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Abstract: In this paper, we use the modified exp(−Ψ(θ))-function method to observe some of the 
solitary wave solutions for the microtubules (MTs). By treating the issues as nonlinear model par-
tial differential equations describing microtubules, we were able to solve the problem. We then 
found specific solutions to the nonlinear evolution equation (NLEE) covering various parameters 
that are particularly significant in biophysics and nanobiosciences. In addition to the soliton-like 
pulse solutions, we also find the rational, trigonometric, hyperbolic, and exponential function 
characteristic solutions for this equation. The validity of the method we developed and the fact that 
it provides more solutions are demonstrated by comparison to other methods. We next use the 
software Mathematica 10 to generate 2D, 3D, and contour plots of the precise findings we observed 
using the suggested technique and the proper parameter values.  

Keywords: nonlinear model partial differential equation; analytical method; exact solutions; non-
linear evolution equation of microtubules 
 

1. Introduction 
Major cytoskeletal proteins are called microtubules (MTs). Cytoskeletal biopolymers 

called MTs are formed like nanotubes. They are proto-filaments (PFs), which are hollow 
cylinders made up of tubulin dimer-representing proteins. An electric dipole exists in 
every dimer. These dimers are either positioned straight inside the PFs or in radial posi-
tions that point outward from the cylindrical surface. MTs are an intriguing class of 
protein structures that could be used to create and build electronic nano-devices. Non-
linear partial differential equations (NPDEs) are used to simulate the dynamical behav-
iour of MTs. The physical conditions that arise in a variety of engineering disciplines, 
such as geochemistry, hydrodynamics, hydrodynamic plasma, solid state physics, optical 
fibres, hydrodynamic hydrodynamics, and others, and which are well described by frac-
tional differential equations, are mathematically represented by these equations. The 
study of partial differential equations—specifically, those derived from finance mathe-
matics—displays the elegance of symmetry analysis best. Symmetry is the key to nature; 
however, the majority of observations in the natural world lack symmetry. One method 
for hiding symmetry is the occurrence of spontaneous symmetry breakage. Finite and 
infinitesimal symmetries are the two categories under which they fall. For finite symme-
tries, discrete or continuous symmetries may exist. Space is a continuous transformation, 
whereas symmetry and time reverse are discrete natural symmetries. Numerous tech-
niques have been used to solve NPDEs precisely or approximately up to now. These 
include, but are not restricted to, the rational perturbations technique [1], the Painlevé 
Expansion approach [2], Hirota’s bi-linear approach [3], (G’/G)-growth approach [4,5], 
the F-expansion approach [6], the Jacobi elliptic function technique [7–9], Homogeneous 
Balance approach [10], the extended Tanh-function technique [11], the modified 
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Tanh-function technique [12–15], the exp ( )( )ξφ− -expansion approach [16–22], the di-
rect approach [23], the α-path method [24], the predictor-corrector method [25], the first 
hitting time method [26], the Fit clearance method [27], the approximation ratios method 
[28], and the chance-constrained support vector regression approach [29]. 

The purpose of this study is to use the modified exp-function method to create exact 
solutions for the following two NPDEs that mimic MT dynamics [30–38]. We specifically 
follow the initial setup given by Alam and Belgacem [38] when presenting the questions 
to be answered for comparative purposes, solving the Equations (1) and (2) by using the 
exp (−φ(ξ))-expansion method. Then, by employing an altogether different methodology, 
we deviate from their growth in a general way, though we nevertheless compare our 
results with those of [38] while bearing in mind the advancements in [36–38]. Table 1 
compares the recently acquired solutions using current solutions found in the literature, 
indicating that our solutions are novel and preferred. 

Table 1. Comparison of Solutions. 
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(i) The nonlinear PDE describes the model of microtubule nonlinear dynamics assum-
ing a single longitudinal degree of freedom per tubulin dimer (see [38]), 
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Q is the additional charge inside the dipole, L for MT length, m is the mass to the 
dimer, H(x,t) is the travelling wave, E is the strength of the intrinsic electronic field, γ is 
the coefficient of viscosity, and k is a harmonic variable that describes the near-
est-neighbour interactions among dimers of the same kind proto-filaments, and A, B are 
the nonnegative parameters. The exact solutions of Equation (1) were discovered using 
the Jacobi elliptic function approach in [39], the physical details and derivations of which 
were covered there but omitted here for simplicity. 
(ii) The nonlinear PDE explaining the radially displaced MTs’ nonlinear dynamics: 
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where I is the solitary dimer’s moment of inertia, Γ  is the coefficient of viscosity, l is for 
MT length, p is the strength of the intrinsic electronic field, k denotes the inter-dimer 
bond formation interaction between PFs, and H(x,t) as the whole dimer rotates, is the 
equivalent angular displacement. 

The structure of this article is as follows: We describe the modified exp ( )( )θψ−
-function method in Section 2 and use it to solve the given NPDEs (1) and (2), in Section 3. 
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Physical justifications are provided in Section 4, and the conclusion is presented in Sec-
tion 5. An extensive list of references is provided at the end of the article for readers who 
may be interested. 

2. The Portrayal of the Method 
Consider the general NLPDE of the form 

( ) ,0...,,,,,, =xtttxxtx HHHHHHF  (3)

where H is an undisclosed function and F is a polynomial in H with partial derivatives 
that contain nonlinear terms and higher order derivatives. The key stages in using this 
technique are listed in [40]: 

Stage 1: The following travelling transformation is defined as follows: 
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tively. 
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Such that baEBBBBAAAA NM ,,,...,,,,...,,, 210210 are lat-
er-to-be-calculated constants. We may determine the positive integers M and N by em-
ploying the notion of homogenous balancing between both the highest order linear term 
and the highest order nonlinear term found in Equation (6). 

Stage 3: Using Maple 18, we can solve the system of algebraic equations to find the 
values of the unknowns. This is done by substituting the Equations (7)–(12) into the 
Equation (6). This results in a polynomial in various powers of the exp ( ))(θΨ−  and 
equating all the coefficients to zero. The generic solutions of Equation (6) complete the 
strength of the solution of Equation (1) by substituting the values of the unknown con-
stants. 

3. Applications 
The modified exp-function method, which includes a new complex and a hyperbolic 

function solution, will be used to provide new analytical solutions for the nonlinear PDE 
dynamical Equations (1) and (2) of motion in this phase. Equation (1) is transformed into 
the following NLODE by the travelling wave variable Equation (5). 
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following equation: 
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in which 02 ≠A and 01 ≠B . We attain a polynomial containing exp ( ))(θΨ−  
and all of its powers by substituting Equations (15) and (7) into Equation (13). The coef-
ficients of the polynomial of exp ( ))(θΨ−  then give us a system of algebraic equations. 
The following values for the various coefficients are obtained after this system has been 
resolved using Maple 18. 
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where 0A , P and, Q are arbitrary constants and .2 p−±=β  
We derived the following travelling wave solutions for Equation (1) by substituting 

Equations (8)–(12) and the coefficient values from Equation (16) into Equation (15) as 
seen below: 
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where ( )tkxk 21 +=θ , E is an arbitrary constant. 
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The exact solutions to Equation (2) are found in this subsection. To this goal, we 
reduce Equation (2) to the following NLODE using the transformation Equation (4). 
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The relationship between 𝑢  and 𝑢  is defined by the balance principle as the 
following equation: 
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Applying this relationship, we can obtain a variety of novel analytical solutions for 
Equation (2), as shown below: 
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coefficient values listed below after using Maple 18 to resolve this system: 
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where 0A  and T are arbitrary constants. 
We obtain the following travelling wave solutions for the Equation (2) by substi-

tuting Equations (8)–(12) and the coefficient values from Equation (25) into Equation (15) 
as follows: 
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where ( )tkxk 21 +=θ , E is an arbitrary constant. 

4. Physical Expression of the Problem 
The modified exp-function method’s key characteristics are presented in this part, 

along with the physical significance of the novel hyperbolic, trigonometric, and expo-
nential and rational function solutions produced by applying the modified exp-function 
method to Equations (1) and (2). 

According to the exp- ( )( )θψ− -expansion approach, the modified exp-function 
method is more extensive because it has an additional parameter named N. As indicated 
by the fact that we have obtained so many analytical solutions to the equations under 
discussion for only N = 1 and M = 2, this results in a large number of coefficients, which 
leads to a large number of travelling wave solutions. To the best of our knowledge, some 
of these analytical solutions, such as Equations (17)–(21) and (26)–(30), are published in 
the literature for the first time when they are compared with solutions derived by Alam 
and Belgacem [39]. 

If we ponder N = 2 and M = 3, then we may write 

( ) ( )
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)(2exp)(exp
)(3exp)(2exp)(exp

210
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where .0,0 23 ≠≠ BA  The coefficients of the polynomial of exp- ( )( )θψ−  yield a sys-
tem of algebraic equations when Equation (31) is substituted into Equations (13) and 
(22). We can discover more different-style analytical solutions to this problem using Ma-
ple 18, which are not possible by relying solely on the exp- ( )( )θψ− -expansion method. 
In order to achieve more analytical solutions, a better knowledge of engineering and 
physical problems, along with novel physical predictions, Equation (6)’s technique will 
help. In short, different M and N numbers can lead to additional analytical solutions for 
the problem under consideration. This leads to additional analytical solutions with novel 
physical meaning and properties. 

Secondly, circular functions include hyperbolic tangent functions. They appear in a 
variety of mathematical physics and math problems. For instance, the computation and 
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speed of special relativity give rise to the hyperbolic tangent. In general relativity, these 
can be seen in the Schwarzschild metric with external isotropic Kruskal coordinates [41]. 

By choosing certain values for parameters and visualizing the precise solutions ob-
tained by the mathematical program Mathematica 10 (Figures 1–10), we observe the 
characteristics of several solutions to the microtubule model as nonlinear dynamics of 
radially displaced particles. As a result of those research findings, we showed that Equa-
tions (17)–(21) and (26)–(30) exhibit kink solutions, periodic solutions, as well as singular 
solitons solutions and singular kink solutions. 

  

 

Figure 1. The graphical view of 1( , )H x t  for various values of parameters. 
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Figure 2. The graphical view of ),(2 txH  for various values of parameters. 

  

 
Figure 3. The graphical view of ),(3 txH  for various values of parameters. 
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Figure 4. The graphical view of ),(4 txH  for various values of parameters. 

  

 
Figure 5. The graphical view of ),(5 txH  for various values of parameters. 
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Figure 6. The graphical view of ),(6 txH  for various values of parameters. 

  

 
Figure 7. The graphical view of ),(7 txH  for various values of parameters. 
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Figure 8. The graphical view of 8 ( , )H x t  for various values of parameters. 

  

 
Figure 9. The graphical view of ),(9 txH  for various values of parameters. 
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Figure 10. The graphical view of ),(10 txH  for various values of parameters. 

Graphical representations are a great way to discuss and illustrate solutions to 
problems in a straightforward and understandable scheme. A graph is a graphical rep-
resentation of quantitative and qualitative responses and perhaps additional data that 
can be easily compared. After doing calculations, we need to gain a fundamental under-
standing of the graphs. Equation (18) serves as a representation of a kink wave solution. 
Kink waves are those that tour between two asymptotic states. The kink solution be-
comes constant at infinity. Figure 1 displays the 2D, 3D, and contour plots of ),(1 txH , 
such as unidentified constants, ,10 =A ,10 −=B ,1,2 21 −== kk  β  = 1, Q = 2, A = 2, 
B =3, E = 1 within −10 ≤ x, t ≤ 10 such as 3D and t = 2 thus 2D graphs. The precise periodic 
travelling wave solution is denoted by Equation (19). A travelling wave solution with a 
periodic profile, such as cos(x-t), is known as a periodic wave. Figure 2 represents 2D, 
3D, and contour graphs of ),(2 txH  thus ,10 =A ,20 =B ,1,2 21 −== kk  β  = 1, 
Q =  −6, A = 2, B = 3, E = 5 within −3 ≤ x, t ≤ 3 thus the 3D and t = 1 thus 2D graphs. Fig-
ure 3 shows the singular kink type wave solution profile of ),(3 txH  such as ,10 =A

,10 −=B  ,1,2 21 −== kk  β  = 1, Q = 2, A = 2, B = 3, E = 1 within −5 ≤ x, t ≤ 5 such as 
3D and contour graphs and t = 1 thus 2D graph. Figure 4 characterizes the singular soli-
ton-type solution of ),(4 txH  such as ,10 =A ,1,2 10 =−= BB ,1,2 21 == kk  β  = 
1, Q = 6, A = 2, B = 3, E = 5 within −12 ≤ x, t ≤ 12 for 3D and contour graphs and t = 1 for 
2D graph. Figure 5 illustrates the rational function of ),(5 txH  that behave likewise to 

bright singular soliton solution such as ,10 =A ,2.00 =B ,1,2 21 == kk  β  = 1, A = 2, 
B = 3, E = 5 and within −15 ≤ x, t ≤ 15 thus the 3D graphs and t = 1 thus 2D graph. The 

15 10 5 5 10 15
4.0

4.5

5.0

5.5

6.0



Symmetry 2023, 15, 360 15 of 17 
 

 

hyperbolic function solution ),(6 txH  in Equation (28) behaves like a kink-type solu-

tion for ,10 =A ,20 =B ,1,1 21 −== kk  T = 1, E = 1 and within −10 ≤ x, t ≤ 10, thus 3
D plots and 1=t  thus 2D graph are shown in Figure 6. The solution ),(7 txH  in 

Figure 7 establishes the periodic soliton solution for ,10 =A ,50 −=B ,1,2 21 −== kk  

T = 1, E = 1 in the limit, −5 ≤ x, t ≤ 5, thus 3D graphs and 1=t  thus 2D diagram. Fig-
ure 8 signifies the singular kink-type soliton solution of Equation (30) for ,10 =A

,10 −=B  ,1,1 21 −== kk  T = 1.5, E = 1 and in the limit, −5 ≤ x, t ≤ 5, thus 3D graphs 
and 1=t  thus 2D diagram. Figure 9 demonstrations the exact travelling wave solution 
of ),(9 txH  for ,100 −=A ,100 −=B ,10,1 21 −== kk  T = 5, E = 5, for 3D and 

contour graphs within the range −2 ≤ x, t ≤ 2, and 1=t  as 2D graph. Figure 10 denotes 
the multiple singular soliton trajectory to such as ,10 =A ,1,2.0 10 −== BB

,1,1 21 == kk  T = 2, E = 5 thus 3D graphs and 5.0=t  thus the 2D graph through the 
limit −5 ≤ x, t ≤ 5. 

5. Conclusions 
We were able to conduct analytical and numerical research on the propagation of 

soliton-like signals in microtubules by modelling them as nonlinear model partial dif-
ferential equation equations. These models are built using the structure of the proteins 
that make up microtubules. With the usage of the modified exp-function technique, a 
novel analytical solution, including the solitary wave solutions shown in Figures 1–10, 
have been made possible. Here, the best in the case of positive integer numbers M = 2 for 
N = 1 has been taken into consideration. More standard results will be obtained if M = 3 is 
kept in mind for N = 2, indicating the originality of our study. All of the exact solutions 
found in this research to the nonlinear model partial differential equation modelling mi-
crotubules version were verified using Maple 18 and were found to be accurate. This 
method worked well to generate fresh analytical approaches to solitary wave solutions 
found in Figures 1–10. It has been established that the used approach is efficient because 
it offers numerous cutting-edge solutions. In addition, we plotted the received solutions 
in 3D, 2D, and contour graphs. In this study, we found solutions for trigonometric, hy-
perbolic, exponential, and rational functions. Additionally, we created a Table 1 to com-
pare the solutions we came up with to those found in the literature. When parameters are 
specified, all of the solutions from Table 1 must be invented. 
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