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Abstract: In this paper, we use the modified exp(−ψ(θ))-function method to observe some of the
solitary wave solutions for the microtubules (MTs). By treating the issues as nonlinear model partial
differential equations describing microtubules, we were able to solve the problem. We then found
specific solutions to the nonlinear evolution equation (NLEE) covering various parameters that
are particularly significant in biophysics and nanobiosciences. In addition to the soliton-like pulse
solutions, we also find the rational, trigonometric, hyperbolic, and exponential function characteristic
solutions for this equation. The validity of the method we developed and the fact that it provides more
solutions are demonstrated by comparison to other methods. We next use the software Mathematica
10 to generate 2D, 3D, and contour plots of the precise findings we observed using the suggested
technique and the proper parameter values.

Keywords: nonlinear model partial differential equation; analytical method; exact solutions;
nonlinear evolution equation of microtubules

1. Introduction

Major cytoskeletal proteins are called microtubules (MTs). Cytoskeletal biopolymers
called MTs are formed like nanotubes. They are proto-filaments (PFs), which are hollow
cylinders made up of tubulin dimer-representing proteins. An electric dipole exists in
every dimer. These dimers are either positioned straight inside the PFs or in radial po-
sitions that point outward from the cylindrical surface. MTs are an intriguing class of
protein structures that could be used to create and build electronic nano-devices. Nonlinear
partial differential equations (NPDEs) are used to simulate the dynamical behaviour of
MTs. The physical conditions that arise in a variety of engineering disciplines, such as
geochemistry, hydrodynamics, hydrodynamic plasma, solid state physics, optical fibres,
hydrodynamic hydrodynamics, and others, and which are well described by fractional
differential equations, are mathematically represented by these equations. The study of par-
tial differential equations—specifically, those derived from finance mathematics—displays
the elegance of symmetry analysis best. Symmetry is the key to nature; however, the
majority of observations in the natural world lack symmetry. One method for hiding
symmetry is the occurrence of spontaneous symmetry breakage. Finite and infinitesimal
symmetries are the two categories under which they fall. For finite symmetries, discrete
or continuous symmetries may exist. Space is a continuous transformation, whereas sym-
metry and time reverse are discrete natural symmetries. Numerous techniques have been
used to solve NPDEs precisely or approximately up to now. These include, but are not
restricted to, the rational perturbations technique [1], the Painlevé Expansion approach [2],
Hirota’s bi-linear approach [3], (G’/G)-growth approach [4,5], the F-expansion approach [6],
the Jacobi elliptic function technique [7–9], Homogeneous Balance approach [10], the ex-
tended Tanh-function technique [11], the modified Tanh-function technique [12–15], the
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exp(−φ(ξ))-expansion approach [16–22], the direct approach [23], the α-path method [24],
the predictor-corrector method [25], the first hitting time method [26], the Fit clearance
method [27], the approximation ratios method [28], and the chance-constrained support
vector regression approach [29].

The purpose of this study is to use the modified exp-function method to create exact
solutions for the following two NPDEs that mimic MT dynamics [30–38]. We specifically
follow the initial setup given by Alam and Belgacem [38] when presenting the questions to
be answered for comparative purposes, solving the Equations (1) and (2) by using the exp
(−ϕ(ξ))-expansion method. Then, by employing an altogether different methodology, we
deviate from their growth in a general way, though we nevertheless compare our results
with those of [38] while bearing in mind the advancements in [36–38]. Table 1 compares
the recently acquired solutions using current solutions found in the literature, indicating
that our solutions are novel and preferred.

Table 1. Comparison of Solutions.

Our Solutions Solutions by Alam and Belgacem [20]

If we put B0 = 1, B1 = 0, a = µ, b = λ, θ = ξ, and
u1(x, t) = z1(ξ) in our solution (18), then

z1(ξ) =
√

A
B {A0 − β

2 µ
√

λ2+4 µtanh
( √

λ2+4 µ
2 (ξ+E)

)
+λ
}.

If we put α = β in solution (24), then

z1(ξ) =
√

A
B {A0 − β

2 µ
√

λ2+4 µtanh
( √

λ2+4 µ
2 (ξ+E)

)
+λ
}.

If we put B0 = 1, B1 = 0, a = µ, b = λ, θ = ξ, and
u2(x, t) = z2(ξ) in our solution (19), then

z2(ξ) =
√

A
B {A0 + β

2 µ
√

4 µ−λ2 tan
( √

4 µ−λ2

2 (ξ+E)
)
−λ
}.

If we put α = β in solution (25), then

z2(ξ) =
√

A
B {A0 + β

2 µ
√

4 µ−λ2 tan
( √

4 µ−λ2

2 (ξ+E)
)
−λ
}.

If we put B0 = 1, B1 = 0, a = µ, b = λ, θ = ξ, and
u3(x, t) = z3(ξ) in our solution (20), then

z3(ξ) =
√

A
B {A0 + β ( λ

exp (λ (ξ+E))−1 )}.

If we put α = β in solution (26), then

z3(ξ) =
√

A
B {A0 + β ( λ

exp (λ (ξ+E))−1 )}.

If we put B0 = 1, B1 = 0, a = µ, b = λ, θ = ξ, and
u4(x, t) = z4(ξ) in our solution (21), then

z4(ξ) =
√

A
B {A0 − β (

λ2 (ξ+E)
2 ( (λ (ξ+E))+2) )}.

If we put α = β in solution (27), then

z4(ξ) =
√

A
B {A0 − β (

λ2 (ξ+E)
2 ( (λ (ξ+E))+2) )}.

If we put B0 = 1, B1 = 0, a = µ, b = λ, θ = ξ, and
u5(x, t) = z5(ξ) in our solution (22), then

z5(ξ) =
√

A
B {A0 + β ( 1

(ξ+E) )}.

If we put α = β in solution (28), then

z5(ξ) =
√

A
B {A0 + β ( 1

(ξ+E) )}.

If we put B0 = 1, B1 = 0, a = µ, b = λ, θ = ξ, and
u6(x, t) = z6(ξ) in our solution (28), then

z6(ξ) =
√

6{A0 − 2 T
3 (

2 µ
√

λ2+4 µtanh
( √

λ2+4 µ
2 (ξ+E)

)
+λ

)}.

If we put z1(x, t) = z6(ξ) in solution (41), then
z6(ξ) =

√
6{A0 − 2 T

3 (
2 µ

√
λ2+4 µtanh

( √
λ2+4 µ

2 (ξ+E)
)
+λ

)}.

If we put B0 = 1, B1 = 0, a = µ, b = λ, θ = ξ, and
u7(x, t) = z7(ξ) in our solution (29), then

z7(ξ) =
√

6{A0 +
2 T
3 (

2 µ
√

4 µ−λ2 tan
( √

4 µ−λ2

2 (ξ+E)
)
−λ

)}.

If we put z2(x, t) = z7(ξ) in solution (41), then
z7(ξ) =

√
6{A0 +

2 T
3 (

2 µ
√

4 µ−λ2 tan
( √

4 µ−λ2

2 (ξ+E)
)
−λ

)}.

If we put B0 = 1, B1 = 0, a = µ, b = λ, θ = ξ, and
u8(x, t) = z8(ξ) in our solution (30), then
z8(ξ) =

√
6{A0 +

2 T
3 ( λ

exp (λ (ξ+E))−1 )}.

If we put z3(x, t) = z8(ξ) in solution (43), then
z8(ξ) =

√
6{A0 +

2 T
3 ( λ

exp (λ (ξ+E))−1 )}.

If we put B0 = 1, B1 = 0, a = µ, b = λ, θ = ξ, and
u9(x, t) = z9(ξ) in our solution (31), then

z9(ξ) =
√

6{A0 − 2 T
3 (

λ2 (ξ+E)
2 ( (λ (ξ+E))+2) )}.

If we put z4(x, t) = z9(ξ) in solution (44), then

z9(ξ) =
√

6{A0 − 2 T
3 (

λ2 (ξ+E)
2 ( (λ (ξ+E))+2) )}.

If we put B0 = 1, B1 = 0, a = µ, b = λ, θ = ξ, and
u10(x, t) = z10(ξ) in our solution (32), then

z10(ξ) =
√

6{A0 +
2 T
3 ( 1

(ξ+E) )}.

If we put z5(x, t) = z10(ξ) in solution (45), then
z10(ξ) =

√
6{A0 +

2 T
3 ( 1

(ξ+E) )}.
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(i) The nonlinear PDE describes the model of microtubule nonlinear dynamics assum-ing
a single longitudinal degree of freedom per tubulin dimer (see [38]),

m
∂2H (x, t)

∂ t2 − k L2 ∂2H (x, t)
∂ x2 −Q E− A H (x, t) + B H3 (x, t) + γ

∂H (x, t)
∂ t

= 0, (1)

Q is the additional charge inside the dipole, L for MT length, m is the mass to the
dimer, H(x,t) is the travelling wave, E is the strength of the intrinsic electronic field, γ is the
coefficient of viscosity, and k is a harmonic variable that describes the nearest-neighbour
interactions among dimers of the same kind proto-filaments, and A, B are the nonnegative
parameters. The exact solutions of Equation (1) were discovered using the Jacobi elliptic
function approach in [39], the physical details and derivations of which were covered there
but omitted here for simplicity.

(ii) The nonlinear PDE explaining the radially displaced MTs’ nonlinear dynamics:

I
∂2H(x, t)

∂ t2 − k l2 ∂2H(x, t)
∂ x2 + p E H(x, t)− p E

6
H3(x, t) + Γ

∂H (x, t)
∂ t

= 0, (2)

where I is the solitary dimer’s moment of inertia, Γ is the coefficient of viscosity, l is for
MT length, p is the strength of the intrinsic electronic field, k denotes the inter-dimer bond
formation interaction between PFs, and H(x,t) as the whole dimer rotates, is the equivalent
angular displacement.

The structure of this article is as follows: We describe the modified exp(−ψ(θ))-function
method in Section 2 and use it to solve the given NPDEs (1) and (2), in Section 3. Physical
justifications are provided in Section 4, and the conclusion is presented in Section 5. An
extensive list of references is provided at the end of the article for readers who may be
interested.

2. The Portrayal of the Method

Consider the general NLPDE of the form

F(H, Hx, Ht, Hx x, Ht t, Ht x, . . .) = 0, (3)

where H is an undisclosed function and F is a polynomial in H with partial derivatives
that contain nonlinear terms and higher order derivatives. The key stages in using this
technique are listed in [40]:

Stage 1: The following travelling transformation is defined as follows:

H(x, t) = u(θ), θ = (k1 x + k2 t ), (4)

where k1 and k2 are the constants, representing wave velocity and frequency, respectively.
Equation (3) can be transformed into a nonlinear ODE by using Equation (4):

T
(

u, k1u′, k2
2u′′ , . . .

)
= 0, (5)

where T is a polynomial in u and its ordinary derivatives and ‘′’ denotes the usual deriva-
tives with regard to θ.

Stage 2: Assume that the following expression can be used to represent the travelling
wave solution of Equation (5):

u(θ) =
∑M

i=0 Ai[exp(−Ψ(θ))]i

∑N
j=0 Bj[exp(−Ψ(θ))]j

=
A0 + A1 exp(−Ψ(θ)) + . . . + AM exp(M(−Ψ(θ)))

B0 + B1 exp(−Ψ(θ)) + . . . + BN exp(N(−Ψ(θ)))
, (6)
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where Ψ = Ψ(θ) satisfy the following ODE, and Ai, Bj, (0 ≤ i ≤ M , 0 ≤ j ≤ N,) stay the
variables that will be determined later, so that AM 6= 0, BN 6= 0 :

Ψ′(θ) = exp(−Ψ(θ)) + a exp(Ψ(θ)) + b, (7)

where a and b are constants.
The following solution sets exist for Equation (7): a

a. When a 6= 0, b2 − 4a > 0,

Ψ(θ) = ln

(
−
√

b2 − 4a
2a

tanh

(√
b2 − 4a

2
(θ + E)

)
− b

2a

)
. (8)

b. When a 6= 0, b2 − 4a < 0,

Ψ(θ) = ln

(√
−b2 + 4a

2a
tan

(√
−b2 + 4a

2
(θ + E)

)
− b

2a

)
. (9)

c. When a = 0, b 6= 0, b2 − 4a > 0,

Ψ(θ) = − ln
(

b
exp(b(θ + E))− 1

)
. (10)

d. When a 6= 0, b 6= 0, b2 − 4a = 0,

Ψ(θ) = − ln
(
−2b(θ + E) + 4

b2(θ + E)

)
. (11)

e. When b = 0, a = 0, b2 − 4a = 0,

Ψ(θ) = ln(θ + E). (12)

Such that A0, A1, A2, . . . AM, B0, B1, B2, . . . BN , E, a, b are later-to-be-calculated
constants. We may determine the positive integers M and N by employing the notion of
homogenous balancing between both the highest order linear term and the highest order
nonlinear term found in Equation (6).

Stage 3: Using Maple 18, we can solve the system of algebraic equations to find
the values of the unknowns. This is done by substituting the Equations (7)–(12) into
the Equation (6). This results in a polynomial in various powers of the exp(−Ψ(θ)) and
equating all the coefficients to zero. The generic solutions of Equation (6) complete the
strength of the solution of Equation (1) by substituting the values of the unknown constants.

3. Applications

The modified exp-function method, which includes a new complex and a hyperbolic
function solution, will be used to provide new analytical solutions for the nonlinear PDE
dynamical Equations (1) and (2) of motion in this phase. Equation (1) is transformed into
the following NLODE by the travelling wave variable Equation (5).

P u′′ (θ)−Q u′(θ)− u(θ) + u3(θ) − R = 0, (13)

where P =
m ω2−k l2k2

1
A , Q = γ ω

A , R = q E
A
√

A/B
, H(θ) =

√
A
B u(θ).

The relationship between u3 and u′′ is defined by the balance principle as the following
equation:

M = N + 1. (14)

Applying this connection, we can achieve the following new analytical solutions such
as Equation (1):



Symmetry 2023, 15, 360 5 of 15

Let us say N = 1 and M = 2, then Equation (6) becomes

u =
A0 + A1 exp (−Ψ) + A2 exp (2(−Ψ))

B0 + B1 exp (−Ψ)
, (15)

in which A2 6= 0 and B1 6= 0. We attain a polynomial containing exp(−Ψ(θ)) and all of its
powers by substituting Equations (7) and (15) into Equation (13). The coefficients of the
polynomial of exp(−Ψ(θ)) then give us a system of algebraic equations. The following
values for the various coefficients are obtained after this system has been resolved using
Maple 18.

Case 1:

R = 1
27

Q (2 Q2+9 P)β

P2 , a = 1
18

3β Q A0 B0+2 Q2B2
0−9 P A2

0+9 P B2
0

P2 B2
0

,

b = − 1
3

3βA0+ B0Q
P B0

, A0 = A0, A1 =
β B2

0+A0 B1
B0

, A2 = β B1 ,
(16)

where A0, P and, Q are arbitrary constants and β = ±
√
−2 p.

We derived the following travelling wave solutions for Equation (1) by substituting
Equations (8)–(12) and the coefficient values from Equation (16) into Equation (15) as seen
below:

When a 6= 0, b2 − 4a > 0,

H1(x, t) =

√
A
B

3tanh[ f (x, t)]PA0
√
−3Q2 + 18P + 3PQA0 − B0

√
−P(2

√
2Q2 − 9P)

3P
(√
−3Q2 + 18Ptanh[ f (x, t)]B0 − 3

√
−2PA0 − B0Q

)
, (17)

where f (x, t) = 1
6

√
− 3Q2+18P

P2 (θ + E).
When a 6= 0, b2 − 4a < 0,

H2(x, t) =

√
A
B

−−3 tan[g(x, t)]
√

3PA0
√

Q2 + 6P + 3PQA0 − B0
√
−2P(2Q2 − 9P)

3P
(√

3
√

Q2 + 6P tan[g(x, t)]B0 + 3
√
−2PA0 + B0Q

)
, (18)

where g(x, t) = 1
2
√

3

√
Q2+6P

P2 (θ + E).

When a = 0, b 6= 0, b2 − 4a > 0,

H3(x, t) =

√
A
B

3 exp
(
− (3

√
−2PA0+B0Q)(θ+E)

3PB0

)
PA0 + 9PA0 − 2

√
−2PQB0

PB0

(
exp

(
− (3

√
−2PA0+B0Q)(θ+E)

3PB0

)
− 1
)

. (19)

When a 6= 0, b 6= 0, b2 − 4a = 0,

H4(x, t) =

√
A
B

−
(
− 3A0

√
−2P+B0Q
PB0

)2
B0(θ + E)

√
−2P− 2A0

(
(−3A0

√
−2P + B0Q)(θ + E) + 2PB0

)
2B0
(
(−3A0

√
−2P + B0Q)(θ + E) + 2PB0

)
. (20)

When a = 0, b = 0, b2 − 4a = 0,

H5(x, t) =

√
A
B

(
B0
√
−2P + A0(θ + E)

B0(θ + E)

)
. (21)

where θ = ( k1 x + k2 t ), E is an arbitrary constant.
The exact solutions to Equation (2) are found in this subsection. To this goal, we reduce

Equation (2) to the following NLODE using the transformation Equation (4).
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S u′′ (θ)− T u′(θ)− u3(θ) + u(θ) = 0, (22)

where S =
I ω2−k l2k2

1
p E , T = Γ ω

p E , H(θ) =
√

6 u(θ).
The relationship between u3 and u′′ is defined by the balance principle as the following

equation:
M = N + 1. (23)

Applying this relationship, we can obtain a variety of novel analytical solutions for
Equation (2), as shown below:

Let us say N = 1 and M = 2, and we can write

u =
A0 + A1 exp (−Ψ) + A2 exp (2(−Ψ))

B0 + B1 exp (−Ψ)
, (24)

such that A2 6= 0, and B1 6= 0, while b and a are arbitrary constants. We get the coefficient
values listed below after using Maple 18 to resolve this system:

Case 2:

S =
2
9

T2, a =
9 A2

0 ± 9 A0 B0

4T2 B2
0

, b =
∓6 A0 − 3 B0

2T B0
, A0 = A0, A1 =

∓2 T B2
0 + 3A0 B1

3B0
, A2 = ∓2

3
T B1 . (25)

where A0 and T are arbitrary constants.
We obtain the following travelling wave solutions for the Equation (2) by substituting

Equations (8)–(12) and the coefficient values from Equation (25) into Equation (15) as follows:
When a 6= 0, b2 − 4a > 0,.

H6(x, t) =
√

6

 A0

(
tanh

(
3(θ+E)

4T

)
± 1
)

tanh
(

3(θ+E)
4T

)
B0 ∓ 2A0 − B0

. (26)

When a 6= 0, b2 − 4a < 0,

H7(x, t) =
√

6

 A0

(
tan
(

3
4

√
− 1

T2 (θ + E)
)

i− 1
)

tan
(

3
4

√
− 1

T2 (θ + E)
)

iB0 ± 2A0 + B0

. (27)

When a = 0, b 6= 0, b2 − 4a > 0,

H8(x, t) =
√

6

exp
(
∓ 3(2A0±B0)(θ+E)

2TB0

)
A0 + 3A0 ± 2B0

B0

(
exp

(
∓ 3(2A0±B0)(θ+E)

2TB0

)
− 1
)

. (28)

When a 6= 0, b 6= 0, b2 − 4a = 0,

H9(x, t) =
√

6

(((
±3(E + θ)B2

0 + 12
(
E + 2

3 T + θ
)

A0B0 ± 12A2
0(θ + E)

)
(θ + E)− 6A0B0

)
∓ 12A2

0
2B0(4T(θ + E)B0 ∓ 6A0 − 3B0)

)
. (29)

When a = 0, b = 0, b2 − 4a = 0,

H10(x, t) =
√

6
(

3(θ + E)A0 ∓ 2TB0

3B0(θ + E)

)
. (30)

where θ = ( k1 x + k2 t ), E is an arbitrary constant.
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4. Physical Expression of the Problem

The modified exp-function method’s key characteristics are presented in this part,
along with the physical significance of the novel hyperbolic, trigonometric, and exponential
and rational function solutions produced by applying the modified exp-function method
to Equations (1) and (2).

According to the exp-(−ψ(θ))-expansion approach, the modified exp-function method
is more extensive because it has an additional parameter named N. As indicated by the fact
that we have obtained so many analytical solutions to the equations under discussion for
only N = 1 and M = 2, this results in a large number of coefficients, which leads to a large
number of travelling wave solutions. To the best of our knowledge, some of these analytical
solutions, such as Equations (17)–(21) and (26)–(30), are published in the literature for the
first time when they are compared with solutions derived by Alam and Belgacem [39].

If we ponder N = 2 and M = 3, then we may write

u =
A0 + A1 exp (−Ψ) + A2 exp (2(−Ψ)) + A3 exp (3(−Ψ))

B0 + B1 exp (−Ψ) + B2 exp (2(−Ψ))
, (31)

where A3 6= 0, B2 6= 0. The coefficients of the polynomial of exp-(−ψ(θ)) yield a system of
algebraic equations when Equation (31) is substituted into Equations (13) and (22). We can
discover more different-style analytical solutions to this problem using Maple 18, which are
not possible by relying solely on the exp-(−ψ(θ))-expansion method. In order to achieve
more analytical solutions, a better knowledge of engineering and physical problems, along
with novel physical predictions, Equation (6)’s technique will help. In short, different M and
N numbers can lead to additional analytical solutions for the problem under consideration.
This leads to additional analytical solutions with novel physical meaning and properties.

Secondly, circular functions include hyperbolic tangent functions. They appear in a
variety of mathematical physics and math problems. For instance, the computation and
speed of special relativity give rise to the hyperbolic tangent. In general relativity, these can
be seen in the Schwarzschild metric with external isotropic Kruskal coordinates [41].

By choosing certain values for parameters and visualizing the precise solutions ob-
tained by the mathematical program Mathematica 10 (Figures 1–10), we observe the
characteristics of several solutions to the microtubule model as nonlinear dynamics of
radially displaced particles. As a result of those research findings, we showed that
Equations (17)–(21) and (26)–(30) exhibit kink solutions, periodic solutions, as well as
singular solitons solutions and singular kink solutions.

Graphical representations are a great way to discuss and illustrate solutions to
problems in a straightforward and understandable scheme. A graph is a graphical
representation of quantitative and qualitative responses and perhaps additional data
that can be easily compared. After doing calculations, we need to gain a fundamental
understanding of the graphs. Equation (18) serves as a representation of a kink wave
solution. Kink waves are those that tour between two asymptotic states. The kink
solution becomes constant at infinity. Figure 1 displays the 2D, 3D, and contour plots
of H1(x, t) , such as unidentified constants, A0 = 1, B0 = −1, k1 = 2, k2 = −1, β = 1,
Q = 2, A = 2, B =3, E = 1 within −10 ≤ x, t ≤ 10 such as 3D and t = 2 thus 2D graphs. The
precise periodic travelling wave solution is denoted by Equation (19). A travelling wave
solution with a periodic profile, such as cos(x-t), is known as a periodic wave. Figure 2
represents 2D, 3D, and contour graphs of H2(x, t) thus A0 = 1, B0 = 2, k1 = 2, k2 = −1,
β = 1, Q = −6, A = 2, B = 3, E = 5 within −3 ≤ x, t ≤ 3 thus the 3D and t = 1 thus 2D
graphs. Figure 3 shows the singular kink type wave solution profile of H3(x, t) such
as A0 = 1, B0 = −1, k1 = 2, k2 = −1, β = 1, Q = 2, A = 2, B = 3, E = 1 within −5 ≤ x,
t ≤ 5 such as 3D and contour graphs and t = 1 thus 2D graph. Figure 4 characterizes the
singular soliton-type solution of H4(x, t) such as A0 = 1, B0 = −2, B1 = 1, k1 = 2, k2 = 1,
β = 1, Q = 6, A = 2, B = 3, E = 5 within −12 ≤ x, t ≤ 12 for 3D and contour graphs and t = 1
for 2D graph. Figure 5 illustrates the rational function of H5(x, t) that behave likewise
to bright singular soliton solution such as A0 = 1, B0 = 0.2, k1 = 2, k2 = 1, β = 1, A = 2,
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B = 3, E = 5 and within −15 ≤ x, t ≤ 15 thus the 3D graphs and t = 1 thus 2D graph. The
hyperbolic function solution H6(x, t) in Equation (28) behaves like a kink-type solution
for A0 = 1, B0 = 2, k1 = 1, k2 = −1, T = 1, E = 1 and within −10 ≤ x, t ≤ 10, thus 3D
plots and t = 1 thus 2D graph are shown in Figure 6. The solution H7(x, t) in Figure 7
establishes the periodic soliton solution for A0 = 1, B0 = −5, k1 = 2, k2 = −1, T = 1,
E = 1 in the limit, −5 ≤ x, t ≤ 5, thus 3D graphs and t = 1 thus 2D diagram. Figure 8
signifies the singular kink-type soliton solution of Equation (30) for A0 = 1, B0 = −1,
k1 = 1, k2 = −1, T = 1.5, E = 1 and in the limit, −5 ≤ x, t ≤ 5, thus 3D graphs and t = 1
thus 2D diagram. Figure 9 demonstrations the exact travelling wave solution of H9(x, t)
for A0 = −10, B0 = −10, k1 = 1, k2 = −10, T = 5, E = 5, for 3D and contour graphs
within the range −2 ≤ x, t ≤ 2, and t = 1 as 2D graph. Figure 10 denotes the multiple
singular soliton trajectory to such as A0 = 1, B0 = 0.2, B1 = −1,k1 = 1, k2 = 1, T = 2,
E = 5 thus 3D graphs and t = 0.5 thus the 2D graph through the limit −5 ≤ x, t ≤ 5.
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5. Conclusions

We were able to conduct analytical and numerical research on the propagation of
soliton-like signals in microtubules by modelling them as nonlinear model partial differen-
tial equation equations. These models are built using the structure of the proteins that make
up microtubules. With the usage of the modified exp-function technique, a novel analytical
solution, including the solitary wave solutions shown in Figures 1–10, have been made
possible. Here, the best in the case of positive integer numbers M = 2 for N = 1 has been
taken into consideration. More standard results will be obtained if M = 3 is kept in mind
for N = 2, indicating the originality of our study. All of the exact solutions found in this re-
search to the nonlinear model partial differential equation modelling microtubules version
were verified using Maple 18 and were found to be accurate. This method worked well to
generate fresh analytical approaches to solitary wave solutions found in Figures 1–10. It has
been established that the used approach is efficient because it offers numerous cutting-edge
solutions. In addition, we plotted the received solutions in 3D, 2D, and contour graphs.
In this study, we found solutions for trigonometric, hyperbolic, exponential, and rational
functions. Additionally, we created a Table 1 to compare the solutions we came up with
to those found in the literature. When parameters are specified, all of the solutions from
Table 1 must be invented.
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