t) ≤ V(kT)exp(−l1(t− kT))

≤ V(0)exp[−kl1h + kl2(T − h)− l1(t− kT)]

≤ V(0)exp[−kl1h + kl2(T − h)]

≤ V(0)exp[−hl1 − (T − h)l2
T

(t− h)]× exp(
T − h

T
l2h)

≤ V(0)exp[−hl1 − (T − h)l2
T

(t− h)]× exp[l2(T − h)]

(51)

(6) For kT + h ≤ t < kT + T, i.e., t−T
T < k ≤ t−h

T

V(t) ≤ V(kT + h)exp(l2(t− kT − h))

≤ V(0)exp[−(k + 1)l1h + (k + 1)l2(T − h)]

≤ V(0)exp[−hl1 − (T − h)l2
T

(t− h)]× exp[l2(T − h)]

(52)

Therefore, for any t > 0

V(t) ≤ V(0)exp[−hl1 − (T − h)l2
T

(t− h)]× exp[l2(T − h)] (53)

If h > l2
l1+l2

T, then by defining ς , hl1−(T−h)l2
T > 0, we have

‖δ(t)‖ ≤

√
exp[l2(T − h)]

λmin(P1)
‖δ(0)‖exp[−ς(t− h)]

which indicates the multiagent system can achieve containment control at the convergence
rate of ς. The proof is completed.

Remark 5. We can use the parameter ς to estimate the exponential convergence rate of the controlled
system. The parameter ς is ostensibly determined by Tand h but actually depends on the controller
K. Obtaining a small v in the application is interesting. Setting v̄ as the upper limit of v, as long
as the effective estimation of v is satisfied 1 > v̄ ≥ v, i.e., if h > v̄T, then the multiagent system
can achieve containment control by the proposed control law.

Remark 6. For simplicity, this paper assumed that T and T− h were fixed in each period. However,
if the attack time is variable for each period i, the conclusion is also valid. For example, Ti and
Ti − hi are represented as the control period and attack period, respectively. According to our proof
process, it is not difficult to see that the control law proposed can also solve the containment control
problem under a DoS attack if Ti is uniformly bounded and hi > v̄Ti. Additionally, the attack can
be partitioned into multiple agents, which can discontinuously locate in every period only if the
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total attack time is inferior to (1−v)Ti. In addition, a larger attack width T− h results in a larger
control gain.

Remark 7. Clearly, when h = T, the problem of containment control with DoS attacks becomes
the problem of secure containment control. Moreover, the containment control can be achieved if
the conditions of Theorem 2 are satisfied. Unlike the problem in [17,18], here, we considered the
system with DoS attacks. When the system is attacked, the connectivity of the network is affected,
which may result in the instability of the entire system. Thus, it is more challenging to consider the
containment control problem with DoS attacks.

4. Numerical Example

We give two examples to show the practical validity of Theorems 1 and 2. In this
section, the system matrices of linear multiagent systems (1) and (2) are

A =


0 0 0 0.1
0 −1 0 0
0 0 −1 0
0 0 0 −1

, B =


2 0
0 1
0 1
0 0

, C =

(
1 0.1 0.1 0

0.1 0.1 0 1

)
, S =

(
1 1
0 −1

)
, E =

(
2 0
0 1

)

Then, we can get

H =


−1.2500 2.500
1.2500 −12.500
1.2500 −12.5000

0 0

, G =


0 0.1250 −0.1250 0
0 −0.1250 0.1250 0
0 −1.1250 1.1250 0
0 0 0 1.000


From (8), we get

F =


0.2281 0.0197
0.0227 0.0271
0.0210 0.0266

0 0


Example 1. Assuming the considered system consists of four followers and two leaders, and the
interaction topology is directed and switched, then the Laplacian matrix of Gi(i = 1, 2) is as follows

Li =

(
L1i L2i
0 0

)
where

L11 =


2 −1 0 0
−1 3 −1 0
0 0 1 −1
0 −1 0 1

, L12 =


2 0 −1 0
0 2 −1 0
0 0 2 −1
0 0 −1 2

, L21 =


−1 0
0 −1
0 0
0 0

, L22 =


0 −1
−1 0
0 −1
−1 0


Take the parameter α2 = 3. Solving LMIs (12)–(14), we have

P1 =


0.8089 −0.0211 −0.0200 0.0542
−0.0211 0.9110 −0.1836 −0.0187
−0.0200 −0.1836 0.9128 −0.0005
0.0542 −0.0187 −0.0005 0.9159

, P2 =

(
3.3512 1.5060
1.5060 5.5300

)

Moreover, we can obtain

K =

(
−0.8089 0.0211 0.0200 −0.0542
0.0205 −0.3637 −0.3646 0.0096

)
, R =


1.2497 0.1277
0.1718 0.1180
0.1715 0.0265
−0.0704 −0.0051
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Q =

(
2.4850 −0.1692 −0.1692 0
−0.6768 0.3765 0.3765 0

)
The initial value was taken randomly. It can be intuitively seen from Figure 2 that

MASs (1) and (2) could achieve containment control with the perturbation observer-based
control law (11), conforming with the result obtained from Theorem 1. Figures 3 and 4 show
the relative state error ξ̃(t) and η(t) converge to zero, and Figure 5 shows the evolution of
the adaptive parameters from which it can be seen that the adaptive parameters converge
to finite steady-state values.

time (s)

0 5 10 15
-4

-3

-2

-1

0

1

2

3

4
containment error

e
11

e
21

e
31

e
41

time (s)

0 5 10 15
-3

-2

-1

0

1

2

3

4

5

6

e
12

e
22

e
32

e
42

time (s)

0 5 10 15
-3

-2

-1

0

1

2

3

4

e
13

e
23

e
33

e
43

time (s)

0 5 10 15
-2

-1.5

-1

-0.5

0

0.5

1

1.5

e
14

e
24

e
34

e
44

Figure 2. The containment errors.
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Figure 3. The relative state error ξ̃(t) under observer (7).
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Figure 4. The relative state error η(t) of linear multiagent systems under observer (9).
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Figure 5. The variation trend of the adaptive parameters of observer (9).

Then, we considered the containment control under DoS attacks. Here, we took
h = 0.8T, from Figure 6 we can see the relative state error converges to zero which means
containment control was achieved, and from Figure 7 we can see the adaptive parameters
converge to finite steady-state values. However, Figure 8 shows that containment control
could not be achieved if the duration of the DoS attack was too big.
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Figure 6. The containment errors.
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Figure 7. The variation trend of the adaptive parameters of observer (9).
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Figure 8. The containment errors.

5. Conclusions

This paper explored the challenge of containment control for linear multiagent systems
with and without attacks in the presence of certain perturbations. Using the relative
output information among adjacent agents, we proposed a control law based on a relative
state observer, state estimator, and disturbance estimator to address the containment
control problem. However, mechanisms for identifying attacks and isolating them remain
unavailable. Future research should discuss how to identify attackers and isolate attacks.
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