
Citation: Alotaibi, R.; Rezk, H.;

Elshahhat, A. Computational

Analysis for Fréchet Parameters of

Life from Generalized Type-II

Progressive Hybrid Censored Data

with Applications in Physics and

Engineering. Symmetry 2023, 15, 348.

https://doi.org/10.3390/

sym15020348

Academic Editors: Arne Johannssen,

Nataliya Chukhrova and Quanxin

Zhu

Received: 16 January 2023

Revised: 22 January 2023

Accepted: 24 January 2023

Published: 27 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Computational Analysis for Fréchet Parameters of Life from
Generalized Type-II Progressive Hybrid Censored Data with
Applications in Physics and Engineering
Refah Alotaibi 1 , Hoda Rezk 2 and Ahmed Elshahhat 3,*

1 Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University,
P.O. Box 84428, Riyadh 11671, Saudi Arabia

2 Department of Statistics, Al-Azhar University, Cairo 11884, Egypt
3 Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt
* Correspondence: aelshahhat@ftd.zu.edu.eg

Abstract: Generalized progressive hybrid censored procedures are created to reduce test time and
expenses. This paper investigates the issue of estimating the model parameters, reliability, and hazard
rate functions of the Fréchet (Fr) distribution under generalized Type-II progressive hybrid censoring
by making use of the Bayesian estimation and maximum likelihood methods. The appropriate esti-
mated confidence intervals of unknown quantities are likewise built using the frequentist estimators’
normal approximations. The Bayesian estimators are created using independent gamma conjugate
priors under the symmetrical squared-error loss. The Bayesian estimators and the associated greatest
posterior density intervals cannot be computed analytically since the joint likelihood function is
obtained in complex form, but they may be assessed using Monte Carlo Markov chain (MCMC)
techniques. Via extensive Monte Carlo simulations, the actual behavior of the proposed estimation
methodologies is evaluated. Four optimality criteria are used to choose the best censoring scheme out
of all the options. To demonstrate how the suggested approaches may be utilized in real scenarios,
two real applications reflecting the thirty successive values of precipitation in Minneapolis–Saint Paul
for the month of March as well as the number of vehicle fatalities for thirty-nine counties in South
Carolina during 2012 are examined.

Keywords: Fréchet model; symmetric Bayes inference; MCMC techniques; maximum likelihood;
reliability analysis; generalized Type-II progressive hybrid censoring

1. Introduction

Reliability technology, as a measure of a system’s capacity to properly perform its
intended function under predetermined conditions for a specific period of time, is currently
increasingly significant. In this regard, many research studies have been conducted, see for
example, Chen et al. [1] and Luo et al. [2]. In the literature, progressive Type-II censoring
(PC-T2) has received a lot of attention because it allows surviving subjects to be removed
during an experiment at various stages other than the termination point, see Balakrishnan
and Cramer [3]. To conduct this censoring, a researcher must first put n independent units
into a test at time zero and determine the number of failures m and the progressive censoring
R = (R1, R2, . . . , Rm), where n = ∑m

i=1 Ri + m. At the moment of the first recorded failure
(say X1:m:n), the surviving units R1 out of n− 1 units are randomly chosen and removed
from the test. Similarly, R2 of n− R1 − 2 are selected at random and removed from the test
at the time of the second failure (say X2:m:n) observed, and so on. All remaining survival
units, Rm = n − m − ∑m−1

j=1 Rj, are withdrawn from the test at the moment of the mth
failure (say Xm:m:n) observed, see Panahi [4]. The main disadvantage of this censoring
is that it may take a longer time to complete the test when the experimental units are
extremely trustworthy. To overcome this problem, the progressive Type-I hybrid censoring
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(PHC-T1), which combines PC-T2 and traditional Type-I censoring, was presented by
Kundu and Joarder [5]. However, PHC-T1 had the disadvantage that there are relatively
few failures that may occur before time T, meaning that maximum likelihood estimators
(MLEs) could not always be derived. To address this issue, Childs et al. [6] proposed
the progressive Type-II hybrid censoring (PHC-T2) in which the experiment terminates
at T∗ = max{Xm:m:n, T}, for details see Panahi [7]. On the other hand, to improve the
efficiency of statistical inference, Ng et al. [8] proposed the adaptive progressively Type-II
hybrid censoring, for further details see Panahi and Moradi [9].

Although the PHS-T2 guarantees an efficient number of observable failures, it may
take a long time to collect the desired failures. Therefore, the generalized progressive
Type-II hybrid censoring (GPHC-T2) was introduced by Lee et al. [10]. Assume that the
two thresholds Ti, i = 1, 2 and the number m are preassigned such that 1 < m ≤ n and
0 < T1 < T2. The total number of failures up to periods T1 and T2 are shown as d1 and
d2, respectively. Next, R1 of n− 1 are arbitrarily removed from the test at X1:m:n; R2 of
n − R1 − 2 are then removed at X2:m:n, and so on. At T∗ = max{T1, min{Xm:m:n, T2}},
the experiment is terminated and all remaining units are removed. If Xm:n < T1, we
continue to observe failures without any additional withdrawals up to time T1 (Case-I); if
T1 < Xm:m:n < T2, we end the test at Xm:m:n (Case-II); otherwise, we end the test at time T2
(Case-III). It is important to remember that the GPHC-T2 alters the PHC-T2 by ensuring
that the test is finished at the designated time T2. Thus, T2 shows the maximum amount
of time that the researcher is prepared to permit the experiment to run. As a result, the
experimenter will see one of the following three data formats:

{X, R} =


{(X1:m:n, R1), . . . , (Xm−1:m:n, Rm−1), (Xm:m:n, 0), . . . , (Xd1 :n, 0)}; Case-I,

{(X1:m:n, R1), . . . , (Xd1 :n, Rd1), . . . , (Xm−1:m:n, Rm−1), (Xm:m:n, Rm)}; Case-II,

{(X1:m:n, R1), . . . , (Xd1 :n, Rd1), . . . , (Xd2−1:n, Rd2−1), (Xd2 :n, Rd2)}; Case-III.

Assume that the variables X, R stand for the respective lives in a distribution with
cumulative distribution function (CDF) F(·) and probability density function (PDF) f (·).
This leads to the following expression for the GPHC-T2 likelihood function as follows:

Lρ(θ|X) = CρRρ(Tτ ; θ)
Dρ

∏
j=1

f (xj:m:n; θ)
[
1− F(xj:m:n; θ)

]Rj , (1)

where Case-I, Case-II, and Case-III denoted by ρ = 1, 2, 3, correspondingly, τ = 1, 2, and
Rρ(·) is a composite form of reliability functions. From (1), the GPHC-T2 notations are
listed in Table 1. Moreover, from (1), different censoring plans can be obtained as special
cases, namely:

• PHC-T1 if T1 → 0.
• PHC-T2 if T2 → ∞.
• Hybrid-T1 if T1 → 0, Rj = 0, j = 1, 2, . . . , m− 1, Rm = n−m.
• Hybrid-T2 if T2 → ∞, Rj = 0, j = 1, 2, . . . , m− 1, Rm = n−m.
• Type-I censoring if T1 = 0, m = 1, Rj = 0, j = 1, 2, . . . , m− 1, Rm = n−m.
• Type-II censoring if T1 = 0, T2 → ∞, Rj = 0, j = 1, 2, . . . , m− 1, Rm = n−m.

Table 1. The GPHC-T2 notations.

ρ Cρ Dρ Rρ(Tτ ; θ) R∗dτ+1

1 Πd1
j=1 ∑m

i=j (Ri + 1) d1 [1− F(T1)]
R∗d1+1 n− d1 −∑m−1

i=1 Ri

2 Πm
j=1 ∑m

i=j (Ri + 1) m 1 0

3 Πd2
j=1 ∑m

i=j (Ri + 1) d2 [1− F(T2)]
R∗d2+1 n− d2 −∑d2

i=1 Ri
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On the basis of GPHC-T2, other research has also been carried out. For instance, the
maximum likelihood and Bayes estimators of the Weibull parameters were produced by
Ashour and Elshahhat [11]. The prediction problem of failure times from the Burr-XII
distribution was studied by Ateya and Mohammed [12]. Seo [13] developed an objective
Bayesian analysis with limited information about the Weibull distribution. The competing
risks from exponential data were addressed by Cho and Lee [14], and more recently,
Nagy et al. [15] looked at both the point and interval estimates of the Burr-XII parameters,
and Wang et al. [16] addressed the estimation problem of the Kumaraswamy parameters
using classical and Bayesian procedures.

The inverse Weibull (or Gumbel Type-II) distribution, commonly known as the two-
parameter Fréchet (Fr) distribution, is well suited for data modeling with decreasing and
upside-down bathtub hazard rates. To illustrate many environmental phenomena, includ-
ing earthquakes, floods, wind speeds, rainfall, breakdown of insulating fluid, sea waves,
etc., it has been widely employed. This model was originally proposed by Fréchet [17], and
Kotz and Nadarajah [18] later discussed it. Suppose that X is a lifetime random variable
that follows the Fr distribution, which is represented by the notation Fr(δ, θ), where δ > 0
is the scale parameter and θ > 0 is the shape parameter. Its PDF, CDF, and hazard rate
function (HRF), denoted by f (·), F(·), and h(·), are provided by

f (x; δ, θ) = δθx−(θ+1)e−δx−θ
, x > 0; (2)

F(x; δ, θ) = e−δx−θ
, x > 0; (3)

and

h(t; δ, θ) =
δθt−(θ+1)

eδt−θ − 1
, t > 0, (4)

respectively, and its reliability function (RF), R(·), is given by R(·) = 1− F(·).
To our knowledge, no work has been done that estimates the Fr model parameters or

survival characteristics in the presence of data from the generalized Type-II progressive
hybrid censoring. Our goals in this study were the following in order to close this gap. The
likelihood inference for the unknown Fr parameters and/or any function of them, such as
R(t), or h(t), was first derived. The second goal was to create Bayes estimates for the same
unknown parameters using independent gamma priors from the squared-error loss (SEL).
Additionally, using the suggested estimating techniques, for all unknown parameters,
the asymptotic confidence intervals (ACIs) and highest posterior density (HPD) interval
estimators were obtained. The R programming language’s “maxLik” and “coda” packages
were used to calculate the acquired estimates because the theoretical results of δ and θ
obtained by the proposed estimation methods cannot be expressed in closed form. These
packages were proposed by Henningsen and Toomet [19] and Plummer et al. [20]. The
final goal was to come up with the most effective progressive censoring scheme using
four optimality criteria. A Monte Carlo simulation was used to examine the efficacy of the
different estimators using various combinations of the total sample size, effective sample
size, threshold times, and progressive censoring. All acquired estimators were compared
using their simulated root-mean-square errors, mean relative absolute biases, average
confidence lengths, and coverage percentages. To determine how well the suggested
approaches worked in practice and choose the best censoring strategy, two different data
sets the from physical and engineering domains were analyzed. The rest of the study is
structured as follows: In Sections 2 and 3, the maximum likelihoods and Bayes inferences
of the unknown parameters and reliability characteristics are obtained, respectively. In
Section 4, the asymptotic and credible intervals are derived. The outcomes of the Monte
Carlo simulation are detailed in Section 5. Section 6 investigates the methodology for
determining the best progressive censoring strategy. In Section 7, two real applications are
examined. Finally, in Section 8, some concluding remarks of the study are provided.
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2. Likelihood Inference

Suppose X = {(X1:m:n, R1), .., (Xd1 :n, Rd1), .., (Xd2 :n, Rd2)} is a GPHC-T2 sample of size
d2 obtained from Fr(δ, θ). Thus, by inserting (2) and (3) into (1), where xj is used in place of
xj:m:n, the likelihood function of GPHC-T2 may be expressed as

Lρ( δ, θ|x) ∝
Dρ

∏
j=1

δθx−(θ+1)
j e−δx−θ

j

(
1− e−δx−θ

j

)Rj

Rρ(Tτ ; δ, θ), (5)

whereR2(Tτ ; δ, θ) = 1

R1(T1; δ, θ) =
(

1− e−δT−θ
1

)R∗d1+1 andR3(T2; δ, θ) =
(

1− e−δT−θ
2

)R∗d2+1 .
The log-likelihood function `ρ ∝ Lρ of (5) becomes

`ρ( δ, θ|x) ∝ Dρln(δθ)− (θ + 1)
Dρ

∑
j=1

ln
(

xj

)
− δ

Dρ

∑
j=1

x−θ
j +

Dρ

∑
j=1

Rjln
(

1− e−δx−θ
j
)
+ Υρ(Tτ ; δ, θ), (6)

where Υ2(Tτ ; δ, θ) = 0
Υ1(T1; δ, θ) = R∗d1+1ln

(
1− e−δT−θ

1

)
, and Υ3(T2; δ, θ) = R∗d2+1ln

(
1− e−δT−θ

2

)
.

The following two results are obtained by partly differentiating (6) with regard to δ
and θ. To produce the MLEs δ̂ and θ̂, the following likelihood equations must be solved
concurrently after being equated to zero as

∂`ρ

∂δ
=

Dρ

δ
−

Dρ

∑
j−1

x−θ
j +

Dρ

∑
j=1

Rjx−θ
j e−δx−θ

j(
1− e−δx−θ

j

) +
∂Υρ(Tτ ; δ, θ)

∂δ
, (7)

and

∂`ρ

∂θ
=

Dρ

θ
−

Dρ

∑
j=1

ln
(
xj
)
+ δ

Dρ

∑
j−1

x−θ
j ln

(
xj
)
−

Dρ

∑
j=1

Rjδx−θ
j ln

(
xj
)
e−δx−θ

j(
1− e−δx−θ

j

) −
∂Υρ(Tτ ; δ, θ)

∂θ
, (8)

where for ρ = 1, 3 and τ = 1, 2, we have
∂Υρ(Tτ ;δ,θ)

∂δ =
R∗dτ+1T−θ

τ e−δT−θ
τ(

1−e−δT−θ
τ

) , ∂Υρ(Tτ ;δ,θ)
∂θ =

R∗dτ+1δT−θ
τ ln(Tτ)e−δT−θ

τ(
1−e−δT−θ

τ

) .

As shown in (7) and (8), the MLEs of δ and θ must be obtained by solving a system
of two nonlinear equations. Therefore, there is no closed-form analytical solution for δ̂
or θ̂. As a result, it may be calculated for every given GPHC-T2 data set using numerical
methods such the Newton–Raphson iterative approach. The MLEs R̂(t) and ĥ(t) can also
be obtained by replacing δ and θ with δ̂ and θ̂, respectively.

3. Bayes Inference

The Bayes estimators of δ, θ, R(t) and h(t) and their corresponding HPD intervals are
created in this section based on the SEL function. In order to do this, the Fr parameters
δ and θ are taken to have independent gamma (G(·)) priors with the form G(ν1, ϑ1) and
G(ν2, ϑ2), respectively. Gamma priors should be taken into account for a number of reasons,
including the fact that they (i) offer different shapes depending on parameter values, (ii) are
adaptable, and (iii) are quite simple, brief, and might not produce a result with a difficult
estimate problem. The joint prior density of δ and θ becomes

π(δ, θ) ∝ δν1−1θν2−1e−(δϑ1+θϑ2), (9)
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where νi > 0 and ϑi > 0 for i = 1, 2, are known. From (5) and (9), the joint posterior PDF of
δ and θ is

πρ( δ, θ|x) ∝ δDρ+ν1−1θDρ+ν2−1e−(δϑ1+θϑ2)
Dρ

∏
j=1

e−δx−θ
j x−θ

j

(
1− e−δx−θ

j

)Rj

Rρ(Tτ ; δ, θ). (10)

There are many reasons to consider the SEL in a Bayesian analysis: (i) it is the com-
monly used symmetric loss; (ii) it is simple, clear, concise, and fairly easy; (iii) it assumes
that the overestimation and underestimation are treated equally; and (iv) it develops the
Bayes estimator directly by taking the posterior mean. However, under the SEL function,
the posterior expectation of (10) yields the Bayes estimate of δ and θ (say ϕ̃(·)) as

ϕ̃(δ, θ) =
∫ ∞

0

∫ ∞

0
ϕ(δ, θ)πρ( δ, θ|x)dδdθ.

It is obvious from (10), that the explicit expression of the marginal PDFs of δ and θ is
not possible. Thus, to compute the acquired Bayes estimates and create their HPD intervals,
we suggest generating samples from (10) using Bayesian MCMC techniques. Therefore,
from (10), the conditional PDFs of δ and θ are provided, respectively, as

πδ
ρ( δ|θ, x) ∝ δDρ+ν1−1e−δϑ1

Dρ

∏
j=1

e−δx−θ
j

(
1− e−δx−θ

j

)Rj

Rρ(Tτ ; δ, θ), (11)

and

πθ
ρ( θ|δ, x) ∝ θDρ+ν2−1e−θ

(
ϑ2+∑

Dρ
j=1 ln(xj)

) Dρ

∏
j=1

e−δx−θ
j

(
1− e−δx−θ

j

)Rj

Rρ(Tτ ; δ, θ). (12)

It is clear, from (11) and (12), that there is no analytical way to reduce the posterior
PDFs of δ and θ, respectively, to any known distribution. Thus, the Metropolis–Hastings
(M-H) method is seen to be the best option for solving this issue; for detail see Gelman
et al. [21] and Lynch [22]. The M-H algorithm’s sampling procedure based on the normal
proposal distribution is carried out as follows:

Step-1: Set the starting values δ(0) = δ̂ and θ(0) = θ̂.

Step-2: Set s = 1.

Step-3: Create δ∗ and θ∗ from N(δ̂, σ̂2
δ̂
) and N(θ̂, σ̂2

θ̂
), respectively.

Step-4: Find ξδ = min
{

1,
πδ

ρ( δ∗ |θ(s−1);x)
πδ

ρ( δ(s−1)|θ(s−1);x)

}
and ξθ = min

{
1,

πθ
ρ( θ∗ |δ(s);x)

πθ
ρ( θ(s−1)|δ(s);x)

}
.

Step-5: Create samples u1 and u2 using the uniform U(0, 1) distribution.

Step-6: If both u1 and u2 are less than ξδ and ξθ , respectively, then set δ(s) = δ∗ and
θ(s) = θ∗, respectively. Otherwise, set δ(s) = δ(s−1) and θ(s) = θ(s−1), respectively.

Step-7: Set s = s + 1.

Step-8: Redo steps 3–7H times to get δ(s) and θ(s) for s = 1, 2, . . . ,H.

Step-9: Use δ(s) and θ(s), for t > 0, to compute the reliability R(t) and hazard rate h(t)
parameters, respectively, as

R(s)(t) = 1− e−δ(s)t−θ(s)
and h(s)(t) =

δ(s)θ(s)t−θ(s)−1

eδ(s)t−θ(s) − 1
.

In order to ensure the MCMC sampler’s convergence and to eliminate the impact of
initial guesses δ(0) and θ(0), the first simulated samples (sayH0) are eliminated as burn-in.
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The Bayesian estimates using the SEL function are therefore calculated using the remaining
H̄ = H−H0 samples of δ, θ, R(t), and h(t), (say ϕ̃(·)) as

ϕ̃(δ, θ) =
1
H̄

H
∑

s=H0+1
ϕ(s)(δ, θ).

Since the choice of symmetric (or asymmetric) loss is one of the main issues in the
Bayes analysis, one may incorporated any other type of loss function instead of the SEL
easily.

4. Interval Inference

In this section, the ACIs (based on observed Fisher information) and HPD intervals
(based on MCMC simulated variates) of δ, θ, R(t), and h(t) are created.

4.1. Asymptotic Intervals

The asymptotic variance–covariance (AVC) matrix, which is created by inverting the
Fisher information matrix, must first be computed in order to create the ACIs for δ and
θ. The MLEs (δ̂, θ̂) under some regularity criteria are normally distributed with mean
(δ, θ) and variance I−1(δ, θ). Following Lawless [23], we estimate I−1(δ, θ) by I−1(δ̂, θ̂) by
substituting δ̂ and θ̂ in place of δ and θ as

I−1(δ̂, θ̂) ∼=
[
−L11 −L12
−L21 −L22

]−1

(δ̂,θ̂)
=

[
σ̂2

δ̂
σ̂δ̂θ̂

σ̂θ̂δ̂ σ̂2
θ̂

]
, (13)

where Lij for i, j = 1, 2 are

L11 = −
Dρ

δ2 −
Dρ

∑
j=1

Rjx−2θ
j e−δx−θ

j(
1− e−δx−θ

j

)2 +
∂2Υρ(Tτ ; δ, θ)

∂δ2 ,

L22 = −
Dρ

θ2 − δ

Dρ

∑
j−1

x−θ
j ln2(xj

)
− δ

Dρ

∑
j=1

Rjx−θ
j ln2(xj

)
e−δx−θ

j

(
e−δx−θ

j + δx−θ
j − 1

)
(

1− e−δx−θ
j

)2 −
∂2Υρ(Tτ ; δ, θ)

∂θ2 ,

and

L12 =
Dρ

∑
j−1

x−θ
j ln

(
xj
)
−

Dρ

∑
j=1

Rjx−θ
j ln

(
xj
)
e−δx−θ

j

(
1− 2e−δx−θ

j

)
(

1− e−δx−θ
j

)2 −
∂2Υρ(Tτ ; δ, θ)

∂θ∂δ
,

∂2Υρ(Tτ ; δ, θ)

∂δ2 = −
R∗dτ+1T−2θ

τ e−δT−θ
τ(

1− e−δT−θ
τ

)2 ,

∂2Υρ(Tτ ; δ, θ)

∂θ2 =
R∗dτ+1δln2(Tτ)T−θ

τ e−δT−θ
τ

(
e−δT−θ

τ + δT−θ
τ − 1

)
(

1− e−δT−θ
τ

)2 ,

and

∂2Υρ(Tτ ; δ, θ)

∂θ∂δ
=

R∗dτ+1T−θ
τ ln(Tτ)e−δT−θ

τ

(
1− δT−θ

τ − e−δT−θ
τ

)
(

1− e−δT−θ
τ

)2 .
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Thus, for δ and θ, respectively, the two-sided 100(1− γ)% ACIs are provided by

δ̂± Z γ
2

√
σ̂2

δ̂
and θ̂ ± Z γ

2

√
σ̂2

θ̂
,

where Z γ
2

denotes the top γ
2 percentage points of the standard normal distribution.

Additionally, we use the delta approach to first determine the estimated variance of
R̂(t) and ĥ(t) (see Greene [24]) before building the ACIs of R(t) and h(t) as

σ̂2
R̂(t) = ∇

T
R̂ I−1(δ̂, θ̂

)
∇R̂ and σ̂2

ĥ(t) = ∇
T
ĥ I−1(δ̂, θ̂

)
∇ĥ,

where ∇T
R̂
=
[

∂R(t)
∂δ

∂R(t)
∂θ

]
(δ̂,θ̂)

and ∇T
ĥ
=
[

∂h(t)
∂δ

∂h(t)
∂θ

]
(δ̂,θ̂)

.

Following that, the two-sided 100(1− γ)% ACIs of R(t) and h(t) are provided, respec-
tively, by

R̂(t)± Z γ
2

√
σ̂2

R̂(t)
and ĥ(t)± Z γ

2

√
σ̂2

ĥ(t)
.

4.2. HPD Intervals

Using the approach proposed by Chen and Shao [25], the 100(1− γ)% HPD interval
estimations of δ, θ, R(t), or h(t) are constructed. First, we rank the MCMC samples of
ϕ(s) for s = H0 + 1,H0 + 2, . . . ,H as ϕ(H0+1), ϕ(H0+2), . . . , ϕ(H). Hence, the 100(1− γ)%
two-sided HPD interval of ϕ is provided by

ϕ(j∗), ϕ(j∗+(1−γ)H̄),

where j∗ = H0 + 1,H0 + 2, . . . ,H is selected so that

ϕ(j∗+[(1−γ)(H̄)]) − ϕ(j∗) = min
16j6γH̄

[
ϕ(j+[(1−γ)H̄]) − ϕ(j)

]
.

5. Monte Carlo Simulation

To evaluate the true performance of the acquired point/interval estimators of δ, θ,
R(t), and h(t), Monte Carlo simulations were conducted based on various combinations of
Ti, i = 1, 2 (threshold points), n (size of experimental items), m (size of effective sample),
and R (removal pattern). To establish this goal, for Fr(0.5, 1.5), we replicated the GPHC-T2
mechanism 1000 times. At t = 0.3, the true values of R(t) and h(t) were 0.9523 and 0.7620,
respectively. Taking (T1, T2) = (0.4, 0.8) and (0.8, 1.2), two different choices of n and m
were used as n(=40, 80) and the choices of m were taken as failure percentages (FPs) of each
n such as m

n (=50, 80)%. Additionally, for each (n, m), three progressive censoring plans R
were used, namely,

Scheme-1 : R = (n−m, 0∗(m− 1)),

Scheme-2 : R =
(

0∗
(m

2
− 1
)

, n−m, 0∗
(m

2

))
,

Scheme-3 : R = (0∗(m− 1), n−m),

where R = (3, 0, 0, 4) was used as R = (3, 0∗2, 4)
Once 1000 GPHC-T2 samples had been collected, via R 4.2.2 programming software

by installing the “maxLik” package (by Henningsen and Toomet [19]), the MLEs and 95%
ACI estimates of δ, θ, R(t), and h(t) were evaluated. Via the “coda” package (by Plummer
et al. [20]) in R 4.2.2 programming software, to obtain the Bayes point estimates along
with their HPD interval estimates of the same unknown parameters, we simulated 12,000
MCMC samples and ignored the first 2000 iterations as burn-in. According to the prior
mean and prior variance criteria, two sets called Prior-I and -II of the hyperparameters
(a1, a2, b1, b2) were considered as (2.5, 7.5, 5, 5) and (5, 15, 10, 10), respectively.
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Specifically, the average point estimates (APEs) of δ, θ, R(t), or h(t) (say Ω) were
given by

Ω̌τ =
1
B
B
∑
i=1

Ω̌(i)
τ , τ = 1, 2, 3, 4,

where B is the number of replications, Ω̌(i) is the estimate of Ω at the ith sample, Ω1 = δ,
Ω2 = θ, Ω3 = R(t), and Ω4 = h(t).

A comparison between point estimates of Ω was made based on their root-mean-
square errors (RMSEs) and mean relative absolute biases (MRABs), respectively, as

RMSE(Ω̌τ) =

√√√√ 1
B
B
∑
i=1

(
Ω̌(i)

τ −Ωτ

)2
, τ = 1, 2, 3, 4,

and

MRAB(Ω̌τ) =
1
B
B
∑
i=1

1
Ωτ

∣∣∣Ω̌(i)
τ −Ωτ

∣∣∣, τ = 1, 2, 3, 4.

On the other hand, the comparison between the interval estimates of Ω was made
based on their average confidence lengths (ACLs) and coverage percentages (CPs) as

ACL(1−γ)%(Ωτ) =
1
B
B
∑
i=1

(
U

Ω̌(i)
τ
−L

Ω̌(i)
τ

)
, τ = 1, 2, 3, 4,

and

CP(1−γ)%(Ωτ) =
1
B
B
∑
i=1

1(
L

Ω̌(i)
τ

;U
Ω̌(i)

τ

)(Ωτ), τ = 1, 2, 3, 4,

respectively, where 1(·) is the indicator function, (L(·), U (·)) denote the (lower, upper)
bounds of (1− γ)% ACI (or HPD) interval of Ωτ .

Via a heatmap data visualization in R version 4.2.2 programming software (available
in https://cran.r-project.org/bin/windows/base (accessed on 23 January 2023), the sim-
ulated RMSEs, MRABs, ACLs, and CPs of δ, θ, R(t), or h(t) are shown in Figures 1–4,
respectively, while their numerical tables are available as Supplementary Materials. For
specialization, some notations of the proposed methods have been defined on the “x-axis”
line in Figures 1–3 such that (for Prior-I (say P1) as an example) the Bayes estimates is
referred to as “BE-P1” and the HPD interval estimates is denoted as “HPD-P1”.

From Figures 1–4, in terms of the lowest RMSE, MRAB, and ACL values as well as the
highest CP values, useful observations were found and can be easily reported as:

• The main general point is that the proposed estimates of δ, θ, R(t), or h(t) provided
good performance.

• As n(or m) increased, all estimates of µ, R(t), and h(t) performed satisfactory. A
similar result was obtained when ∑m

i=1 Ri decreased.
• As (T1, T2) increased, in most situations, the RMSEs, MRABs, and ACLs of all un-

known parameters decreased while their CPs increased.
• The Bayes estimates of δ, θ, R(t), or h(t), due to the gamma information, behaved

better compared to the other estimates as expected. A similar comment could also be
made in the case of HPD credible intervals.

• Since the variance of Prior-II was smaller than the variance of Prior-I, the MCMC
calculations under Prior-II provided more accurate estimates than others for all un-
known parameters.

• Comparing the proposed schemes 1, 2, and 3, in most cases, it was noted that the
proposed estimates of δ, θ, R(t), and h(t) behaved better using scheme 3 than the
others.

https://cran.r-project.org/bin/windows/base
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• As a result, the Bayes M-H algorithm sampler is recommended to estimate the Fr
parameters or its reliability characteristics in the presence of data obtained from
generalized Type-II progressive hybrid censoring.
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Figure 1. Heatmap plots for the simulation outputs of δ.
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Figure 2. Heatmap plots for the simulation outputs of θ.
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Figure 3. Heatmap plots for the simulation outputs of R(t).
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Figure 4. Heatmap plots for the simulation outputs of h(t).

6. Optimal PC-T2 Designs

The experimenter may want to choose the “best” censoring scheme from a collection of
all accessible censoring schemes in order to offer the most information about the unknown
parameters under research, especially in the context of dependability. First, Balakrishnan
and Aggarwala [26] looked at the issue of selecting the best censoring approach in various
situations. However, several optimality criteria have been put forth, and many conclusions
on the best censoring schemes have been examined. The ideal censoring design R =
(R1, R2, . . . , Rm) such that n − m = ∑m

i=1 Ri can be proposed, and the precise values of
n (size of test units), m (effective sample), and Ti, i = 1, 2 (ideal test thresholds) are
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chosen beforehand based on the availability of the units, experimental facilities, and cost
considerations; for details, see Ng et al. [27].

The issue of contrasting two (or more) alternative censoring strategies has been ad-
dressed in a number of publications in the literature (for examples, see Sen et al. [28],
Elshahhat and Abu El Azm [29], Elshahhat et al. [30], among others). In our situation,
Table 2 provides a selection of frequently used metrics to assist us in selecting the ideal
censoring approach, Ci.

Table 2. Useful criteria for the best PC-T2 plan.

Criterion Target

C1 Maximize trace(I (δ̂, θ̂))
C2 Minimize trace(I−1(δ̂, θ̂))
C3 Minimize det(I−1(δ̂, θ̂))
C4 Minimize v̂ar(log(T̂$))

It is recommended to maximize the observed Fisher information, the I−1(·) values
for C1. In addition, for criteria C2 and C3, we want to minimize the determinant and trace
of I−1(·). For multiparameter distributions, the ideal censoring approach may be chosen
using scale-invariant criteria. While comparing the two Fisher information matrices is
more difficult when dealing with unknown multiparameter distributions, scale-invariant
criteria can be utilized to compare numerous criteria when dealing with single-parameter
distributions C4. Criterion C4 tends to minimize the variance of the logarithmic MLE of the
$th quantile, T$. Thus, from (3), the logarithmic of the Fr distribution T$ is given by

log(T̂$) =

[
− log($)

δ

]− 1
θ

(δ̂,θ̂)
, 0 < $ < 1. (14)

Applying the delta approach to (14), the approximation of the variance for the Fr
distribution’s log(T̂$) is obtained as

v̂ar(log(T̂$)) = ΣT
log(T̂$)

I−1(δ̂, θ̂) Σlog(T̂$)
,

where

ΣT
log(T̂$)

=

[
∂

∂δ
log(T̂$),

∂

∂θ
log(T̂$)

]
(δ̂,θ̂)

.

The highest value of the criteria C1 and the minimum value of the criterion Ci for
i = 2, 3, 4 correspond to the optimum censoring. Contrarily, the highest value of the
criterion C1 and the lowest value of other criteria correspond to the optimal censoring.

7. Real-Life Applications

To highlight the utility of the proposed estimation procedures and the applicability
of the study objectives to actual situations, this section presents two different applications
by analyzing two sets of useful real data taken from the physical and engineering fields.
These applications show that the proposed inferential approaches work satisfactorily under
real-life data using the proposed censoring plan.

7.1. March Precipitation

In this application, we considered a data set representing thirty successive values (in
inches) of precipitation in Minneapolis–Saint Paul for the month of March, see Table 3. This
data set was provided by Hinckley [31] and recently reanalyzed by Elshahhat et al. [32]. To
examine whether March precipitation data fit the Fr distribution or not, the Kolmogorov–
Smirnov (KS) statistic and its p-value were calculated. To establish this goal, from Table 3,
the MLEs (with their standard errors (SEs)) of δ and θ were 1.0252 (0.1978) and 1.5496
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(0.2027), respectively, meanwhile the KS (p-value) was 0.1524 (0.489). It means that the Fr
lifetime model fit the March precipitation data well. Using a graphic visualization, based
on the complete March precipitation data, Figure 5 displays (i) the estimated and empirical
RFs and (ii) the contour of the log-likelihood function with respect to various choices of δ
and θ. It supported the same findings as the KS test and showed that the MLEs δ̂ ∼= 1.025
and θ̂ ∼= 1.550 existed and were unique.

Table 3. Successive values of March precipitation.

0.77 1.74 0.81 1.20 1.95 1.20 0.47 1.43 3.37 2.20
3.00 3.09 1.51 2.10 0.52 1.62 1.31 0.32 0.59 0.81
2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.90 2.05
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Figure 5. Empirical/fitted RFs (left); contour (right) plots from March precipitation data.

For the explanation of the proposed estimation methodologies, from the complete
March precipitation data, three GPHC-T2 samples with m = 10 and various thresholds
Ti, i = 1, 2 were generated and are reported in Table 4. Moreover, in Table 4, different
censoring plans R were utilized, namely, S1 : (2∗10), S2 : (5∗2, 0∗6, 5∗2), S3 : (6∗3, 0∗6, 2),
and S4 : (2, 0∗6, 6∗3). From Table 4, the maximum likelihood estimates (along with their
SEs) as well as the ACI estimates (along with their widths) of δ, θ, R(t), and h(t) (at t = 1)
were computed and are listed in Table 5. Since there was no prior information about
the unknown Fr parameters δ and θ from the given data set, by repeating the MCMC
sampler 50,000 times and ignoring the first 10,000 times as burn-in, the Bayes estimates
(with their SEs) as well as the HPD interval estimates (with their widths) were evaluated
using improper gamma priors and are provided in Table 5 as well. For the computational
logic, the unknown hyperparameters were set to 0.001. It is clear, from Table 5, that the
MCMC estimates of δ, θ, R(t), and h(t) behaved better than the others in terms of the
smallest standard error and interval width values.

Table 4. GPHC-T2 samples from March precipitation data.

Scheme Sample T1(d1) T2(d2) Generated Data R∗ T∗

S1

1 3.40(11) 5.00(11) 0.32, 0.59, 0.81, 1.18, 1.31, 1.51, 1.87, 2.05, 2.48, 3.09, 3.37 1 3.40
2 2.00(7) 3.25(10) 0.32, 0.59, 0.81, 1.18, 1.31, 1.51, 1.87, 2.05, 2.48, 3.09 0 3.09
3 2.00(7) 2.50(9) 0.32, 0.59, 0.81, 1.18, 1.31, 1.51, 1.87, 2.05, 2.48 3 2.50

S2

1 2.95(11) 3.05(11) 0.32, 0.81, 1.31, 1.35, 1.43, 1.51, 1.62, 1.74, 1.87, 2.48, 2.81 4 2.95
2 2.25(9) 2.50(10) 0.32, 0.81, 1.31, 1.35, 1.43, 1.51, 1.62, 1.74, 1.87, 2.48 0 2.48
3 1.50(5) 2.00(9) 0.32, 0.81, 1.31, 1.35, 1.43, 1.51, 1.62, 1.74, 1.87 6 2.00

S3

1 3.50(11) 4.80(11) 0.32, 0.90, 1.43, 2.05, 2.10, 2.20, 2.48, 2.81, 3.00, 3.09, 3.37 1 3.50
2 2.75(7) 3.25(10) 0.32, 0.90, 1.43, 2.05, 2.10, 2.20, 2.48, 2.81, 3.00, 3.09 0 3.09
3 2.25(6) 3.05(9) 0.32, 0.90, 1.43, 2.05, 2.10, 2.20, 2.48, 2.81, 3.00 3 3.05

S4

1 2.60(11) 4.80(11) 0.32, 0.59, 0.77, 0.81, 0.81, 0.90, 0.96, 1.18, 1.62, 2.20, 2.48 5 2.60
2 1.10(7) 2.50(10) 0.32, 0.59, 0.77, 0.81, 0.81, 0.90, 0.96, 1.18, 1.62, 2.20 0 2.20
3 1.50(8) 2.10(9) 0.32, 0.59, 0.77, 0.81, 0.81, 0.90, 0.96, 1.18, 1.62 7 2.10
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Table 5. Point and 95% interval estimates of δ, θ, R(t), and h(t) from March precipitation data.

Scheme Sample Par.
MLE MCMC ACI HPD

Est. SE Est. SE Lower Upper Width Lower Upper Width

S1

1

δ 1.8514 0.3703 1.6588 0.2364 1.1256 2.5772 1.4517 1.3969 1.9224 0.5255
θ 0.9547 0.1974 0.8078 0.1878 0.5677 1.3417 0.7739 0.5750 1.0277 0.4527

R(1) 0.8430 0.0581 0.8079 0.0439 0.7290 0.9570 0.2279 0.7526 0.8538 0.1011
h(1) 0.3292 0.1084 0.3162 0.0557 0.1168 0.5416 0.4248 0.2183 0.4275 0.2093

2

δ 1.8803 0.3765 1.6879 0.2337 1.1424 2.6182 1.4758 1.4424 1.9576 0.5152
θ 0.9039 0.1991 0.7523 0.1922 0.5136 1.2941 0.7804 0.5353 0.9912 0.4559

R(1) 0.8475 0.0574 0.8135 0.0421 0.7349 0.9600 0.2251 0.7637 0.8588 0.0952
h(1) 0.3059 0.1046 0.2889 0.0545 0.1010 0.5108 0.4098 0.1962 0.3969 0.2007

3

δ 1.9040 0.3823 1.7049 0.2416 1.1547 2.6534 1.4988 1.4514 1.9965 0.5451
θ 0.8633 0.2033 0.7049 0.1974 0.4648 1.2618 0.7970 0.4664 0.9247 0.4583

R(1) 0.8510 0.0570 0.8165 0.0428 0.7394 0.9627 0.2233 0.7685 0.8662 0.0977
h(1) 0.2877 0.1028 0.2679 0.0545 0.0862 0.4892 0.4030 0.1634 0.3608 0.1974

S2

1

δ 2.3307 0.4210 2.1201 0.2523 1.5056 3.1559 1.6503 1.8228 2.3704 0.5476
θ 0.8229 0.1722 0.6788 0.1806 0.4853 1.1605 0.6752 0.4675 0.8874 0.4199

R(1) 0.9028 0.0409 0.8788 0.0294 0.8226 0.9830 0.1604 0.8466 0.9129 0.0662
h(1) 0.2066 0.0680 0.1969 0.0374 0.0733 0.3398 0.2666 0.1295 0.2686 0.1391

2

δ 1.8799 0.3918 1.6843 0.2392 1.1120 2.6479 1.5359 1.4255 1.9528 0.5273
θ 1.0014 0.2118 0.8466 0.1956 0.5863 1.4164 0.8301 0.6217 1.0810 0.4594

R(1) 0.8474 0.0598 0.8127 0.0432 0.7302 0.9646 0.2344 0.7596 0.8581 0.0985
h(1) 0.3390 0.1155 0.3261 0.0565 0.1126 0.5654 0.4528 0.2244 0.4378 0.2134

3

δ 1.8845 0.3952 1.6894 0.2366 1.1099 2.6591 1.5493 1.4467 1.9610 0.5144
θ 0.9891 0.2206 0.8256 0.2046 0.5568 1.4214 0.8647 0.6076 1.0796 0.4720

R(1) 0.8481 0.0600 0.8137 0.0425 0.7304 0.9658 0.2353 0.7646 0.8593 0.0946
h(1) 0.3339 0.1184 0.3168 0.0570 0.1018 0.5660 0.4642 0.2180 0.4256 0.2075

S3

1

δ 2.3735 0.4667 2.1580 0.2556 1.4589 3.2882 1.8294 1.8927 2.4194 0.5267
θ 0.8882 0.1730 0.7458 0.1808 0.5490 1.2273 0.6783 0.5500 0.9770 0.4269

R(1) 0.9069 0.0435 0.8834 0.0284 0.8216 0.9921 0.1704 0.8529 0.9141 0.0611
h(1) 0.2165 0.0766 0.2109 0.0366 0.0664 0.3667 0.3002 0.1397 0.2787 0.1389

2

δ 2.0295 0.4390 1.8276 0.2421 1.1691 2.8898 1.7207 1.5706 2.0924 0.5218
θ 1.0130 0.2028 0.8574 0.1962 0.6155 1.4105 0.7950 0.6199 1.0857 0.4658

R(1) 0.8686 0.0577 0.8378 0.0376 0.7555 0.9816 0.2261 0.7953 0.8787 0.0834
h(1) 0.3110 0.1121 0.3012 0.0508 0.0914 0.5307 0.4393 0.2087 0.4009 0.1921

3

δ 2.0708 0.4490 1.8624 0.2513 1.1908 2.9508 1.7600 1.5918 2.1203 0.5286
θ 0.9542 0.2040 0.7971 0.1973 0.5545 1.3540 0.7996 0.5466 1.0094 0.4627

R(1) 0.8739 0.0566 0.8432 0.0378 0.7630 0.9849 0.2219 0.7990 0.8817 0.0827
h(1) 0.2851 0.1065 0.2737 0.0485 0.0764 0.4938 0.4173 0.1826 0.3615 0.1788

S4

1

δ 1.7138 0.3237 1.5320 0.2232 1.0794 2.3482 1.2688 1.2781 1.7873 0.5092
θ 0.8887 0.2006 0.7435 0.1850 0.4955 1.2820 0.7865 0.5247 0.9780 0.4532

R(1) 0.8198 0.0583 0.7821 0.0471 0.7055 0.9341 0.2286 0.7277 0.8376 0.1099
h(1) 0.3347 0.1087 0.3149 0.0590 0.1216 0.5478 0.4262 0.2034 0.4170 0.2136

2

δ 1.6400 0.3231 1.4614 0.2202 1.0067 2.2733 1.2666 1.2305 1.7284 0.4979
θ 0.9122 0.2171 0.7602 0.1941 0.4867 1.3377 0.8510 0.5090 0.9807 0.4717

R(1) 0.8060 0.0627 0.7662 0.0500 0.6832 0.9289 0.2457 0.7115 0.8248 0.1133
h(1) 0.3600 0.1228 0.3365 0.0655 0.1193 0.6007 0.4814 0.2122 0.4520 0.2398

3

δ 1.6816 0.3330 1.4968 0.2297 1.0289 2.3343 1.3055 1.2307 1.7600 0.5293
θ 0.8508 0.2181 0.6970 0.1939 0.4232 1.2783 0.8551 0.4756 0.9421 0.4665

R(1) 0.8139 0.0620 0.7740 0.0506 0.6925 0.9354 0.2429 0.7130 0.8319 0.1189
h(1) 0.3271 0.1185 0.3020 0.0639 0.0948 0.5594 0.4646 0.1882 0.4165 0.2283

Various properties, namely, the mean, mode, median, first/third quartiles, standard
deviation (St.D), and skewness (Skew.) from 40,000 MCMC variates of δ, θ, R(t), and
h(t) were obtained and are presented in Table 6. To highlight the convergence of the
MCMC iterations, from each generated sample by S1 (for example), Figure 6 displays both
the density and trace plots of δ, θ, R(t), and h(t). For discrimination, the solid (—) line
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represents the Bayes estimate while the dashed (- - -) lines represent the HPD interval
bounds. It is clear, from Figure 6, that the MCMC technique converged favorably, and
the suggested size of the burn-in sample was sufficient to eliminate the influence of the
suggested initial values. Moreover, for each sample, Figure 6 shows that the calculated
estimates of δ, θ, and h(t) were fairly symmetrical while those associated with R(t) were
negatively skewed.

Table 6. Summary of MCMC draws of δ, θ, R(t), and h(t) from March precipitation data.

Scheme Sample Par. Mean Mode 1st Quart. Median 3rd Quart. St.D Skew.

S1

1

δ 1.65884 1.44240 1.56456 1.66014 1.75286 0.13707 0.06177
θ 0.80782 0.78396 0.72868 0.80569 0.88953 0.11712 0.03572

R(1) 0.80785 0.76364 0.79082 0.80988 0.82672 0.02632 −0.30505
h(1) 0.31615 0.34999 0.27967 0.31448 0.35220 0.05417 0.21963

2

δ 1.68791 1.33249 1.59475 1.68677 1.77693 0.13267 0.04592
θ 0.75233 0.75994 0.67512 0.74995 0.83252 0.11832 0.03766

R(1) 0.81346 0.73618 0.79704 0.81488 0.83084 0.02478 −0.35833
h(1) 0.28894 0.36288 0.25335 0.28748 0.32189 0.05183 0.24360

3

δ 1.70488 1.39610 1.61328 1.70442 1.79652 0.13674 −0.00785
θ 0.70490 0.56174 0.62146 0.70547 0.78358 0.11780 0.06035

R(1) 0.81649 0.75244 0.80076 0.81812 0.83412 0.02523 −0.44389
h(1) 0.26785 0.25802 0.23289 0.26549 0.30269 0.05073 0.26045

S2

1

δ 2.12012 1.71551 2.02876 2.11993 2.21242 0.13895 −0.03581
θ 0.67875 0.71366 0.60156 0.67956 0.75084 0.10878 0.07255

R(1) 0.87881 0.82013 0.86851 0.87996 0.89056 0.01698 −0.48792
h(1) 0.19689 0.26852 0.17194 0.19544 0.22075 0.03612 0.27805

2

δ 1.68425 1.47094 1.58825 1.68506 1.77899 0.13749 0.07098
θ 0.84661 0.83066 0.76259 0.84304 0.93005 0.11962 0.04259

R(1) 0.81266 0.77029 0.79572 0.81457 0.83119 0.02572 −0.29661
h(1) 0.32609 0.36437 0.28879 0.32443 0.36352 0.05503 0.21025

3

δ 1.68935 1.47765 1.59572 1.68609 1.77855 0.13377 0.07314
θ 0.82559 0.63312 0.74114 0.82271 0.90966 0.12298 0.07918

R(1) 0.81371 0.77183 0.79724 0.81476 0.83112 0.02491 −0.32491
h(1) 0.31675 0.27657 0.27736 0.31461 0.35079 0.05436 0.28526

S3

1

δ 2.15798 1.86332 2.06271 2.15792 2.25137 0.13729 0.14454
θ 0.74578 0.79158 0.67012 0.74546 0.82224 0.11142 0.11278

R(1) 0.88336 0.84484 0.87289 0.88444 0.89475 0.01591 −0.22485
h(1) 0.21087 0.27088 0.18488 0.20956 0.23429 0.03621 0.32873

2

δ 1.82763 1.69518 1.73442 1.82638 1.91578 0.13367 0.12385
θ 0.85736 0.76249 0.77643 0.85412 0.93867 0.11953 0.05221

R(1) 0.83777 0.81643 0.82349 0.83901 0.85277 0.02159 −0.26012
h(1) 0.30121 0.29062 0.26634 0.29833 0.33361 0.04988 0.29036

3

δ 1.86243 1.63762 1.76459 1.86529 1.95677 0.14061 0.12317
θ 0.79707 0.61631 0.72013 0.80131 0.87467 0.11919 0.03519

R(1) 0.84317 0.80556 0.82874 0.84515 0.85869 0.02193 −0.23488
h(1) 0.27368 0.24361 0.24158 0.27169 0.30419 0.04713 0.25244

δ 1.53202 1.32668 1.44701 1.53007 1.61764 0.12947 0.04637

S4

1

θ 0.74345 0.60097 0.66593 0.74052 0.82041 0.11459 0.07596
R(1) 0.78209 0.73464 0.76473 0.78348 0.80163 0.02825 −0.34439
h(1) 0.31494 0.28799 0.27636 0.31184 0.35151 0.05561 0.25228

δ 1.46145 1.28186 1.37635 1.45918 1.54745 0.12887 0.04011

2

θ 0.76024 0.68648 0.68097 0.75701 0.84119 0.12069 0.05982
R(1) 0.76617 0.72248 0.74751 0.76757 0.78721 0.03021 −0.37683
h(1) 0.33652 0.33802 0.29477 0.33514 0.37521 0.06116 0.26036

δ 1.49676 1.11375 1.40627 1.49904 1.58976 0.13635 −0.05557

3
θ 0.69695 0.63129 0.61659 0.69281 0.77564 0.11814 0.15571

R(1) 0.77405 0.67168 0.75494 0.77666 0.79603 0.03108 −0.47954
h(1) 0.30203 0.34369 0.26199 0.29914 0.34097 0.05874 0.29132
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According to the optimum criteria Ci, i = 1, 2, 3, 4 presented in Section 6, utilizing
the generated samples in Table 4, the best PC-T2 plan was also proposed; see Table 7. It is
evident that

• Via criterion C1, the schemes S2 (in sample 1) and S1 (in samples 2 and 3) were the
optimum plans.

• Via criteria Ci, i = 2, 3, 4, the scheme S4 (in samples 1, 2, and 3) was the optimum plan.
• The ideal PC-T2 plans suggested here confirmed the findings listed in Section 5.

Figure 6. Density (left) and trace (right) plots of δ, θ, R(t), and h(t) from March precipitation data.

Table 7. Optimum PC-T2 plans from March precipitation data.

Sample
Scheme C1 C2 C3

C4

$→ 0.3 0.6 0.9

1

S1 33.1788 0.17613 0.00531 0.13763 2.38870 311.913
S2 40.1670 0.20691 0.00515 0.32813 6.92420 1148.77
S3 38.4794 0.24774 0.00644 0.29390 4.63153 535.519
S4 34.9765 0.14503 0.00415 0.12876 1.95256 182.945

2

S1 32.4967 0.18138 0.00558 0.17374 2.88478 333.724
S2 28.9297 0.19837 0.00686 0.13316 2.11421 253.737
S3 29.5870 0.23382 0.00790 0.16429 1.92208 137.821
S4 31.9176 0.15153 0.00475 0.11751 1.70550 135.791

3

S1 31.2816 0.18753 0.00599 0.21677 4.17175 580.510
S2 27.1783 0.20486 0.00754 0.16105 3.54841 556.485
S3 29.0505 0.24319 0.00837 0.21440 2.93514 262.146
S4 31.2035 0.15850 0.00508 0.14613 2.00214 168.034
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7.2. Vehicle Fatalities

For this application, we analyzed a real data set representing the number of vehicle
fatalities for thirty-nine counties in South Carolina during 2012. These data were obtained
from the National Highway Traffic Safety Administration (www-fars.nhtsa.dot.gov/States)
and reported first by Mann [33]; see Table 8. First, to check the fit status, the KS statistics
(with its p-value) and MLEs (with their SEs) based on all of vehicle fatalities data were
computed. From Table 8, the MLEs (SEs) of δ and θ were 7.8474 (1.8243) and 0.9719
(0.1068), respectively, meanwhile the KS (p-value) was 0.1648 (0.240). It showed that the Fr
distribution was a suitable life model for the vehicle fatalities data. Additionally, Figure 7
corroborated the same goodness-of-fit results and suggested taking the estimates δ̂ ∼= 7.8474
and θ̂ ∼= 0.9719 (that is, θ̂ existed and was unique) as initial guesses to run any proposed
numerical evaluations.

Table 8. Motor vehicle deaths in South Carolina for 2012.

22 26 17 4 48 9 9 31 27 20
12 6 5 14 9 16 3 33 9 20
68 13 51 13 2 4 17 16 6 52
50 48 23 12 13 10 15 8 1
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Figure 7. Empirical/fitted RFs (left); contour (right) plots from vehicle fatalities data.

To evaluate our acquired estimators, different artificial GPHC-T2 samples (when
m = 20) based on different choices of R and Ti, i = 1, 2 were obtained from the vehicle
fatalities data and are presented in Table 9. The censoring mechanisms used here were
designed as S1 : (1∗19, 0), S2 : (3∗3, 0∗13, 1, 3∗3), S3 : (6∗3, 0∗16, 1), and S4 : (1, 0∗16, 6∗3).

From Table 9, the point and interval estimates obtained via the maximum likelihood
and Bayes estimation approaches of δ, θ, R(t), and h(t) (at t = 5) were determined and
are provided in Table 10. The Bayesian results were carried out under the noninformative
priors. As a result, from Table 10, the point estimates of the unknown parameters had
the same behavior, as they appeared to be near each other. A similar behavior was also
observed in the case of interval estimates. This was an expected result due to the lack of
additional historical information that could be used, which in turn made no significant
difference between the proposed frequentist and Bayesian estimates.

www-fars.nhtsa.dot.gov/States
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Table 9. GPHC-T2 samples from vehicle fatalities data.

Scheme Sample T1(d1) T2(d2) Generated Data R∗ T∗

S1

1 70(21) 75(21) 1, 2, 4, 5, 6, 9, 9, 10, 12, 13, 14, 16, 17, 20, 22, 26, 31, 48, 50, 52, 68 0 70
2 35(17) 60(20) 1, 2, 4, 5, 6, 9, 9, 10, 12, 13, 14, 16, 17, 20, 22, 26, 31, 48, 50, 52 0 52
3 25(15) 49(18) 1, 2, 4, 5, 6, 9, 9, 10, 12, 13, 14, 16, 17, 20, 22, 26, 31, 48 4 49

S2

1 55(22) 70(22) 1, 4, 8, 9, 10, 12, 12, 13, 13, 13, 14, 15, 16, 16, 17, 17, 20, 22, 31, 50, 51, 52 1 55
2 18(16) 60(20) 1, 4, 8, 9, 10, 12, 12, 13, 13, 13, 14, 15, 16, 16, 17, 17, 20, 22, 31, 50 0 50
3 21(17) 40(19) 1, 4, 8, 9, 10, 12, 12, 13, 13, 13, 14, 15, 16, 16, 17, 17, 20, 22, 31 4 40

S3

1 70(21) 75(21) 1, 6, 12, 16, 16, 17, 17, 20, 20, 22, 23, 26, 27, 31, 33, 48, 48, 50, 51, 52, 68 0 70
2 40(15) 70(20) 1, 6, 12, 16, 16, 17, 17, 20, 20, 22, 23, 26, 27, 31, 33, 48, 48, 50, 51, 52 0 52
3 19(7) 49(17) 1, 6, 12, 16, 16, 17, 17, 20, 20, 22, 23, 26, 27, 31, 33, 48, 48 4 49

S4

1 49(22) 70(22) 1, 3, 4, 4, 5, 6, 6, 8, 9, 9, 9, 9, 10, 12, 12, 13, 13, 13, 20, 33, 48, 48 4 49
2 30(19) 50(20) 1, 3, 4, 4, 5, 6, 6, 8, 9, 9, 9, 9, 10, 12, 12, 13, 13, 13, 20, 33 0 33
3 19(18) 32(19) 1, 3, 4, 4, 5, 6, 6, 8, 9, 9, 9, 9, 10, 12, 12, 13, 13, 13, 20 6 30

Table 10. Point and 95% interval estimates of δ, θ, R(t), and h(t) from vehicle fatalities data.

Scheme Sample Par.
MLE MCMC ACI HPD

Est. SE Est. SE Lower Upper Width Lower Upper Width

∞2

1

δ 6.4352 1.6264 6.2790 0.1963 3.2476 9.6229 6.3753 6.0529 6.5206 0.4677
θ 0.6926 0.1043 0.6494 0.0729 0.4881 0.8971 0.4090 0.5393 0.7655 0.2262

R(5) 0.8789 0.0430 0.8887 0.0252 0.7945 0.9632 0.1687 0.8425 0.9308 0.0883
h(5) 0.0403 0.0106 0.0359 0.0093 0.0195 0.0611 0.0415 0.0215 0.0527 0.0313

2

δ 6.2622 1.5457 6.0989 0.2048 3.2327 9.2917 6.0590 5.8370 6.3190 0.4820
θ 0.6751 0.1031 0.6313 0.0734 0.4729 0.8772 0.4043 0.5138 0.7441 0.2303

R(5) 0.8791 0.0424 0.8887 0.0252 0.7961 0.9621 0.1660 0.8417 0.9307 0.0889
h(5) 0.0392 0.0104 0.0349 0.0092 0.0189 0.0596 0.0407 0.0201 0.0511 0.0310

3

δ 5.8676 1.4876 5.6906 0.2217 2.9520 8.7833 5.8313 5.3873 5.9128 0.5255
θ 0.6320 0.1048 0.5869 0.0731 0.4265 0.8375 0.4109 0.4742 0.6977 0.2236

R(5) 0.8802 0.0426 0.8893 0.0243 0.7966 0.9638 0.1672 0.8429 0.9296 0.0866
h(5) 0.0365 0.0099 0.0324 0.0086 0.0172 0.0558 0.0386 0.0188 0.0477 0.0288

S2

1

δ 7.5035 2.0715 7.2561 0.2921 3.4434 11.564 8.1202 6.9272 7.5138 0.5866
θ 0.6528 0.0995 0.6161 0.0627 0.4577 0.8479 0.3902 0.5127 0.7128 0.2001

R(5) 0.9275 0.0326 0.9312 0.0155 0.8636 0.9914 0.1278 0.9007 0.9579 0.0572
h(5) 0.0268 0.0078 0.0245 0.0062 0.0115 0.0421 0.0305 0.0141 0.0359 0.0218

2

δ 7.7362 2.0966 7.4992 0.2785 3.6270 11.846 8.2186 7.2111 7.7641 0.5530
θ 0.7523 0.1103 0.7077 0.0744 0.5362 0.9684 0.4323 0.5860 0.8211 0.2352

R(5) 0.9003 0.0401 0.9079 0.0225 0.8216 0.9789 0.1573 0.8667 0.9483 0.0816
h(5) 0.0384 0.0109 0.0344 0.0092 0.0170 0.0598 0.0428 0.0188 0.0507 0.0318

3

δ 7.6067 2.0985 7.3867 0.2595 3.4937 11.720 8.2262 7.1073 7.6411 0.5337
θ 0.7420 0.1124 0.6938 0.0783 0.5217 0.9623 0.4406 0.5712 0.8133 0.2421

R(5) 0.9002 0.0404 0.9094 0.0236 0.8210 0.9794 0.1584 0.8676 0.9493 0.0817
h(5) 0.0379 0.0108 0.0334 0.0095 0.0167 0.0592 0.0425 0.0178 0.0495 0.0317

S3

1

δ 9.2039 2.7553 8.9694 0.2811 3.8036 14.604 10.801 8.6897 9.2987 0.6090
θ 0.7815 0.1100 0.7387 0.0745 0.5658 0.9971 0.4313 0.6238 0.8582 0.2344

R(5) 0.9270 0.0378 0.9333 0.0191 0.8529 0.9978 0.1449 0.8984 0.9652 0.0668
h(5) 0.0322 0.0112 0.0287 0.0085 0.0102 0.0543 0.0441 0.0149 0.0440 0.0291

2

δ 8.9795 2.6017 8.7588 0.2627 3.8802 14.079 10.199 8.5049 9.0478 0.5430
θ 0.7661 0.1083 0.7230 0.0748 0.5539 0.9784 0.4246 0.5989 0.8415 0.2425

R(5) 0.9270 0.0368 0.9336 0.0190 0.8548 0.9991 0.1444 0.8984 0.9662 0.0678
h(5) 0.0316 0.0109 0.0280 0.0084 0.0102 0.0530 0.0427 0.0138 0.0428 0.0291

3

δ 8.1794 2.3471 7.9443 0.2780 3.5792 12.780 9.2004 7.6748 8.2128 0.5381
θ 0.7061 0.1083 0.6605 0.0774 0.4938 0.9184 0.4246 0.5440 0.7805 0.2366

R(5) 0.9276 0.0361 0.9341 0.0194 0.8569 0.9983 0.1414 0.8988 0.9659 0.0671
h(5) 0.0289 0.0100 0.0255 0.0081 0.0094 0.0485 0.0391 0.0124 0.0395 0.0271
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Table 10. Cont.

Scheme Sample Par.
MLE MCMC ACI HPD

Est. SE Est. SE Lower Upper Width Lower Upper Width

S4

1

δ 6.2440 1.5894 6.0212 0.2627 3.1289 9.3591 6.2302 5.7671 6.2754 0.5083
θ 0.7337 0.1116 0.6827 0.0818 0.5149 0.9524 0.4375 0.5578 0.8022 0.2444

R(5) 0.8530 0.0461 0.8641 0.0299 0.7625 0.9434 0.1809 0.8112 0.9156 0.1044
h(5) 0.0485 0.0118 0.0431 0.0111 0.0254 0.0715 0.0461 0.0251 0.0616 0.0365

2

δ 6.0989 1.6122 5.8599 0.2795 2.9389 9.2588 6.3199 5.6177 6.1841 0.5664
θ 0.7190 0.1167 0.6667 0.0816 0.4902 0.9479 0.4577 0.5402 0.7844 0.2443

R(5) 0.8530 0.0466 0.8637 0.0296 0.7615 0.9444 0.1829 0.8109 0.9164 0.1055
h(5) 0.0475 0.0118 0.0422 0.0109 0.0245 0.0706 0.0461 0.0242 0.0600 0.0359

3

δ 6.0137 1.5585 5.7737 0.2813 2.9591 9.0684 6.1093 5.4699 6.0277 0.5578
θ 0.7203 0.1177 0.6635 0.0880 0.4896 0.9510 0.4614 0.5395 0.8025 0.2631

R(5) 0.8484 0.0471 0.8609 0.0321 0.7561 0.9408 0.1847 0.7997 0.9141 0.1143
h(5) 0.0486 0.0122 0.0426 0.0118 0.0247 0.0724 0.0478 0.0243 0.0630 0.0387

The vital statistics of δ, θ, R(t), and h(t), obtained based on 40,000 MCMC variates,
namely, the mean, mode, median, first/third quartiles, St.D, and skewness were calculated
and are listed in Table 11. Moreover, using the data sets generated by S1 as an example, the
density and trace plots of δ, θ, R(t), and h(t) were plotted and are displayed in Figure 8.
They demonstrated that the MCMC method converged effectively. It is also clear that the
MCMC iterations of δ and θ were fairly symmetrical while those associated with R(t) and
h(t) were negatively and positively skewed, respectively.

Table 11. MCMC properties of δ, θ, R(t), and h(t) from vehicle fatalities data.

Scheme Sample Par. Mean Mode 1st Quart. Median 3rd Quart. St.D Skew.

S1

1

δ 6.27902 6.07238 6.19440 6.27871 6.35796 0.11885 0.12109
θ 0.64937 0.60836 0.60836 0.64920 0.68829 0.05868 0.10751

R(5) 0.88874 0.89782 0.87410 0.89025 0.90534 0.02314 −0.45401
h(5) 0.03592 0.03158 0.02987 0.03539 0.04103 0.00819 0.47887

2

δ 6.09886 5.83703 6.01562 6.10033 6.17950 0.12355 −0.00218
θ 0.63130 0.59457 0.59062 0.63021 0.66983 0.05894 0.16323

R(5) 0.88871 0.89373 0.87396 0.89032 0.90551 0.02330 −0.50969
h(5) 0.03494 0.03169 0.02915 0.03425 0.03991 0.00811 0.54586

3

δ 6.09886 5.83703 6.01562 6.10033 6.17950 0.12355 −0.00218
θ 0.63130 0.59457 0.59062 0.63021 0.66983 0.05894 0.16323

R(5) 0.88871 0.89373 0.87396 0.89032 0.90551 0.02330 −0.50969
h(5) 0.03494 0.03169 0.02915 0.03425 0.03991 0.00811 0.54586

S2

1

δ 7.25614 6.92722 7.14857 7.26059 7.36376 0.15535 −0.05403
θ 0.61609 0.58145 0.58145 0.61666 0.65115 0.05087 0.09922

R(5) 0.93118 0.93395 0.92209 0.93217 0.94205 0.01510 −0.47310
h(5) 0.02451 0.02235 0.02046 0.02411 0.02811 0.00574 0.50290

2

δ 7.49919 7.29232 7.39787 7.49533 7.59669 0.14611 0.14063
θ 0.70769 0.71028 0.66841 0.70805 0.74481 0.05960 0.06435

R(5) 0.90789 0.90220 0.89555 0.90828 0.92348 0.02120 −0.45521
h(5) 0.03443 0.03580 0.02853 0.03409 0.03933 0.00825 0.47964

3

δ 7.38668 7.10877 7.28818 7.38192 7.47749 0.13747 0.20688
θ 0.69382 0.73684 0.65019 0.69430 0.73573 0.06176 0.08418

R(5) 0.90938 0.88600 0.89566 0.91127 0.92470 0.02170 −0.53495
h(5) 0.03341 0.04118 0.02753 0.03274 0.03856 0.00838 0.53320
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Table 11. Cont.

Scheme Sample Par. Mean Mode 1st Quart. Median 3rd Quart. St.D Skew.

S3

1

δ 8.96935 8.58414 8.87126 8.97489 9.07186 0.15489 −0.11977
θ 0.73871 0.79551 0.69502 0.73939 0.78131 0.06101 0.07219

R(5) 0.93335 0.90800 0.92240 0.93476 0.94659 0.01795 −0.57091
h(5) 0.02873 0.03846 0.02306 0.02822 0.03361 0.00776 0.54583

2

δ 8.75879 8.52297 8.65921 8.75582 8.85316 0.14244 0.13097
θ 0.72303 0.66433 0.68138 0.72298 0.76373 0.06108 0.10960

R(5) 0.93364 0.94638 0.92273 0.93515 0.94626 0.01782 −0.63479
h(5) 0.02805 0.02203 0.02266 0.02752 0.03260 0.00762 0.61696

3

δ 7.94430 7.67479 7.83967 7.94385 8.04518 0.14838 0.20050
θ 0.66047 0.71265 0.61505 0.65708 0.70477 0.06251 0.13608

R(5) 0.93411 0.91262 0.92193 0.93677 0.94782 0.01824 −0.63194
h(5) 0.02554 0.03326 0.01996 0.02442 0.03041 0.00734 0.62253

δ 6.02117 5.85999 5.91772 6.01872 6.11777 0.13903 0.23533

S4

1

θ 0.68273 0.61467 0.63882 0.68367 0.72573 0.06396 0.05950
R(5) 0.86408 0.88685 0.84640 0.86541 0.88432 0.02776 −0.37107
h(5) 0.04313 0.03418 0.03578 0.04260 0.04920 0.00973 0.39941

δ 5.85988 5.53493 5.76293 5.85735 5.95667 0.14492 0.07564

2

θ 0.66665 0.68793 0.62290 0.66654 0.70781 0.06254 0.07949
R(5) 0.86374 0.83947 0.84488 0.86631 0.88260 0.02761 −0.37640
h(5) 0.04218 0.04813 0.03531 0.04143 0.04813 0.00947 0.41417

δ 5.77368 5.47975 5.67229 5.76992 5.87478 0.14664 0.09816

3

θ 0.66351 0.63075 0.61691 0.66383 0.70766 0.06721 0.06895
R(5) 0.86094 0.86270 0.84218 0.86270 0.88203 0.02955 −0.42338
h(5) 0.04258 0.03986 0.03520 0.04198 0.04890 0.01013 0.45365

Figure 8. Density (left) and trace (right) plots of δ, θ, R(t), and h(t) from vehicle fatalities data.

Again, from Table 9, the problem of selecting an optimum PC-T2 plan is also illustrated
based on vehicle fatalities data; see Table 12. It shows that:
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• Via criterion C1, the schemes S2 (in samples 1 and 2) and S3 (in sample 3) were the
optimum plans.

• Via criteria Ci, i = 2, 3, the scheme S1 (in samples 1, 2, and 3) was the optimum plan.
• Via criterion C4; the scheme S4 (in samples 1, 2, and 3) was the optimum plan.
• The ideal PC-T2 plans provided here supported our findings from Section 5 as well.

Finally, based on both physical and engineering scenarios, we can draw the conclusion
that the investigated approaches provided an adequate interpretation of the Fréchet lifetime
model when a sample was generated from the generalized Type-II progressive hybrid
censoring mechanism.

Table 12. Optimum PC-T2 plans from vehicle fatalities data.

Sample
Scheme C1 C2 C3

C4

$→ 0.3 0.6 0.9

1

S1 224.0199 2.395783 0.010695 9.631151 256.7524 92,617.13
S2 308.4324 4.30110 0.013945 17.72368 517.4279 227,824.3
S3 205.2758 7.603747 0.037042 11.68548 179.4937 29,616.80
S4 196.9198 2.538555 0.012891 4.878394 104.0239 26,231.06

2

S1 200.1599 2.492961 0.012455 8.04740 196.9935 60,769.58
S2 206.0574 4.407945 0.021392 8.279247 157.4971 35,747.67
S3 205.3611 6.780726 0.033019 12.5469 208.1168 37,439.37
S4 190.6955 2.612971 0.01370 5.328222 125.0294 33,173.61

3

S1 201.6662 2.360953 0.011707 10.68031 328.4031 145,470.3
S2 203.6842 4.416535 0.021683 8.808981 176.8395 40,252.86
S3 207.2369 5.52049 0.026639 17.9720 393.9506 106,057.5
S4 180.4068 2.442885 0.013541 5.187278 123.4222 34,735.87

8. Concluding Remarks

This work considered the generalized Type-II progressive hybrid censoring-based
Fréchet model’s reliability analysis of the unknown parameters, reliability and hazard rate
functions. The Newton–Raphson iterative approach was used to calculate the frequentist
estimates with their asymptotic confidence intervals for the unknown parameters and any
function of them using the R programming language’s “maxLik” package. The posterior
density function was derived in nonlinear form since the likelihood function was generated
in complex form. Therefore, using the Metropolis–Hastings method and taking into account
the squared-error loss, the Bayesian estimates and the corresponding HPD intervals were
constructed. Numerous simulation experiments based on various selections of total test
units, observed failure data, threshold times, and progressive censoring plans were carried
out to compare the behavior of the acquired estimates, and they demonstrated that the
Bayes MCMC approach outperformed the frequentist approach quite satisfactorily. It
is advised to use the Bayesian MCMC paradigm to estimate the Fréchet distribution’s
parameters, reliability, and hazard functions under generalized Type-II progressive hybrid
censoring. To show how the suggested methods could be applied in practical situations, two
applications representing the successive values (in inches) of precipitation in Minneapolis–
Saint Paul and the number of vehicle fatalities in South Carolina were examined. We
anticipate reliability practitioners will find the findings and methodology presented here
useful and that they will be applied to further filtering strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym15020348/s1, Table S1: The APEs (1st column), RMSEs (2nd
column) and MRABs (3rd column) of δ; Table S2: The APEs (1st column), RMSEs (2nd column) and
MRABs (3rd column) of θ; Table S3: The APEs (1st column), RMSEs (2nd column) and MRABs (3rd
column) of R(t); Table S4: The APEs (1st column), RMSEs (2nd column) and MRABs (3rd column) of
h(t); Table S5: The ACLs (1st column) and CPs (2nd column) of 95% ACI/HPD credible intervals of
δ; Table S6: The ACLs (1st column) and CPs (2nd column) of 95% ACI/HPD credible intervals of θ;
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Table S7: The ACLs (1st column) and CPs (2nd column) of 95% ACI/HPD credible intervals of R(t);
Table S8: The ACLs (1st column) and CPs (2nd column) of 95% ACI/HPD credible intervals of h(t).
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