symmetry

Article

Poly-Cauchy Numbers with Higher Level

Takao Komatsu 1*

check for
updates

Citation: Komatsu, T.; Sirvent, V.F.
Poly-Cauchy Numbers with Higher
Level. Symmetry 2023, 15, 354.
https:/ /doi.org/10.3390 /sym15020354

Academic Editors: Diego Caratelli
and Sergei D. Odintsov

Received: 28 December 2022
Revised: 15 January 2023
Accepted: 20 January 2023
Published: 28 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Victor E. Sirvent 2

Department of Mathematical Sciences, School of Science, Zhejiang Sci-Tech University,

Hangzhou 310018, China

2 Departamento de Mateméticas, Universidad Catélica del Norte, Angamos 0610, Antofagasta 1240000, Chile
Correspondence: komatsu@zstu.edu.cn

Abstract: In this article, mainly from the analytical aspect, we introduce poly-Cauchy numbers with
higher levels (level s) as a kind of extensions of poly-Cauchy numbers with level 2 and the original
poly-Cauchy numbers and investigate their properties. Such poly-Cauchy numbers with higher
levels are yielded from the inverse relationship with an s-step function of the exponential function.
We show such a function with recurrence relations and give the expressions of poly-Cauchy numbers
with higher levels. Poly-Cauchy numbers with higher levels can be also expressed in terms of iterated
integrals and a combinatorial summation. Poly-Cauchy numbers with higher levels for negative
indices have a double summation formula. In addition, Cauchy numbers with higher levels can be
also expressed in terms of determinants.

Keywords: poly-Cauchy numbers; Cauchy numbers; poly-Bernoulli numbers

MSC: 11B75; 11B37; 05A15; 05A19

1. Introduction

The Stirling numbers with higher level (level s) were first studied by Tweedie [1] in
1918. Namely, those of the first kind [} ], and the second kind {{ } [}, appeared as

n

s A —1)8) — n k
X+ 1) (x +25) - (x + (n — 1)) k;o[[kﬂsx

and
n

v = Y 1) 2 e (1)),

k=0

respectively. They satisfy the recurrence relations

[ -[oa] oo [0,
Gy =G {5

with Hgﬂ = {{8}} =1land [¢], = {(}}, =0(n > 1). When s = 1, they are the original
Stirling numbers of both kinds. When s = 2, they have been often studied as central
factorial numbers of both kinds (see, e.g., [2]). The concept introduced by Tweedie This
concept was used by Bell [3] to show a generalization of Lagrange and Wilson theorems.
However, such generalized Stirling numbers have been forgotten or ignored for a long time.

Recently in [4,5], the Stirling numbers with higher levels have been rediscovered
and studied more deeply, in particular, from the aspects of combinatorics. On the other
hand, in [6], by using the Stirling numbers of the first kind with level 2, poly-Cauchy

and
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numbers with level 2 are introduced as a kind of generalizations of the original poly-
Cauchy numbers, which may be interpreted as a kind of generalizations of the classical
Cauchy numbers. In [7], by using the Stirling numbers of the second kind with level 2,
poly-Bernoulli numbers with level 2 are introduced as a kind of generalizations of the
original poly-Bernoulli numbers [8]. In [9], other poly-generalized numbers, which are
called polycosecant numbers, are introduced and studied. This result leads to a variant
of multiple zeta values of level 2 [10], which forms a subspace of the space of alternating
multiple zeta values. However, no generalized Stirling number is considered in [9].

Another of the most famous generalized Stirling numbers is the r-Stirling num-
ber [11], which has meaningful relations with harmonic numbers from the summation
formulas [12-14]. By using r-Stirling numbers, so-called various r-numbers are introduced.

It is remarkable to see that the original poly-Cauchy numbers (with level 1, ref. [15]),
which may be also yielded by the logarithm function (an 1-step function) with the inverse
relation of the exponential function. This can be said to be an analytical definition. Then,
poly-Cauchy numbers with level 2 may be yielded or defined from the inverse relation
about the hyperbolic sine function, which is a 2-step function of the exponential function [6].
Then, it would be a natural question how the poly-Cauchy numbers with level 3, 4, and
generally level s can be defined by any functions (3, 4 and generally s-step functions,
respectively) in a natural way.

In combinatorial ways, just as poly-Cauchy number with level 2 arises from the
relationship with the Stirling numbers with level 2, poly-Cauchy number with level 3, 4
and generally level s could be hoped to arise from the Stirling numbers with level 3, 4 and
generally level s, respectively. However, in the case of 3 or higher level, it is not easy to
define and describe most of the properties including both combinatorial and analytical
meanings naturally as well as those with levels 1 and 2. For example,

)= (SZ)! Y (=D (ki{j)jsn

holds for s = 1,2 and does not for s > 3 ([5]).

The purpose of this paper is to define poly-Cauchy numbers with higher level (level
s) from the analytical implications and investigate their properties. Such poly-Cauchy
numbers with higher levels are yielded from the inverse relationship with an s-step function
of the exponential function. We show such a function with recurrence relations and give the
expressions of poly-Cauchy numbers with higher levels. Poly-Cauchy numbers with higher
levels can be also expressed in terms of iterated integrals and a combinatorial summation.
Poly-Cauchy numbers with higher levels for negative indices have a double summation
formula. In addition, Cauchy numbers with higher levels can be also expressed in terms
of determinants.

2. Definitions

For integers n and k with n > 0, poly-Cauchy numbers C,(lks) with level s (s > 1) are

defined by

. o (k) 1"
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The function 2AF; () is the inverse function of

0 tsm+1
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Whens =1, Cr(l 1) = cﬁlk) are the original poly-Cauchy numbers [15,16], defined by

Lify (A31(t)) = Z WL ot

where Lif; ;(z) = Lify(z) is the polylogarithm factorial function (or polyfactorial function)
and 2F1 (t) = log(t + 1) is the inverse function of

(<) tm+1

t
— = — 1.
NCES

m=
Whenk =1,¢, = cgzl) are the original Cauchy numbers defined by
t S

log(t+1) B H;OC"E‘

Lif; (log(t+1)) =
When s = 2, C;(qz) = (CS[‘) are poly-Cauchy numbers with level 2 [6], defined by

Lify (A5 (¢ 2 ekl 5

where 2F, () = arcsinht is the inverse function of

i t2m+l
= sinht
0 (@m+1)!

Whenk=1,C, = Cff) are Cauchy numbers with level 2, defined by

Lif, 1 (arcsinht) =

arcsmht 2 (Cn 1

Whenk =1ands = 3,

0% + w?e? + we'? _ $3(2)

Lifs1(z) = e p—

where
0 Z3m+1

33(z) = mZ::o Gmri)l

and w = (1+ +/—3) /2, satisfying w® = 1. Note that a similar function to 1/F3(z) is studied
in [17].

For an arbitrary s > 1 and k = 1, we have

Zsm

(sm+1)! z

_ lﬁg]’e?*& _ 3s(z)
SZ - !
j=0

m=0

where { = ¢%7/%, is the s-th root of the identity. The function Lif; 1 (z) becomes the s-step
exponential function .

3. Basic Results
When s = 3,

1, 17 5 389 . 85897 5 887731
W(2) =2 = 527"+ 55207 ~ 2502007+ 2223936007~ 82114560007
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n 762918737 19 16283723339 2
23870702592000 1658385653760000
When s = 4,
B 1 5 25 1655 45 32633 17
M4(2) =2~ 507 T 72576  s3026084° T 24320507904
_ 4046837 21 95346434209 25
41098797121536 12477594806098329600
_ 13496484991405 29 7594510992880985 L3
21884703082311982252032 148224339331565182966038528
B 4010591254856244071 37
921362493285009177316895490048
n 116831353234301926949 A
310374651792009578002102307782656
In general, for the inverse function of §s(z), we have the following.
Proposition 1.
Q[S’S(Z) = d()Z — d125+1 + d2225+1 — o+ (_1)ndnzsn+1 + - s
where the coefficients d; satisfy the recurrence relation
n—1 1 1
d, = D L . . n>1 2
! mZ:;O( ) i1+ +Tsnzl+1—n m (Sll + 1)' e (Slsm+1 + 1)' ( ) @
gy 120

withdy = 1.

Proof. The expression can be obtained by the following process. First, put §;'(z) :=

AT (Z) as
5;1 (Z) =dyz — dleJrl + d2225+1 — (_1>ndnzsn+l NI
Then we can find dy = 1,dq,d>, . .. as follows. For convenience, put

1
(Sil =+ l)! e (Sianrl —+ 1)! .

Hsn(j) ==
iy gy =]
il 11 20

Since §; 1 (8s(z)) = s (85 1(z)) = z, we see that

i ( i Gl )SnH
z = 1)"d,
0 (sm+1)!

n:O m=0
_ Z( nanHs’n l—n) sl+1
n=0 I=n
[e¢] n
2(2 "d Hsm(n—m))zs’“rl
n=0 \m=0

Hence, forn > 1

®)
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with dg = 1. The exact values of dg, d1,dp, ... can be obtained by the recurrence relation (2).
Some values of H ,(j) for smaller j can be given as follows.

Hsn(0) =1,

Hon(1) = (Ssn++1§!’

Hoal2) = (SZ:llﬂ i ((s +11)1)2 (Snzﬂ)’

Hsn(3) = (;::11)! (2(:?{)!1(5(?)1)! ((s +11)!)3(Sn3+1)/

Hon(4) = (23:11)! (3?1;!1(5:(?1)1)! * ((25+11)1)2 (Snzﬁ)
+m+gu;4m4j)+wQ5N<m:v'

Hence,
A= Ho(l) = (sjl)!’

1 B 1
s+t (2s4+1)!7
d3 = Hs,0(3) - les,l (2) + d2H5,2(1)

dy = —Hs(2) +d1Hs1 (1) =

_ 842 3421
o 2((S+1)!)2S! (25+1)!(S+1)! (3S+1)! !
dy = —H;0(4) +d1Hs1(3) — daH;p(2) + d3H; 3(1)
(45 +3)(25+1) 1 B 45 +3
C3(s+1))%st @SEDIR)E (2)1((s + 1))
2(2s+1) 1
(Bs+1)!(s+1)!  (4s+1)!" @)

O

Thus, by the definition (1), explicit expressions of Cr(lks) for each concrete s and small

can be achieved. For s = 3, we have

¢ =1,

k 1
C§,3):47r

k) 6\ 1 1
C6,3 —_<4)4k+7k1

k) 3(35-1+79) (9>
Gy =22 T

_ 191, 1
3 8 7 ) 4k 4)7k 10k’
1

o) . 9-22-153 (12 +3(35-24—79) 12\1 /12 L_,_i
123 4 10/ 4k 8 7 )7k 4 )10k 13k°

For s = 4, since

(254 ()"

(4m)!
o xim dm+4\ x4 2(126m +281) (4m+8) xS
7(4m)!7( 5 )(4m—|—4)! 5 ( 9 )(4m+8)!
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_ 8(6006m* +40183m + 67157) (4m + 12) xAm+12
(

5 13 4m +12)!
N 16(12864852m> 4 172143972m? + 767355367m + 1139488217) (4m +16) x*"*H16
45 17 ) (4m+16)! ’
we have
(k) _
Cop =1,
(k) _
C4,4 - ? 4

k) _ 8\ 1 1

oo _2(126-1+281) (121 (12\1 1
1247 5 9)5k \5)9k " 13k’
k) 8(6006 - 12 + 40183 - 1 + 67157) (16 1
Cloa =~ 5 13 5

+2(126~2+281) 16 16\ 1 + 1
5 9 9k 5 ) 13k

4. Iterated Integrals

Similarly to the cases of the poly-Cauchy numbers with levels 1 and 2 ([6,15]), Cauchy
numbers with higher levels have an expression in terms of iterated integrals.

Since p
75 (zLifs(2)) = Lifsx1(2),
we have
d ) 3n+1 o) 51
e (zLifg k(2 (,;) sn—0—1> ; 74_1) = Lifox_1(2).
Therefore,
Lifg 1 ( / Lifg 1 (
By iteration, we get
z 1 1z
Lif, 1 (z / / - /0 Lif, , (2) gz?-’;ﬂg .

Putting z = AF(t), we get

- L1 e e
Llfs,k(mgs(t)) o ngs(t) 0 Q[SS(t) 0 mgs“) %\’fl;,
—_———— —
k—1
where
d (o]
&s(z) = EQISS(Z) =Y (-1)"(sn+1)d
n=0

1. 1 [(2s+1 )
= _ _— —1 5
1 s!Z * (2s)! << s ) )Z

1 /1 3s+2 3s+2 3
- [z _ 1) 23
(3s)! (2 s+1,541, ) <s+1>+ )Z
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n 1 1 4543 + 4s+1
(4s)!\6\s+1,5s+1,5+1,s 2s
1 4s+3 4s+2 4
_z 1)
2(25+1,s+1,s+1)+(s+1> )Z /

where (,

1s+++/Sm

Moreover we can express the Laurent series of & () /AF;(t), in fact,

®s(t)  AFL()
AT (1) AFs(t)

with AFs(t) = tD;(t) and D;(0) # 0. Hence

G:(t) D(H)+tDL(t) 1 D) 1 d
A, (1) 19, (f) F o0 1 a8
From (3), we have
Ds(t) = do — dit’ +dot® — dat> + - = do + u(t),

withdy =1 and Ll(t) = —di* + dztzs — d3t3s +---. 5o,

1)k 1 u( f)k

log Ds(t) =log(1+u(t)) =Y (-
k=1

Therefore,

log D5 (t) = (—dqt* +dpt?* —dat® + ) — %(—dlts + dpt® — dyt> +

)= W denotes the multinomial coefficient with n = s1 + - - -

+ S

..)2_|_

1
+3(—drt? ot —dgt® )

So, it follows that
dz d3
logf'gs(ﬂ = _dlts + | dp — ?l t25 + | —d3 +dydy — ?1 t35
d2 4
+<d4_d1d3— 22+d%d2—41>t45+...,

yielding the expression

d s—1 d% 25—1 d% 3s5—1
alogQS(t):—sdlt +2s dz—? t + 3s —d3+d1d2—§ t

4

d2 d4
+4s d4—d1 3_7+d2d -1 t4571+"'.

After substituting the vales of d,,, we have

Os(t) 1 s o 241 1 et
AFs(t) ¢t (s+1)!t 2 (2((S+1)!)2 (Zs+1)!>i’L

+35<( 3541 _ (3s+2)(3s+1) 1 >t351

25 +1)!(s +1)! 6((s +1)1)° ~ (Bs+1)!
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+4S< 4s+1  as+1 4541

Gs+ DI+ (29)1(s+1)1)*  2((2s+1)!)
(4s+3)(4s+1)(2s+1) 1 -1,
+ 2 1)) (4S+1)!>t +o ()

Proposition 2. We have

et 1t es(t) () L
Yol 0 b B0 /0/ a5 (1) L2
k—1

where ®(z) = LAFs(z) and a more precise expression of &(t)/AFs(t) is given in (5).

5. An Explicit Expression
If we know the coefficients d,, (n > 0) appeared in AF; () in Proposition 1, we can get
(k)

an expression of C,, ¢ .

Theorem 1. For integers n and k withn > 0,

n _1\n—m !
CS(E,)S — Z ( 1) (STZ). 2 di "'digmtsn'

(sm)!(sm + 1)k i+ Fism=n—m '

i1 eveisi >0
Proof. By the definition in (1), we have
o) n (o) sn
k)t k) t
Chi— = C
n;() ns n;() sn,s (Si’l)!
0 1 0 sm
_ (*1)ld1f51+1
mgo (sm)!(sm + 1)k <l¥0
1

|
(agk

(sm)!(sm + 1)k

[e9)
i1t tism g, o4 (sip A1)+ (sism 41
« 2 2 (—=1)1 emdll...dlsmt( 1+1) (sism+1)
N=M i{+-+ism=n—m
g eesism >0

; 1 n—m sn
EW Y. (=)"dy - dg, 2o

0m=0 i1+ tism=n—m
i1,eesdsm 20

3
Il
<}

|
agk

n

Comparing the coefficients on both sides, we get the desired result. [

6. Some Expressions of Poly-Cauchy Numbers with Higher Levels for Negative Indices
The poly-Bernoulli numbers ]B%,gk) [8], defined by

1—et S T
where
%) N
Lig(z) = ) =
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is the polylogarithm function, satisfy the duality formula IB%S;k) = ]ES](:”) for n,k > 0,
because of the symmetric formula

iiﬁ*@ﬁyj_ ety
ol k! eX 4oV —exty

Though the corresponding duality formula does not hold for the original poly-
Cauchy numbers (ref. [16], Proposition 1) and poly-Cauchy numbers with level 2 (ref. [6],
Theorem 4.1), we still have the double summation formula of poly-Cauchy numbers with
higher level.

Theorem 2. For nonnegative integers n and k,

sk 1 s=1s=1 oy gheéfy
Z Z Csns ) (Sk)' = 2 Z Z € (%S"S(X)) ’
=0 k=0 : j=0 h=0

where B (x) = X850 and { is the s-th root of unity as { = €™/ = cos(27/s) +isin(27/s).

Proof. From the definition in (1), we have

o sn sk <) sk
el XY YL (A3 (x)) L
;0,;0 1S (sn)! (sk)! ,§0 sk (235 >)(sk)!
S (AFs(x)™ &y
7,;’),”;0 (sm)! (sm+1) (56!
— i (mgs(x))sm 1 Sil o0 (smt1)y
= (sm)! s 15
15 o eé’mss VAT (x)
NP 2L Py
_ 12 s—1s—1 eéjyegheg]ymgs(x) )
5% j=0h=0

yielding the desired result. [J

7. Cauchy Numbers with Higher Level
Whenk =1in (1), Cys = C,(l}s) are the Cauchy numbers with higher level, defined by

ol zcns . ©)

In this section, we shall show some properties of C,s = C,S}S). First, we give its
determinant expression. A similar expression for the hypergeometric Cauchy numbers is
given in [18].

Theorem 3. Forn > 1,

Cons = (sn)!| : Yoo 0 |,

: d 1
dy <o oo dy dy
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where dy, is the coefficient of t"+1 appeared in AF;(t) in Proposition 1.

Remark 1. By using the values of d’s in (4), Theorem 3 yields

Cos =1, Cos= 3%1 Coss = 251+ - ((Ssizsl)).!)z/
o L 353 s(3s +1)!
T+l 25+ DD (s 1))
Cone = 1 45(4s)! (85 +3)(4s)!
T A+l GsEDIED s 1)((s+ 1))
B 25(4s)! N (45+3)(4s)! (8% +6s+1)(4s)!
2s+DI((s+1)1)*  (29)!(s +1)1)° (s+1)1)*

Proof of Theorem 3. From (6), we have

where the coefficients dy, d, . . . are also given in (3) with (4). Comparing the coefficients
on both sides,

n
Z Con—sls (-D)ld; =0 (n>1).

(sn —sl)!

By the inversion relation

f(—l)”’kakR(n —k)=0 (n>1) with ag=R(0)=1

k=0
R(1) 1 0 a1 0
oy = R@) - < R(n)= 2
: | : 1
R(n) --- R(2) R(1) &y e Ay

(e.g., see [19]), we get the result as

Csn S
(sn)!”

ay =d, and R(n) =

O

By the inversion formula shown in the above proof, we also have the following
Corollary. Similar determinant expressions of Bernoulli, Cauchy and related numbers were
found in [20]).

Corollary 1. Forn > 1,

Cs,
= 1 0
CZs,s C3s,s
2s)! 3s)!
gy =| @ @
: " 1
Csn,s ch,s &

Gn)l T (29! s!
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By Trudi’s formula
al az .. e am
ap m

a4
0 a, @|m

4+t e
= ( 1t / m (_ao)m fq tmaila?___a%n
t+2by 4ty =m Lreertm

(refs. [21,22]; ref. [23],Volume 3, pp. 208-209, p. 214), we have a different expression of C;; s

Theorem 4.
4+t e
Cons = (sn)! ( 1t ¢ n> (=1)" h t (dl)t1 (dZ)tz T (dn)t"
t1+2tp 4 nty=n 1revesin
and
t cee -t
dn — 1 + + n

Z (_1)n—t1—~~~—tn
, o\t
1+2t+-+nty=n

(%) (@) (&)

8. A Recurrence Relation for C,Sks) in Terms of C; s

k) . k—1
We can show a recurrence formula for C,(ZS) in terms of C;(1,s ) and Cy 5.

Theorem 5. For integers n and k withn > 0and k > 1,

(k) VWM (sv —sm+1)d (=1)
Csns =

v— mCsn sV, scsms

(sn —sv)!(sm)!(sv+1) ’

i M:

o

where dy, is the coefficient of t"+1 appeared in AFs(t) in Proposition 1.

Remark 2. Poly-Cauchy numbers c,gk) have a recurrence formula (vef. [16], Theorem 7)

n v v me C(kfl)
— 2 2 n—vCm
v=0m=0

(n—v)iml(v+1)

Poly-Cauchy numbers (C,gk) with level 2 have a recurrence formula (ref. [6], Theorem 3.4)

B EC) O 2k

v— (2n — 21/) (2m)!(2v+1) "

Proof of Theorem 5. Similarly to the description in Section 4, we obtain

Si’l

Z sns . —Llfsk(%SS( ))

%s /Llfsk L (%3:(0)) B4 (0)dor
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) xsnfl x ) (k-1) oM 0 . ‘
= 51,8 —1) Dd.o"” \d
<,§)C ’ (sn)!)/o (Eocsm,s (sm)! ];)( Y (sj+1) i o
~ (Lt [ Z 0 msv—sm1)a Cons” 150 4
n=0 e (SI’Z)! 0 \v=om=0 e (Sm)!
© xsn—1 o v Y Cs(r]:;sl) (vl
- %Csn,s (5! g)mzzzo(—l) (sv —sm+1)dy_p S
_ i Z Z (=1)V""(sv — sm + 1)dy—pCon—su,sChrd .,
=0 1=0 =0 (sn —sv)!(sm)!(sv + 1)

Comparing the coefficients on both sides, we get the result. O

9. Conclusions

In this paper, we define poly-Cauchy numbers with higher level (level s) from the
analytical implications, and study their properties. Such poly-Cauchy numbers with higher
levels are yielded from the inverse relationship with an s-step function of the exponential
function. When s > 3, the inverse function is not given using a known function, but it can
be used to obtain the expressions and relations.

Poly-Bernoulli numbers with level 2 are defined and studied in [7]. Is it possible to
introduce poly-Bernoulli numbers with higher levels? If so, is there any relation between
them and poly-Cauchy numbers with higher levels?
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