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Abstract: The matrix representations of hypergraphs have been defined via hypermatrices initially.
In recent studies, the Laplacian matrix of hypergraphs, a generalization of the Laplacian matrix, has
been introduced. In this article, based on this definition, we derive bounds depending pair-degree,
maximum degree, and the first Zagreb index for the greatest Laplacian eigenvalue and Laplacian
energy of r-uniform hypergraphs and r-uniform regular hypergraphs. As a result of these bounds,
Nordhaus–Gaddum type bounds are obtained for the Laplacian energy.
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1. Introduction and Preliminaries

Graph theory is based on the connections and arrangements of objects. Many complex
structures, resembling a network in real life, are represented by hypergraphs, which are a
generalization of graphs. Hypergraph theory has applications in chemistry and physics
(see [1,2]).

Symmetry is a kind of invariant or a feature that a mathematical object remains the
same under some operations or transformations. However, symmetry is a significant
feature in hypergraph theory, especially in uniform hypergraph theory. For a recent study
on the symmetric function-Lagrangian of linear 3-uniform hypergraphs, see [3].

Let H = (V, E) be a hypergraph composed of a vertex set V and a hyperedge set E of
cardinality n and m, respectively. Letting P(V) be the power set of V, then E ⊂ P(V) \ {∅}.
Therefore, a hyperedge can connect multiple vertices. The vertices u and v are adjacent
if there is a hyperedge that includes both u and v, represented by u ∼ v. The number of
hyperedges containing i is called its degree, di , and ∆, δ stands for the maximum and
minimum vertex degrees. If di = d for all i ∈ V, then H is called d-regular. H is said to be
simple if all edges are distinct. If |V| is finite, then H is called finite. Through this article,
all hypergraphs are simple, finite, and connected.

If each hyperedge includes precisely r vertices, then H is called r-uniform hypergraph
or r-graph. H will be the (ordinary) graph when r = 2. For any u, v ∈ V (u 6= v) if a
hyperedge sequence of e1, e2, . . . , em exists such that u ∈ e1, v ∈ em and ek ∩ ek+1 6= ∅ for
all k (1 ≤ k ≤ m− 1); then, H is called connected. The complement H of the r-graph is
defined to be an r-graph with V(H) = V

(
H
)

and an r−subset of V(H) is an edge of H iff
it is not an edge of H.

Topological indices of graphs, which have a wide application area in chemical graph
theory, are classified in two ways: degree-based and distance-based. The first Zagreb index
of a graph G is defined as Zg = Zg(G) = ∑

i∈V
d2

i in [4], for properties of the degree and

distance-based indices which have been recently defined; see also [5,6].
Spectral graph theory is a remarkable theory that investigates the relationship be-

tween the eigenvalue features of the graph matrices and graph structure. Therefore,
determining the characteristic polynomials of graph matrices is crucial. In [7], the authors
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establish criteria for a graph to be symmetric via the characteristic polynomials of block
circulant matrices.

The matrices of hypergraphs are first studied via hypermatrices which are multidi-
mensional arrays (see [8,9]). Recently, the matrix representations of hypergraphs have been
defined. The adjacency matrixA(H)=

[
(A)ij

]
of H, which is introduced in [10] as

(A)ij =

 ∑
e∈Eij

1
|e|−1 if i ∼ j

0 otherwise,

where Eij = {e ∈ E : i, j ∈ e}. The number of hyperedges which include both of the vertices
i, j is called the pair-degree, dij, of i, j. Thus, dij =

∣∣Eij
∣∣.

The Laplacian matrixL = L(H) is known asL = D−A, whereD = diag(d1, d2, . . . , dn)
and has eigenvalues ρ1 ≥ ρ2 ≥ · · · ≥ ρn−1 > ρn = 0. Notice that L is symmetric and
positive semidefinite. The smallest eigenvalue of L is 0 with the corresponding eigenvector
(1, 1, . . . , 1)t.

The ij-th entry of L = L(H) is
di if i = j

− ∑
e∈Eij

1
|e|−1 if i ∼ j

0 otherwise.

Note that L = L(H) is a generalization of the Laplacian matrix of a graph. Clearly, the
above definition coincides with the signless Laplacian matrix Q = Q(H) whenever only
its ij-th entry is positive, i.e., ∑

e∈Eij

1
|e|−1 if i ∼ j. Let θ1 ≥ θ2 ≥ · · · ≥ θn; ν1 ≥ ν2 ≥ · · · ≥ νn

be the eigenvalues of Q and A , respectively.
The adjacency, Laplacian, signless Laplacian matrices of hypergraphs and their ener-

gies have been introduced recently ([10–12]). Some of their spectral features and bounds
for their eigenvalues are analyzed in the relevant references. It is naturally a matter of
research for researchers to ask which results in spectral graph theory can be generalized to
hypergraphs. It is shown that many of these results hold for hypergraph matrices.

The energy E(H) of H is defined as

E(H) =
n

∑
i=1
|νi|,

see [11]. The incidence and signless Laplacian energy of uniform hypergraphs are studied
in [13]. The Laplacian energy EL(H) of a r-graph with n vertices and m hyperedges can be
defined as

EL(H) =
n

∑
i=1

∣∣∣ρi −
rm
n

∣∣∣, (1)

note that tr(L(H)) = rm.
In the present paper, we essentially deal with the bounds for the greatest Lapla-

cian eigenvalue and Laplacian energy of r-uniform hypergraphs. Moreover, we derive
Nordhaus–Gaddum type inequalities for the Laplacian energy by means of these bounds.
Now, we can begin with the essential lemmas that will be used.

Lemma 1 ([14]). Let H be a r-graph. Then,

(i)
n
∑

i=1
ρi = ∑

i∈V
di = rm,

(ii)
n
∑

i=1
ρ2

i = Zg + ∑
i,j∈V

d2
ij

(r−1)2 ,
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(iii) ρ1 ≥ ∆ + 1
r−1 ,

(iv) ρ1 ≤ θ1.

Lemma 2 ([15]). Let B =
(
bij
)
∈ Cn×n and E(B) =

{
(i, j) : bij 6= 0, 1 ≤ i 6= j ≤ n

}
. If B is

irreducible, then its each eigenvalue is included in the region

Λ(B) = ∪
(i,j)∈E(B)

{
z ∈ C : |z− bii|

∣∣z− bjj
∣∣ ≤ sís j́

}
,

where sí(B) = ∑
i 6=j

∣∣bij
∣∣.

Lemma 3 ([16]). Let B =
(

Bij
)
∈ Cn×n with bii > 0 (1 ≤ i ≤ n). Then, each oval region

Yij =
{

z ∈ C : |z− bii|
∣∣z− bjj

∣∣ ≤ sís j́, i 6= j
}

of B is symmetrical about x axes. Moreover, the
point of the intersection of the boundary of Yij and x axes at the most right side is pij = (t(i, j), 0),

where t(i, j) =
bii+bjj+

√
(bii−bjj)

2
+4sís j́

2 .

Lemma 4 ([17]). Let H be a graph and p be any polynomial, si(p(Q)) is the row sum of p(Q)
corresponding to the vertex i ∈ V, then

min
i∈V

si(p(Q)) ≤ p(θ1) ≤ max
i∈V

si(p(Q)), (2)

where Q is the signless Laplacian matrix.

2. Main Results

In this section, we first establish new bounds on ρ1. Consequently, we present bounds
on the Laplacian energy of r-graphs.

The following theorem presents an upper bound on ρ1, consisting of degree and
pair-degree. Let si(R) denote the i-th row sum of any matrixR.

Theorem 1. Let H be an r-graph. Then,

ρ1 ≤
√

2max
i∈V

{
d2

i +
1

r− 1 ∑
j: j∼i

dijdj

}
. (3)

Proof. As si(A) = 1
r−1 ∑

j: j∼i
dij and si

(
A2) = 1

r−1 ∑
j: j∼i

dijdj and si(Q) = 2di, si(AD) =

si
(
A2) = 1

r−1 ∑
j: j∼i

dijdj for any i ∈ V, we obtain

si

(
Q2
)
=si(D(D +A)) + si(DA+A2)

=disi(Q) + 2si(DA)

=2d2
i +

2
r− 1 ∑

j: j∼i
dijdj.

Using Lemmas 1 and 4 leads to

ρ1 ≤ θ1 ≤
√

2max
i∈V

{
d2

i +
1

r− 1 ∑
j: j∼i

dijdj

}
,

which completes the proof.

Now, we can express an upper bound including a new parameter mi, the average of
the degrees of the vertices adjacent to i.
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Theorem 2. Let H be a connected r-graph. Then,

ρ1 ≤
1
2

max
i∼j

di + dj +

√√√√(di − dj
)2

+
4

(r− 1)2

√
mi ∑

j:j∼i
d2

ij

√
mj ∑

k:k∼j
d2

jk

. (4)

Proof. Consider the matrix B =
(
bij
)

with B = D−1/2QD1/2 , where D1/2 = diag(√
d1,
√

d2, . . . ,
√

dn
)
. Then,

bij =


di if i = j√
djdij

(r−1)
√

di
if i ∼ j

0 elsewhere.

Let sí(B) = si(B)− di. Applying the Cauchy–Schwarz inequality yields

[sí(B)]2 =

∑
j:i∼j

√
djdij

(r− 1)
√

di

2

≤ ∑
j:i∼j

dj

di
∑

j:i∼j

d2
ij

(r− 1)2

=mi ∑
j:i∼j

d2
ij

(r− 1)2

=
mi

(r− 1)2 ∑
j:i∼j

d2
ij,

where mi =
1
di

∑
j:i∼j

dj is the average of the degrees of the vertices adjacent to i. As B is an

irreducible, nonnegative matrix, from Lemma 2, there exists at least ij edge such that the
largest eigenvalue ν = ν(B) is included in the following oval region Yij, that is,

|ν− di|
∣∣ν− dj

∣∣ ≤sí(B)s j́(B)

≤ 1

(r− 1)2

√
mi ∑

j:i∼j
d2

ij

√
mj ∑

k:k∼j
d2

jk,

is verified. From Lemma 1

θ1 ≥ ρ1 ≥ ∆ +
1

r− 1
.

Then, ν = θ1 ≥ max{di : i ∈ V} + 1
r−1 > max

{
di, dj

}
. Thus, solving (5) by using

Lemma 3 yields

ρ1 ≤

di + dj +

√(
di − dj

)2
+ 4

(r−1)2

√
mi ∑

j:j∼i
d2

ij

√
mj ∑

k:k∼j
d2

jk

2
.

As ρ1 ≤ θ1 = ν(B), the proof is completed.

Eventually, one can obtain the following bound on ρ1 for d-regular r-graphs.

Corollary 1. Let H be a connected d-regular r-graph. Then,

ρ1 ≤
1
2

max
i∼j

2d +

√√√√ 4

(r− 1)2

√
∑

j:j∼i
d2

ij ∑
k:k∼j

d2
jk

. (5)
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Proof. If H is d-regular, then mi = 1 and di = d for all i ∈ V. Considering these facts in (4)
leads (5).

The lower bound can be presented by using the Rayleigh quotient for L2 .

Theorem 3. Let H be a connected r-graph. Then,

ρ1 ≥

 1
n

n

∑
i=1

(
d2

i + ∑
i,j∈V

d2
ij

(r− 1)2 −
(
di + dj

)
dij

r− 1
+

1

(r− 1)2 ∑
i,j,k∈V

dikdkj

)2
 1/4

. (6)

Proof. By using the Rayleigh quotient for a real symmetric matrix, C with x = (1, 1, . . . , 1)t

leads to

ρ2
1 ≥

xtC2x
n

=
(xC)t(xC)

n
=

n

∑
i=1

s2
i (C)

/
n. (7)

Let us apply (7) to C = L2. We have
(
L2)

ii = d2
i + ∑

i,j∈V

d2
ij

(r−1)2 , and for i 6= j

(
L2
)

ij
=

n

∑
j=1

lijlji = liilij + lijljj + ∑
k∈V

liklkj

=
(
di + dj

)
lij + ∑

k∈V

(
−dik
r− 1

)(−dkj

r− 1

)
=−

(
di + dj

)( dij

r− 1

)
+ ∑

k∈V

(
dik

r− 1

)( dkj

r− 1

)

=−
(
di + dj

)
dij

r− 1
+

1

(r− 1)2 ∑
k∈V

dikdkj.

Therefore, si
(
L2) = d2

i + ∑
i,j∈V

d2
ij

(r−1)2 −
(di+dj)dij

r−1 + 1
(r−1)2 ∑

k∈V
dikdkj. Applying (7) to

C = L2 yields

ρ1 ≥

 1
n

n

∑
i=1

(
d2

i + ∑
i,j∈V

d2
ij

(r− 1)2 −
(
di + dj

)
dij

r− 1
+

1

(r− 1)2 ∑
k∈V

dikdkj

)2
 1/4

− .

Thus, we obtain (6).

Clearly, from (6), we achieve the bound (8) for regular r-graphs.

Corollary 2. Let H be a connected d-regular r-graph. Then,

ρ1 ≥

 1
n

n

∑
i=1

(
d2 + ∑

i,j∈V

d2
ij

(r− 1)2 −
2ddij

r− 1
+

1

(r− 1)2 ∑
i,j,k∈V

dikdkj

)2
 1/4

. (8)

We can now begin to be concerned with the bounds for the Laplacian energy of
r-graphs. Let us give the following lemma.

Lemma 5. Let α (1 ≤ α ≤ n− 1) be the greatest integer such that ρα ≥ rm
n . Then,

EL(H) = 2Tα(H)− 2αrm
n

, (9)
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where Tα = Tα(H) =
α

∑
i=1

ρi.

Proof. By Lemma 1,
n
∑

i=1
ρi = rm. Then, by (1), we have

EL(H) =
α

∑
i=1

(
ρi −

rm
n

)
+

n

∑
i=α+1

( rm
n
− ρi

)
=

α

∑
i=1

ρi −
αrm

n
+

(n− α)rm
n

−
(

n

∑
i=1

ρi −
α

∑
i=1

ρi

)

=2Tα −
2αrm

n
.

Using (1), we obtain a lower bound for EL(H) below.

Theorem 4. Let H be a connected r-graph. Then,

EL(H) ≥ 2
(

∆ +
1

r− 1
− rm

n

)
.

Proof. EL(H) = max
1≤i≤n−1

{
2Ti − 2rmi

n

}
, which can be concluded from [18] (see Theorem 3.1).

Then, using Lemma 1 yields

EL(H) = max
1≤i≤n−1

{
2Ti −

2rmi
n

}
≥ 2T1 −

2rm
n

=2
(

ρ1 −
rm
n

)
≥2
(

∆ +
1

r− 1
− rm

n

)
,

which is the expected result.

The Laplacian spread of a hypergraph is also defined to be ρ1 − ρn−1. The following
lemma expresses an upper bound for the Laplacian spread of r-graphs.

Lemma 6. Let H be a connected r-graph of order n(≥ 3). Then,

ρ1 − ρn−1 ≤
√

2
n− 1

√√√√(n− 1)

(
Zg + ∑

i,j∈V

d2
ij

(r− 1)2

)
− r2m2. (10)

Proof. An analogous proof can be followed from [19] (see Theorem 2.1), by considering
Lemma 1.

Theorem 5. Let H be a connected r-graph of order n(≥ 3). Then,

EL(H) ≥
√

2
n− 1

√√√√(n− 1)

(
Zg + ∑

i,j∈V

d2
ij

(r− 1)2

)
− r2m2. (11)
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Proof. Let xi (1 ≤ i ≤ n) are real numbers provided that there are m, M ∈ R such that
−∞ < m ≤ xi ≤ M < +∞, for each 1 ≤ i ≤ n. Then, for any nonnegative qi, (1 ≤ i ≤ n)

satisfying
n
∑

i=1
qi = 1 implies

0 ≤
n

∑
i=1

qix2
i −

(
n

∑
i=1

qixi

)2

≤ 1
2
(M−m)

n

∑
i=1

qi

∣∣∣∣∣xi −
n

∑
i=1

qixi

∣∣∣∣∣, (12)

see [20]. Setting qi := 1
n−1 , xi := ρi for i = 1, 2, . . . , n− 1 and m := ρn−1, M := ρ1, (12) then

becomes

1
n− 1

n−1

∑
i=1

ρ2
i −

1

(n− 1)2

(
n−1

∑
i=1

ρi

)2

≤ ρ1 − ρn−1

2(n− 1)

n−1

∑
i=1

∣∣∣∣∣ρi −
1

n− 1

n−1

∑
i=1

ρi

∣∣∣∣∣.
By Lemma 1,

(n− 1)

(
Zg + ∑

i,j∈V

d2
ij

(r− 1)2

)
− r2m2 ≤ (n− 1)

2
(ρ1 − ρn−1)

n−1

∑
i=1

∣∣∣∣ρi −
rm

n− 1

∣∣∣∣
≤ (n− 1)

2
(ρ1 − ρn−1)EL(H),

as
n−1
∑

i=1

∣∣ρi − rm
n−1

∣∣ ≤ n
∑

i=1

∣∣ρi − rm
n

∣∣. Then, regarding (10) leads to (11).

In [21], the energy of a graph is redefined as the sum of the singular values σi(A)
(1 ≤ i ≤ n) of its adjacency matrix A. Based on this definition, we can define the energy of
a hypergraph H as

E(H) =
n

∑
i=1

σi(A). (13)

Let In be the the identity matrix. As L − rm
n In is a real symmetric matrix, from (1), the

Laplacian energy of a r-graph can also be expressed in terms of singular values of the
matrix L− rm

n In as

EL(H) =
n

∑
i=1

σi

(
L− rm

n
In

)
.

Lemma 7 ([22]). Let A, B ∈ Cn×n be symmetric matrices. Then,

σi(A + B) ≤ σi(A) + σi(B).

The following upper bound including the energy of a r-graph for EL(H) can be given.

Theorem 6. Let H be a r-graph. Then,

EL(H) ≤ E(H) + ∑
i∈V

∣∣∣di −
rm
n

∣∣∣. (14)

Proof. Clearly, L− rm
n In = D −A− rm

n In = (−A) +
(
D − rm

n In
)
. Applying Lemmas 7

and (13) leads to
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EL(H) =
n

∑
i=1

σi

[
(−A) +

(
D − rm

n
In

)]
≤

n

∑
i=1

σi(−A) +
n

∑
i=1

σi

(
D − rm

n
In

)
=∑

i=1
σi(A) +

n

∑
i=1

σi

(
D − rm

n
In

)
=E(H) + ∑

i∈V

∣∣∣di −
rm
n

∣∣∣,
which completes the proof.

Consequently, from (14), we can establish an upper bound as follows:

Theorem 7. Let H be a r-graph. Then,

EL(H) ≤ nr∆ +
√

nZg− r2m2. (15)

Proof. Using the Cauchy–Schwarz inequality and Lemma 1 gives

∑
i∈V

∣∣∣di −
rm
n

∣∣∣ ≤√n ∑
i∈V

(
di −

rm
n

)2

≤
√

n ∑
i∈V

(
d2

i − 2di
rm
n

+
r2m2

n2

)

=

√√√√n

(
Zg− 2rm

n ∑
i∈V

di + ∑
i∈V

r2m2

n2

)

=

√√√√n

(
Zg− 2(rm)2

n
+

r2m2

n

)

=
√

nZg− r2m2.

By (14),

EL(H) ≤ E(H) +
√

nZg− r2m2. (16)

We may have

E(H) =
n

∑
i=1
|νi| ≤

n

∑
i=1
|ν1| = n|ν1|.

Thus,
E(H) ≤ nr∆, (17)

as |ν1| ≤ r∆ (see Corollary 14, [23]). Putting (17) in (16) implies

EL(H) ≤ nr∆ +
√

nZg− r2m2,

which is the desired result.

Let us set εi := ρi − rm
n in (1). Then, EL(H) can also be expressed as follows:

EL(H) =
n

∑
i=1
|εi|. (18)
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Lemma 8. Let H be a r-graph. Then, εi verifies the following assertions:

(i)
n
∑

i=1
εi = 0,

(ii)
n
∑

i=1
ε2

i = Zg + ∑
i,j∈V

d2
ij

(r−1)2 − r2m2

n .

Proof. Clearly, by Lemma 1 we have

n

∑
i=1

εi =
n

∑
i=1

ρi −
n

∑
i=1

rm
n

= rm− rm = 0,

n

∑
i=1

ε2
i =

n

∑
i=1

(
ρi −

rm
n

)2

=
n

∑
i=1

ρ2
i −

2rm
n

n

∑
i=1

ρi −
r2m2

n

=Zg + ∑
i,j∈V

d2
ij

(r− 1)2 −
r2m2

n
.

Several bounds may be derived by applying mathematical inequalities and considering
Lemma 8. We obtain three lower bounds on EL(H):

Theorem 8. Let H be a r-graph. Then,

EL(H) ≥

√√√√Zg + ∑
i,j∈V

d2
ij

(r− 1)2 −
r2m2

n
.

Proof. Applying the Radon inequality in (18) leads

EL(H) =
n

∑
i=1
|εi| =

n

∑
i=1

|εi|2

|εi|
≥

n
∑

i=1
|εi|2

n
∑

i=1
|εi|

,

using Lemma 8 yields the result.

The following lower bound includes ρ1, Zg, and pair-degree of vertices.

Theorem 9. Let H be a r-graph. Then,

EL(H) ≥
2

(
Zg + ∑

i,j∈V

d2
ij

(r−1)2 − r2m2

n

)
ρ1

.

Proof. Let (ri),(qi) (1 ≤ i ≤ n) be real numbers with
n
∑

i=1
|ri| = 1 and

n
∑

i=1
ri = 0. Then,

∣∣∣∣∣ n

∑
i=1

riqi

∣∣∣∣∣ ≤ 1
2

(
max

1≤i≤n
qi − min

1≤i≤n
qi

)
, (19)
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holds ([24], p. 346). Setting ri =
n
∑

i=1

εi
|εi |

and qi = εi in (19) implies

∣∣∣∣∣∣∣∣
n
∑

i=1
ε2

i

n
∑

i=1
|εi|

∣∣∣∣∣∣∣∣ ≤
1
2

(
max

1≤i≤n
εi − min

1≤i≤n
εi

)

=
1
2
(ρ1 − rm− (0− rm)),

from Lemma 8 and (18), we obtain

EL(H) ≥
2

(
Zg + ∑

i,j∈V

d2
ij

(r−1)2 − r2m2

n

)
ρ1

.

The below result can be given by using the previous theorem and (3).

Corollary 3. Let H be a r-graph. Then,

EL(H) ≥

√
2

(
Zg + ∑

i,j∈V

d2
ij

(r−1)2 − r2m2

n

)

max
i∈V

{
d2

i +
1

r−1 ∑
j: j∼i

dijdj

} .

Now, we establish Nordhaus–Gaddum type inequalities (see [25]) on the Laplacian
energy of r-graphs, namely EL(H) + EL

(
H
)

:

Theorem 10. Let H be a connected r-graph. Then,

EL(H) + EL
(

H
)
≥ 2

(
(n−1

r−1) + ∆− δ +
2

r− 1
−

r(n
r)

n

)
.

Proof. From Theorem 4, we have

EL(H) + EL
(

H
)
≥ 2

(
∆ + ∆ +

2
r− 1

− r(m + m)

n

)
.

As m = (n
r)−m and ∆ = (n−1

r−1)− δ (see [14]), the proof is obvious.

For d-regular r-graphs, we have ∆ = δ = d. Therefore, we can present the result below.

Corollary 4. Let H be a connected d-regular r-graph. Then,

EL(H) + EL
(

H
)
≥ 2

(
(n−1

r−1) +
2

r− 1
−

r(n
r)

n

)
.

Finally, the following bound is obtained by utilizing Theorem 7.

Theorem 11. Let H be a r-graph. Then,

EL(H) + EL
(

H
)
≤nr

(
∆ + (n−1

r−1)− δ
)
+
√

nZg(H)− r2m2

+

√
nZg

(
H
)
− r2

[
(n

r)−m
]2,
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where Zg
(

H
)
= n(n−1

r−1)
2 − 2rm(n−1

r−1) + Zg(H).

Proof. We have di = (n−1
r−1)− di (see [14]). By using (15), we obtain

EL(H) + EL
(

H
)
≤nr

(
∆ + ∆

)
+
√

nZg(H)− r2m2 +
√

nZg
(

H
)
− r2m2

=nr
(

∆ + (n−1
r−1)− δ

)
+
√

nZg(H)− r2m2

+

√
nZg

(
H
)
− r2

[(
n
r

)
−m

]2
.

(20)

In addition, by Lemma 1,

Zg
(

H
)
= ∑

i∈V

(
di

)2
= ∑

i∈V

[
(n−1

r−1)− di

]2

= ∑
i∈V

(n−1
r−1)

2 − 2(n−1
r−1) ∑

i∈V
di + ∑

i∈V
d2

i

=n(n−1
r−1)

2 − 2rm(n−1
r−1) + Zg(H).

(21)

The proof is clear by writing (21) in (20).

3. Conclusions

The definition of the (ordinary) graph energy [26] has led the authors to define other
types of energy in time, and various studies have carried out in spectral graph theory.
Initially, the hypergraph matrices have been defined via hypermatrices. The energies of
hypergraphs started to work within the definition of matrix representations of hypergraphs
in recent years. These new definitions have allowed many techniques and features in
spectral graph theory to be investigated in terms of hypergraphs.

In this paper, we propose upper and lower bounds for the greatest Laplacian eigen-
value and Laplacian energy of the uniform hypergraphs and regular uniform hypergraphs,
depending on many hypergraph invariants such as the degree, pair-degree, maximum
degree, and the first Zagreb index.
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