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Abstract: Navier–Stokes equations (NS-equations) are applied extensively for the study of various
waves phenomena where the symmetries are involved. In this paper, we discuss the NS-equations
with the time-fractional derivative of order β ∈ (0, 1). In fractional media, these equations can be
utilized to recreate anomalous diffusion equations which can be used to construct symmetries. We
examine the initial value problem involving the symmetric Stokes operator and gravitational force
utilizing the Caputo fractional derivative. Additionally, we demonstrate the global and local mild
solutions in Hα,p. We also demonstrate the regularity of classical solutions in such circumstances. An
example is presented to demonstrate the reliability of our findings.
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1. Introduction

Because of their importance in fluid mechanics, the Navier–Stokes equations have
been extensively studied by various researchers. NS-equations are partial differential
equations that describe the flow of incompressible fluid. These equations are generalization
of the equations devised by Swiss mathematician Leonhard Euler in the eighteen century
to describe the flow of incompressible and frictionless fluids. The NS-equations are useful
because they describe the physics of many scientific and engineering phenomena. These
can be used to simulate weather, ocean currents, water flow in a pipe, and airflow around
a wing etc. The difference between the NS-equations and the Euler equations is that
the NS-equations account for viscosity, whereas the Euler equations exclusively simulate
inviscid flow.

As a result, the NS-equations are parabolic equations, which have exceptional analytic
features. In a purely mathematical sense, the NS-equations are extremely interesting.
Despite its extensive range of applications, it is still unknown if smooth solutions always
exist in three dimensions, that is, whether these are infinite and differentiable at all points
in the domain. The existence and smoothness problem is known as the Navier–Stokes
problem.

Different scholars focus on mass and momentum conservation and describe useful
phenomena concerning the motion of the incompressible fluid flow, ranging from large-
scale atmospheric motions to the lubricant in ball bearings; see, Varnhorn [1], as well as
Cannone [2]. Similarly, Rieusset [3] discussed the existence, uniqueness and regularity of
NS-equations.

Jean Leray was a French mathematician who work on both PDEs and algebraic topol-
ogy and explained a fascinating phenomenon. The Leray projection is a linear operator
that is useful in the theory of partial differential equations, particularly in the subject of
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fluid dynamics. It can be considered as a projection on a vector field with no divergence. In
the Stokes equations and NS-equations, it is applied to eliminate both the pressure term
and the divergence-free term; see [4].

Aljandro Rangel-Huerts and Blanca Bermudez solved NS-equations using two unique
formulations with moderate and high Reynolds numbers. They used two numerical
solutions of lid-driven cavity and Taylor vortex problems. These problems can be solved
by using stream function vorticity in two dimensions of NS-equations; see [5]. Moreover,
Gallgher [6], Giga [7], Rejaiba [8], Kozono [9], Sell [10] and Choe [11] found unique results
on the regularity of weak and strong solutions. Emilia Bazhlekova et al. [12] analyzed
the Rayleigh Stokes’ problems. Rayleigh problem is also known as Stokes’ first problem
which is a problem of determining the flow created by a sudden movement of an infinitely
long plate from rest named after Lord Rayleigh and Sir George Stokes. The authors studied
the Reyleigh problems involving RL-fractional derivative. They worked on smooth and
non-smoothness initial data for Sobolev regularity of homogeneous problems.

On the contrary, fractional calculus has received a lot of attention in recent years. Many
of the fundamental piece of calculus are related to fluid mechanics like total derivative,
gradients, divergence and rotation. Fractional calculus proved that the topic indeed is
very promising like in control theory of dynamical system, porous structure, viscoelasticity
and among others; see, e.g., Hilfer [13], Herrmann [14], and Zhou [15–17]. Such models
are important not just in Physics but also in pure mathematics. Recently, experimental
data and theoretical analysis have shown that the diffusion equation fails to describes the
diffusion phenomena in porous media. Basically, the diffusion equation is a parabolic
PDE. In Physics, it describe the microscopic behavior of many microparticles in Brownain
motion.

Do NS-equations describe all the motion of the fluid? Serkan Solmaz gave an in-
teresting fact that the NS-equations encompass all types of fluid motion in case they are
combined with a related mathematical model such as multi-phase flow, chemical reaction
and turbulent etc. It is significant to specify the degree of error throughout the analysis
in which the NS-equations enable a reasonable range of error. Thereby, these are the most
famous equations that examine the motion of fluid reliably. Different authors talked about
the time fractional NS-equations; see [18–20]. Moreover, to the best of our insight there
are not many results on the existence, uniqueness and regularity of mild solution for time
fractional NS-equations.

Keeping this in view, we discuss the time fractional NS-equations in an open set
Ω ⊂ Rm(m ≥ 3):

∂
β
t v− µ∆v + (v · ∇)v = −∇p + ρg + µ∇2~v, 0 < t,
∇ · v = 0,

v
∂Ω = 0,
v(0, y) = ax + b,

(1)

where ρ

(
∂v
∂t + (v · ∇)v

)
= ρ Dv

Dt , g is a gravitational force or body force, −∇p is a pressure

gradient, µ∇2−→v is viscous term or diffusion term, ρ Dv
Dt is local acceleration and ∂

β
t be the

Caputo fractional derivative with order β ∈ (0, 1), y ∈ Ω and the time 0 < t. By applying a
well-known Helmholtz projector P on (1) for getting rid of the pressure term, one has

∂
β
t v− µP∆v + P(v · ∇)v = Pg, 0 < t,
∇ · v = 0,

v
∂Ω = 0,
v(0, y) = b.
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B is the Stokes operator under consideration, where b is the initial velocity and −µP∆ is
the Dirichlet boundary condition. The abstract form of (1) is{

CDβ
t v = −Bv + F(v, w) + Pg, 0 < t,

v(0) = b,
(2)

where −P(v · ∇)w = F(v, w).
The arrangement of the paper is as: In Section 2, we review some helpful preliminaries.

In Section 3, study of the global and local existence of mild solutions of problem (2) in Hβ,p

is conducted. In Section 4, the regularity of classic solutions in Qp will be discussed. At
last, an example will be presented.

2. Preliminaries

In this section, we discuss some known definitions, notations and results.
Suppose that, ω = {(y1, ..., ym) : ym > 0} be an open subset of Rm where m ≥ 3 and
1 < p < ∞. Then there exists a bounded projection

C∞
$ (ω) = {v ∈ (C∞(ω))m : ∇ · v = 0, vhascompactinω},

as well as the null space is the closure of

{v ∈ (C∞(ω))m : v = ∇ϕ, ϕ ∈ C∞(ω)}.

Suppose that, Qp = C∞
$ (ω)

|·|
, be the closed subspace of (Lp(ω))m. (Mn,p(ω))m be a

Sobolev space along the norm | · |n,p.
B = −µP∆ is said to be the Stokes operator in Qp whose domain is Dp(B) =

Dp(∆)
⋂

hp. Here

Dp(∆) = {v ∈ (M2,p(ω))m :
v

∂ω
= 0}.

It is noted that −B is a closed linear operator as well as generates the bounded analytic
semi-group {e−tB} on Qp.

We present new fractional power space definitions that are connected to−B. For α > 0
as well as v ∈ Qp, define

B−αv =
1

Γ(α)

∫ ∞

0
tα−1e−tBvdt.

B−α is bounded and one-to-one operator on Qp. Suppose that Bα is the inverse of B−α. For
α > 0, indicate the space Hα,p according to the range B−α along the norm

|v|Hα,p = |Bαv|p.

It is not difficult to see that e−tB restrict to be a bounded analytic semi-group on Hα,p, for
further details; see [21].

Suppose that Y is a Banach space as well as Q is the interval of R. All continuous Y
valued functions are represented by C(Q, Y). So for 0 < ζ < 1, Cζ(Q, Y) indicates for the
set of all functions is Holder continuous along the exponent ζ.

Assume that β ∈ (0, 1) as well as w : [0, ∞)→ Y, the fractional integral with the order
β along the lower limit zero for the function w is defined as

Iβ
t w(t) =

∫ ∞

0
hβ(t− s)w(s)ds, 0 < t,

the R.H.S is point-wise defined on the interval [0, ∞), where hβ is said to be the Riemann-
Liouville kernel

hβ(t) =
tβ−1

Γ(β)
, 0 < t.
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CDβ
t indicates the Caputo fractional derivative operator with order β. It can be describe as

CDβ
t w(t) =

d
dt
[I1−β
t (w(t)− w(0))] =

d
dt

( ∫ t

0
h1−β(t− s)(w(t)− w(0))ds

)
, 0 < t.

Generally, for w = [0, ∞) × Rm → Rm, Caputo fractional derivative w.r.t time for the
function w can be defined as

∂
β
t v(t, y) = ∂t

( ∫ t

0
h1−β(t− s)(v(t, y)− v(t, 0))ds

)
, 0 < t,

for further details; see [22]. Now, we define generalized Mittag-Leffler functions:

Eβ(−tβB) =
∫ ∞

0
Mβ(s)e−stβBds, Eβ,β(−tβB) =

∫ ∞

0
βsMβ(s)e−stβBds,

whereM(θ) is Mainardi’s Wright Type function defined as

Mβ(θ) =
∞

∑
g=0

θm

m!Γ(1− β(1 + m))
.

Lemma 1. In uniform operator topology, 0 < t, Eβ(−tβB) and Eβ,β(−tβB) are continuous. On
the interval [r, ∞], the continuity is uniform for every 0 < r.

Lemma 2. Let 0 < β < 1. At that point the following properties holds:
(i) for every v ∈ Y, limt→0+ Eβ(−tβB)v = v;
(ii) for every v ∈ D(B) and 0 < t,C Dt

βEβ(−tβB)v = −BEβ(−tβB)v;
(iii) for every v ∈ Y, E′β(−tβB)v = −tβ−1BEβ,β(−tβB)v;

(iv) for 0 < t, Eβ(−tβB)v = I1−β
t (tβ−1Eβ,β(−tβB)v).

Definition 1. A function v : [0, ∞)→ Hα,p is said to be the global mild solution of (2) in Hα,p, if
v ∈ C([0, ∞), Hα,p) and for t ∈ [0, ∞)

v(t) = Eβ(−tβB)b +
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)F(v(s), w(s))ds (3)

+
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)Pg(s)ds.

Definition 2. Suppose that 0 < T < ∞. A local mild solution of problem (2) in Hα,p or in Qp,
is a function v : [0,T] → Hα,p (Qp), if v ∈ C([0,T], Hα.p) as well as v fulfils (3) for interval
t ∈ [0,T].

ϕ(t) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)g(s)ds

U (v, w) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)F(v(s), w(s))ds.

Lemma 3. Suppose that (Y, ‖ · ‖Y) is a Banach space, O : Y×Y → Y be a bi-linear operator as
well as K be a non-negative real number in such a way that

‖O(v, w)‖Y ≤ K‖v‖Y‖w‖Y, f orallv, w ∈ Y.

Then, for some v0 ∈ Y with ‖v0‖Y < 1
4K , the relation v = v0 + O(v, w) must have a unique

solution v ∈ Y.
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The system (2) is equal to the following integral:

v(t) = b +
1

Γ(β)

∫ t

0
(t− s)β−1

(
Bv(s) + F(v(s), w(s)) + Pg(s)

)
ds, 0 ≤ t, (4)

provided the integral (4) exist.

Theorem 1. If (4) holds, then

v(t) = Eβ(−tβB)b +
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)F(v(s), w(s))ds

+
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)Pg(s)ds,

where

Eβ(−tβB) =
∫ ∞

0
Mβ(θ)T(tβθ)dθ, Eβ,β(−tβB) =

∫ ∞

0
βθMβ(θ)T(tβθ)dθ.

Proof. Let λ > 0

ν(λ) =
∫ ∞

0
e−λsv(s)ds, µ(λ) =

∫ ∞

0
e−λsg(s)ds.

Apply Laplace Transformation on (4)

ν(λ) = λβ−1(λβ I − B)−1b + (λβ I − B)−1µ(λ),

for t ≥ 0

ν(λ) = λβ−1
∫ ∞

0
e−λβsT(s)bds +

∫ ∞

0
e−λβsT(s)µ(λ)ds.

Let
φβ(θ) =

β

θβ+1 Mβ(θ
−β), β∈ (0, 1),

and its Laplace Transform is given by∫ ∞

0
e−λθφβ(θ)dθ = e−λβ

, (5)

using (4), so

λβ−1
∫ ∞

0
e−λβsT(s)bds =

∫ ∞

0
β(λt)β−1e−(λt)

β
T(tβ)bdt

=
∫ ∞

0
− 1

λ

d
dt

( ∫ ∞

0
e(−λt)β

φβ(θ)dθ

)
T(tβ)bdt

=
∫ ∞

0

∫ ∞

0

−λθ

−λ
e−λtθφβ(θ)T(tβ)bdt

=
∫ ∞

0

∫ ∞

0
θφβ(θ)e−λtθT(tβ)bdtdθ (6)

=
∫ ∞

0

∫ ∞

0
φβ(θ)e−λtT(

tβ

θβ
)bdθdt

=
∫ ∞

0
e−λt

[ ∫ ∞

0
φβ(θ)T(

tβ

θβ
)b
]

dθdt

= L
[ ∫ ∞

0
Mβ(θ)T(tβθ)bdθ

]
(λ)

= L[Eβ(−tβB)b](λ).
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Similarly

∫ ∞

0
e−λβsT(s)µ(λ)ds =

∫ ∞

0

∫ ∞

0
βtβ−1e(−λt)β

T(tβ)e−λs[F(v(s), w(s)) + Pg(s)]dsdt

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
βtβ−1φβ(θ)e−λtθT(tβ)e−λs[F(v(s), w(s)) + Pg(s)]dθdsdt

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
β
tβ−1

θβ
φβ(θ)T(

tβ

θβ
)e−λ(t+s)[F(v(s), w(s)) + Pg(s)]dθdsdt

=
∫ ∞

0
e−λt

[
β
∫ t

0

∫ ∞

0
φβ(θ)T

(
(t− s)β

θβ

)
(t− s)β−1

θβ

[F(v(s), w(s)) + Pg(s)]dθds
]

dt. (7)

Combining Equations (5), (6) and (7), one has

ν(λ) =
∫ ∞

0
e−λt

[ ∫ ∞

0
φβ(θ)T(

tβ

θβ
)bdθ + β

∫ t

0

∫ ∞

0
φβ(θ)T

(
(t− s)β

θβ

)
(t− s)β−1

θβ

[F(v(s), w(s)) + Pg(s)]dθds
]

.

By applying the Laplace Transform,

v(t)

=
∫ ∞

0
φβ(θ)T(

tβ

θβ
)bdθ + β

∫ t

0

∫ ∞

0
φβ(θ)T

(
(t− s)β

θβ

)
(t− s)β−1

θβ
[F(v(s), w(s)) + Pg(s)]dθds

=
∫ ∞

0
Mβ(θ)T(tβθ)bdθ + β

∫ t

0

∫ ∞

0
θ(t− s)β−1Mβ(θ)T((t− s)βθ)[F(v(s), w(s)) + Pg(s)]dθds

= Eβ(−tβB)b +
∫ t

0
(t− s)β−1Eβ,β(−tβB)[F(v(s), w(s)) + Pg(s)].

We rewrite the above equation

v(t) = b +
1

Γ(β)

∫ t

0
(t− s)β−1

(
Bv(s) + F(v(s), w(s)) + Pg(s)

)
ds.

Thus, the proof is complete.

Proposition 1. Prove that

(i) Eβ,β(−tβB) = 1
2πi
∫

Γθ Eβ,β(−νtβ)(νI + B)−1dν;

(ii) BγEβ,β(−tβB) = 1
2πi
∫

Γθ νγEβ,β(−νtβ)(νI + B)−1dν

Proof. (i) Since
∫ ∞

0 βsMβ(s)e−stβBds = Eβ,β(−t), by using Fabini’s Theorem, we get

Eβ,β(−t) =
∫ ∞

0
βsMβ(s)e−stβBds

=
1

2πi

∫ ∞

0
βsMβ(s)

∫
Γθ

e−νstβ
(νI + B)−1dνds

=
1

2πi

∫ ∞

0
βsMβ(s)e−νstβ

ds
∫

Γθ
(νI + B)−1dν

=
1

2πi

∫
Γθ

Eβ,β(−νtβ)(νI + B)−1dν.

(ii) We follow the same steps



Symmetry 2023, 15, 343 7 of 19

BγEβ,β(−tβB) =
∫ ∞

0
βsMβ(s)Bγe−stβBds

=
1

2πi

∫ ∞

0
βsMβ(s)

∫
Γθ

νγe−νstβ
(νI + B)−1dνds

BγEβ,β(−tβB) =
1

2πi

∫ ∞

0
νγβsMβ(s)e−νstβ

ds
∫

Γθ
(νI + B)−1dν

=
1

2πi

∫
Γθ

νγEβ,β(−νtβ)(νI + B)−1dν.

3. Global and Local Existence in Hα,p

In this section, our main purpose is to build up sufficient conditions for the existence
and uniqueness of the mild solution of problem (2) in Hα,p. We suppose that

Hypothesis 1 (H1). Pg is said to be continuous for 0 < t and |Pg(t)|p = s(t−β(1−α)) as t→ 0
for 1 > α > 0.

Lemma 4. See ([23]). Suppose that 1 < p < ∞ and α1 ≤ α2. Then, at that point there exist a
constant C = C(α1, α2) in such a way that

|e−tBw|Hα2,p ≤ Ct−(α2−α1)|w|Hα1,p , 0 < t,

for w ∈ Hα1,p. Moreover, limt→0 t
(α2−α1)|e−tBw|Hα2,p = 0.

Lemma 5. Suppose that 1 < p < ∞ and α1 ≤ α2. For any R > 0 there is a constant C1 =
C1(α1, α2) > 0 in such a way that

|Eβ(−tβB)w|Hα2,p ≤ C1t
−β(α2−α1)|w|Hα1,p and|Eβ,β(−tβB)w|Hα2,p ≤ C1t

−β(α2−α1)|w|Hα1,p

for all w ∈ Hα1,p as well as t ∈ (0, R]. Moreover,

lim
t→0

tβ(α2−α1)|Eβ(−tβB)w|Hα2,p = 0.

Proof. Let w ∈ Hα1,p. According to Lemma 4, we consider

|Eβ(−tβB)w|Hα2,p ≤
∫ ∞

0
Mβ(s)|e−stβBw|Hα2,p ds

≤
(
C

∫ ∞

0
Mβ(s)s−(α2−α1)ds

)
t−β(α2−α1)|w|Hα1,p

≤ C1t
−β(α2−α1)|w|Hα1,p .

A well-known theorem, LebesgueDominatedConvergence theorem shows that

lim
t→0

tβ(α2−α1)|Eβ(−tβB)w|Hα2,p ≤
∫ ∞

0
M(s) lim

t→0
tβ(α2−α1)|Eβ(−tβB)w|Hα2,p = 0.

Similarly

|Eβ,β(−tβB)w|Hα2,p ≤
∫ ∞

0
βsMβ(s)|e−stβBw|Hα2,p ds
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|Eβ,β(−tβB)w|Hα2,p ≤
(

βC
∫ ∞

0
Mβ(s)s1−(α2−α1)ds

)
t−β(α2−α1)|w|Hα1,p

≤ C1t
−β(α2−α1)|w|Hα1,p ,

where the constant term is C1 = C1(β, α1, α2), such that

C1 ≥ Cmax
{

Γ(1− α2 + α1)

Γ(1 + β(α1 − α2))
,

βΓ(2− α2 + α1)

Γ(1 + β(α1 − α2))

}
.

3.1. Global Existence in Hα,p

The global mild solution of (2) in Hα,p is investigated in this subsection. For comfort,
we signify

N (t) = sup
s∈(0,t]

{sβ(1−α)|Pg(s)|p},

V1 = C1 max{V(β(1− α), 1− β(1− α)), V(β(1− ξ), 1− β(1− α))},

K ≥ MC1 max
{

V(β(1− α), 1− 2β(ξ − α)), V(β(1− ξ), 1− 2β(ξ − α))

}
.

Theorem 2. Suppose that 1 < p < ∞, 0 < α < 1 and condition (H1) holds. For each β ∈ Hα,p.
Let

C1|b|Hα,p + V1N∞ <
1

4K
, (8)

whereN∞ = sup
s∈(0,∞)

{sβ(1−α)|Pg(s)|p}. If m
2p −

1
2 < α, then at that point there is bξ > max{α, 1

2}

and a unique function v : [0, ∞)→ Hα,p fulfils the conditions given below:

(i) v : [0, ∞)→ Hα,p is continuous as well as v(0) = b;

(ii) v : [0, ∞)→ Hξ,p is continuous as well as limt→0 t
β(ξ−α)|v(t)|Hξ,p = 0;

(iii) v fulfils (3) for t ∈ [0, ∞).

Proof. The proof of this theorem is similar to that in [24] with a slight change according to
our problem.

3.2. Local Existence in Hα,p

The local mild solution of (2) in Hα,p is discussed in this section.

Theorem 3. Let 1 < p < ∞, 0 < α < 1 and (H1) (the supposition is given in the beginning of
Section 3) holds. Assume that

m
2p
− 1

2
< α.

Then, there is ξ > max{α, 1
2} in such a way that for each b ∈ Hα,p there exist T∗ > 0 as well as

v : [0,T∗]→ Hα,p is a unique function that fulfils the following properties:

(i) v : [0,T∗]→ Hα,p is continuous and v(0) = b;

(ii) v : [0,T∗]→ Hξ,p is continuous and limt→0 t
β(ξ−α)|v(t)|Hξ,p = 0;

(iii) For t ∈ [0,T∗], v satisfy (3).
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Proof. Suppose that ξ = 1+α
2 and the space of all curves is Y = Y[T] v : (0,T] → Hα,p in

such a way that:

(i) v : [0,T∗]→ Hα,p is continuous and v(0) = b;

(ii) v : [0,T∗]→ Hξ,p is continuous and limt→0 t
β(ξ−α)|v(t)|Hξ,p = 0;

with its neutral form

‖v‖Y = sup
t∈[0,T]

{tβ(ξ−α)|v(t)|Hξ,p}.

Alike the proof of Theorem 2, it is not difficult to claim that U : Y×Y → Y be continuous
linear mapping as well as ϕ(t) ∈ Y.

Eβ(−tβB)b ∈ C([0,T], Hα,p),

Eβ(−tβB)b ∈ C([0,T], Hξ,p).

By Lemma 5, it can easily be seen that

Eβ(−tβB)b ∈ Y,

tβ(ξ−α)Eβ(−tβB)b ∈ C([0,T], Hξ,p).

Therefore, let T∗ > 0 be small in such a way that

‖Eβ(−tβB)b + ϕ(t)‖Y[T∗ ] ≤ ‖Eβ(−tβB)b‖Y[T∗ ] + ‖φ(t)‖Y[T∗ ] <
1

4K
.

As a result of Lemma 3, F has a fixed point that is unique.

4. Local Existence in Qp

In this section, we discuss the local mild solution of (2) by using iteration method.
Suppose that ξ = 1+α

2 :

Theorem 4. Suppose that 1 < p < ∞, 0 < α < 1 and (H1)(the supposition is given in the
beginning of Section 3) holds. Assume that

b ∈ Hα,pwith
m
2p
− 1

2
< α.

Then, the problem (2) has mild solution v by Qp for b ∈ Hα,p. Furthermore, v must be continuous
on (0,T], Bξv, be continuous on (0,T] and tβ(ξ−α)Bξv(t) is bounded as t→ 0.

Proof. Step 1: Describe

R(t) := sup
s∈(0,t]

sβ(ξ−α)|Bξv(s)|p,

and

ψ(t) := U (v, w)(t) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)F(v(s)− w(s))ds.

|Bξψ(t)|p ≤ NC1V(β(1− ξ), 1− 2β(ξ − α))R2(t)t−β(ξ−α),

considering the integral ϕ(t). Thus

|Pg(s)|p ≤ N (t)sβ(1−α),
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where N is a continuous function. Using Theorem 2, we show that Bξ(t) is continuous in
the interval (0,T] by using

|Bξ ϕ(t)|p ≤ C1N (t)V(β(1− ξ), 1− β(1− α))t−β(ξ−α). (9)

For |Pg(t)|p = s(t−β(1−α)) as t → 0, N (t) = 0 is the solution. Here, (9) denotes,
|Bξ ϕ(t)|ps(t−β(1−α)) as t → 0. In Qp, we show that ϕ is continuous. In fact, if we take
0 ≤ t0 < t < T, we get

|ϕ(t)− ϕ(t0)|p

≤ C3

∫ t

t0

(t− s)β−1|Pg(s)|pds + C3

∫ t0

0

(
(t0 − s)β−1 − (t− s)β−1)|Pg(s)|pds

+ C3

∫ t0−ε

0
(t0 − s)β−1‖Eβ,β(−(t− s)βB)− Eβ,β(−(t0 − s)βB‖|Pg(s)|pds

+ 2C3

∫ t0

t0−ε
(t0 − s)β−1|Pg(s)|pds

≤ C3N (t)
∫ t

t0

(t− s)β−1s−β(1−α)ds + C3N (t)
∫ t

0

(
(t− s)β−1 − (t0 − s)β−1)s−β(1−α)ds

+ C3N (t)
∫ t0−ε

0
(t0 − s)β−1s−β(1−α)ds sup

s∈[0,t−ε]

‖Eβ,β(−(t− s)βB)− Eβ,β(−(t0 − s)βB‖

+ 2C3N (t)
∫ t0

t0−ε
(t0 − s)β−1s−β(1−α)ds→ 0, ast→ t0,

as a result of previous conversations.
We also consider the function Eβ(−tβB)b. It is clear by Lemma 5 that

|Bξ Eβ(−tβB)b|p ≤ C1t
−β(1−α)|Bαb|p = C1t

−β(1−α)|b|Hα,p ,

lim
t→0

tβ(ξ−α)|Bξ Eβ(−tβB)b|p = lim
t→0

tβ(ξ−α)|Eβ(−tβB)b|Hα,p = 0.

Step 2: Now, we derive the result using successive approximations:

v0(t) = Eβ(−tβB)b + ϕ(t),

vm+1 = v0(t) + U (vm, wm)(t), m = 0, 1, 2 · · · . (10)

Using the information presented above, we can deduce that

Rm(t) := sup
s∈(0,t]

sβ(ξ−α)|Bξ vm(s)|p

are increasing and continuous functions on [0,T] with Rm(0) = 0. Furthermore, Rm(t)
fulfils the following inequality as a result of (9)–(10):

Rm+1(t) ≤ R0(t) +NC1V(β(1− ξ), 1− 2β(ξ − α))R2
m(t). (11)

We choose T > 0 such that R0(0) = 0,

4NC1V(β(1− ξ), 1− 2β(ξ − α))R0(T) < 1. (12)

The sequence Rm(T) is thus bounded, according to a fundamental consideration of (11).

Rm(T) ≤ $(T), m = 0, 1, 2...,
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where

$(t) =
1−

√
1− 4NC1V(β(1− ξ), 1− 2β(ξ − α))K0(t)

2NVC1(β(1− ξ), 1− 2β(ξ − α))
.

In the same way, Rm(t) ≤ $(t) holds for any t ∈ (0,T). Similarly, we may see that

$(t) ≤ 2R0(t).

Suppose that the equality

km+1(t) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)[F(vm+1(s), wm+1(s))− F(vm(s), wm(s))]ds,

where km = vm+1 − vn, m = 0, 1, ..., as well as t ∈ (0,T]. Writing

Wm(t) := sup
s∈(0,t]

sβ(ξ−α)|Bξ km(s)|p.

By Equation (8), we get

|J(vm+1(s), wm+1(s))− J(vm(s), wm(s))|p ≤ N (Rm+1(s) +Rm(t))Jm(s)s−2β(ξ−α),

by Theorem 2, we have

tβ(ξ−α)|Bξ km+1(t)| ≤ 2NC1V(β(1− ξ), 1− β(1− α))$(t)Wm(t).

The above inequality gives

Wm+1(T) ≤ 2NC1V(β(1− ξ), 1− β(1− α))$(t)Wm(t)

≤ 4NC1V(β(1− ξ), 1− β(1− α))$(t)R0(t)Wm(t). (13)

By Equations (12) and (13), it is not difficult to show that

lim
m→0

Jm+1(T)

Jm(T)
< 4NC1V(β(1− ξ), 1− β(1− α)) < 1,

as a result, the series Σ∞
m=0 Jm(T) converge. It prove that for t ∈ (0,T] the series

Σ∞
m=0t

β(ξ−α)Bξkm(t)

converge uniformly. As a result, the sequence tβ(ξ−α)Bξ vm(t) converge uniformly in (0,T].
This suggest that

lim
m→0

vm(t) = v(t) ∈ D(Bξ)

as well as

lim
m→0

tβ(ξ−α)Bξ vm(t) = tβ(ξ−α)Bξ v(t)uni f ormly,

since Bξ is both bounded and B−ξ is closed. As a result, the function

R(t) = sup
s∈(0,T]

tβ(ξ−α)|Bξ v(s)|p

also meets the condition

R(t) ≤ $(t) ≤ 2R0(t), t ∈ (0, t]. (14)
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as well as

Sm := sup
s∈(0,T]

s2β(ξ−α)|F(vm(s), wm(s))− F(v(s), w(s))|p

≤ N (Rm(T) +R(T)) sup
s∈(0,T]

sβ(ξ−α)|Bξ(vm(s)− v(s))|p → 0, asm→ ∞.

Finally, make sure that v in [0,T] is a mild solution to problem (2). Since

|U (vn, wn)(t)−U (v, w)|p ≤
∫ t

0
(t− s)β−1Sms−2β(ξ−α)ds = tβαSm → 0, (m→ ∞),

we have U (vm, wm)(t)→ U (v, w)(t). We get (9) by taking the limits on both sides

v(t) = v0(t) + U (v, w)(t). (15)

If we set v(0) = b, we get (15) for t ∈ [0,T] and v ∈ C([0,T], Qp). Furthermore, the con-
sistent convergence of tβ(ξ−α)Bξ vm(t)totβ(ξ−α)Bξv(t) drive the continuity of Bξv(t)on(0,T].
According to (14) and R0(0) = 0, we have |Bξv(t)|p = s(t−β(ξ−α)) is obvious.

Step 3: We show that the mild solution is unique. Assume that v and w are the mild solutions
of problem (2). We consider the equality k = v− w

k(t) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)[F(v(s), v(s))− F(w(s), w(s))]ds.

Introducing the function

R̃(t) := max{ sup
s∈(0,t]

sβ(ξ−α)|Bξ v(s)|p, sup
s∈(0,t]

sβ(ξ−α)|Bξ w(s)|p}.

By (8) and Lemma 5, we get

|Bξk(t)|p ≤ NC1R̃(t)
∫ t

0
(t− s)β(1−ξ)−1s−β(ξ−α)|Bξ k(s)|pds.

For t ∈ (0,T), the Gronwall inequality demonstrates that Bξ k(t) = 0. Since t ∈ [0,T], this
means that k(t) = v(t)− w(t) = 0. As a result, the mild solution is unique.

5. Regularity

Considering the regularity of v which satisfy (2), overall in this section, we suppose
that:

Hypothesis 2 (H2). Pg(t) be the Hold̈er continuous along the exponent θ ∈ (0, β(1− ξ)), i.e,

|Pg(t)− Pg(s)|p ≤ K|t− s|θ , ∀t > 0, s ≤ T.

Definition 3. The function v : [0,T] → Qp is said to be the classical solution of (2), if v ∈
C([0,T], Qp) with CDt

tv(t) ∈ C([0,T], Qp), which takes the value of D(B) and satisfy (2) for
every t ∈ (0,T].

Lemma 6. Let (H2) (the supposition is given in the beginning of Sec. 5) be fulfilled. If

ϕ1(t) :=
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)(Pg(s)− Pg(t))ds, t ∈ (0,T],

then ϕ1(t) ∈ D(B) and Bϕ1(t)C
θ([0,T], Qp).
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Proof. As

(t− s)β−1|BEβ,β(−(t− s)βB)(Pg(s)− Pg(t))|p ≤ (t− s)−1|(Pg(s)− Pg(t))|p
≤ C1K(t− s)θ−1 ∈ L1([0,T], Qp), (16)

then

|Bϕ1(t)|p ≤
∫ t

0
(t− s)β−1|BEβ,β(−(t− s)βB)(Pg(s)− Pg(t))|pds

≤ C1K
∫ t

0
(t− s)θ−1 ≤ C1R

θ
tθ < ∞.

We must show that Bϕ1(t) is Hȯlder continuous.

d
dt
(
tβ−1Eβ,β(−νtβ)

)
= tβ−2Eβ,β−1(−νtβ),

then

d
dt
(
tβ−1Eβ,β(−νtβ)

)
=

1
2πi

∫
Γθ

tβ−2Eβ,β−1(−νtβ)B(νI + B)−1dν

=
1

2πi

∫
Γθ

tβ−2Eβ,β−1(−νtβ)dν− 1
2πi

∫
Γθ

tβ−2νEβ,β−1(−νtβ)(νI + B)−1dν

=
1

2πi

∫
Γθ
−tβ−2Eβ,β−1(ζ)

1
tβ

dζ

− 1
2πi

∫
Γθ
−tβ−2Eβ,β−1(ζ)

ζ

tβ

(
− ζ

tβ
I + B

)−1 1
tβ

dζ.

In view of ‖νI + B‖≤ C
|ν| , we derive that∥∥∥∥ d

dt
(
tβ−1Eβ,β(−tβB)

)∥∥∥∥ ≤ Cβt
−2, 0 < t < T.

By the Mean Value Theorem, for each T ≥ t > s > 0, we get

‖tβ−1Eβ,β(−tβB)− sβ−1BEβ,β(−sβB)‖ =

∥∥∥∥ ∫ t

s

(
τβ−1BEβ,β(τ

βB)
)
dτ

∥∥∥∥
≤

∥∥∥∥ ∫ t

s

(
τβ−1BEβ,β(τ

βB)
)∥∥∥∥dτ

≤ Cβ

∫ t

s
τ−2dτ = C+ β(s−1 − t−1). (17)

Let k > 0 in such a way that 0 < t < t+ k ≤ T, then

Bϕ1(t+ k)− Bϕ1(t) =
∫ t

0

(
(t+ k− s)β−1BEβ,β(−(t+ k− s)βB)

)
− (t− s)β−1BEβ,β(−(t+ k− s)βB)(Pg(s)− Pg(t))ds

+
∫ t

0
(t+ k− s)β−1BEβ,β(−(t+ k− s)βB)(Pg(t)− Pg(t+ k))ds

+
∫ t+k

t
(t+ k− s)β−1BEβ,β(−(t+ k− s)βB)(Pg(t)− Pg(t+ k))ds

:= k1(t) + k2(t) + k3(t).
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We discuss these terms step by step. For k1(t), by (16) and (H1), we get

|k1(t)|p ≤
∫ t

0
‖(t+ k− s)β−1BEβ,β(−(t+ k− s)βB)

− (t− s)β−1BEβ,β(−(t− s)βB)‖|(Pg(s)− Pg(t))|pds

≤ KCβk
∫ t

0
(t+ k− s)−1(t− s)θ−1ds

≤ KCβk
∫ t

0
(s + k)−1(t− s)θ−1ds

≤ CβK
∫ k

0

k
s + k

sθ−1ds + KCβk
∫ ∞

h

s
s + k

sθ−1ds,

so

|k1(t)|p ≤ KCβkθ . (18)

For k2(t), by using Lemma 5 and (H2),

|k2(t)|p ≤
∫ t

0
(t+ k− s)β−1|BEβ,β(−(t+ k− s)βB)(Pg(t)− Pg(t+ k))|pds

≤ C1

∫ t

0
(t+ k− s)−1|(Pg(t)− Pg(t+ k))|pds

≤ KC1kθ
∫ t

0
(t+ k− s)−1ds

= KC1[ln k− ln(t+ k)]kθ . (19)

Moreover, for k3(t), again we use (H2) and Lemma 5, we get

|k3(t)|p ≤
∫ t+k

t
(t+ k− s)β−1|BEβ,β(−(t+ k− s)βB)(Pg(t)− Pg(t+ k))|pds

≤ C1

∫ t+k

t
(t+ k− s)−1|(Pg(s)− Pg(t+ k))|pds

≤ C1K
∫ t+k

t
(t+ k− s)θ−1ds = C1K

kθ

θ
. (20)

Combining Equations (18), (19) and (20), we conclude that Bϕ1(t) is Hölder continuous.

Theorem 5. Assume that the suppositions of Theorem 4 are fulfilled. The mild solution of Theorem 4
is classic if for each b ∈ D(B), (H2) holds.

Proof. In the case of b ∈ D(B), Part (ii) of Lemma 2 show that v(t) = Eβ(−tβB)b(0 < t)
the following problem has a classic solution:{

CDβ
t v = −Bv, 0 < t,

v(0) = b.

Step 1: We show that

ϕ(t) =
∫ t

0
(t− s)β−1Eβ,β(−((t− s)βB)Pg(s)ds,

is classic solution of the problem{
CDβ

t v = −Bv + Pg(t), 0 < t,
v(0) = b.



Symmetry 2023, 15, 343 15 of 19

From Theorem 4 ϕ ∈ C([0,T], Qp), we write ϕ(t) = ϕ1(t) + ϕ2(t), where

ϕ1(t) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)

(
Pg(t)− Pg(t+ k)

)
ds

ϕ2(t) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)Pg(t)ds.

Bϕ2(t) = Pg(t)− Eβ(−tβB)Pg(t).

Since (H2) hold, it observes that

|Bϕ2(t)|p ≤ (1 + (C1)|Pg(t)|p,

as a result

ϕ2(t) ∈ D(B)aswellasBϕ2(t) ∈ Cµ((0,T], Qp) f ort ∈ (0,T].

We also explain that CDβ
t ϕ ∈ C((0,T], Qp). By Lemma 2(iv), as well as ϕ(0) = 0, we get

CDβ
t ϕ(t) =

d
dt
(

I1−β
t ϕ(t)

)
=

d
dt
(Eβ(−tβB) ∗ Pg).

It remains to show that Eβ(−tβB) ∗ Pg is continuously differentiable in Qp. Suppose that
T− t ≥ k > 0, we have

1
k
(Eβ(−(t+ k)βB) ∗ Pg− Eβ(−tβB) ∗ Pg) =

∫ t

0

1
k
(
Eβ(−(t+ k− s)βB)Pg(s)

− Eβ(−(t− s)βB)Pg(s)
)
ds

+
1
k

∫ t+k

0
Eβ(−(t+ k− s)βB)Pg(s).

Note that ∫ t

0

1
k
|Eβ(−(t+ k− s)βB)Pg(s)− Eβ(−(t− s)βB)Pg(s)|pds

≤ C1
1
k

∫ t

0
|Eβ(−(t− s)βB)Pg(s)|p

+ C1
1
k

∫ t

0
|Eβ(−(t+ k− s)βB)Pg(s)|pds

≤ C1N (t)
1
k

∫ t

0
(t+ k− s)−βs−β(1−α)ds

+ C1N (t)
1
k

∫ t

0
(t− s)−βs−β(1−α)ds

≤ C1N (t)
1
k
(
(t+ k)1−β + t1−β

)
V(1− β, 1− β(1− α)),

according to Dominated Convergence Theorem, we note that

lim
k→0

∫ t

0

1
k
(
Eβ(−(t+ k− s)βB)Pg(s)− Eβ(−(t− s)βB)Pg(s)

)
ds

=
∫ t

0
(t− s)β−1BEβ,β(−(t− s)βB)Pg(s)ds

= Bϕ(t).
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Furthermore,

1
k

∫ t+k

t
Eβ(−(t+ k− s)βB)Pg(s) =

1
k

∫ k

0
Eβ(−sβB)Pg(t+ k− s)ds

=
1
k

∫ k

0
Eβ(−sβB)

(
Pg(t+ k− s)ds− Pg(t− s)

)
ds

+
1
k

∫ k

0
Eβ(−sβB)

(
Pg(t− s)− Pg(t)

)
ds

+
1
k

∫ k

0
Eβ(−sβB)P f (s)ds.

By Lemma 1, 5 and (H2), we get∣∣∣∣1k
∫ k

0
Eβ(−sβB)

(
Pg(t+ k− s)ds− Pg(t− s)

)
ds
∣∣∣∣

p
≤ C1kθ ,∣∣∣∣1k

∫ k

0
Eβ(−sβB)

(
Pg(t− s)− Pg(t)

)
ds
∣∣∣∣

p
≤ C1K

kθ

θ + 1
.

We conclude that Eβ(t
βB) ∗ Pg is differentiable at t+ as well as d

dt
(
Eβ(t

βB) ∗ Pg
)
+

=

Bϕ(t) + Pg(t). Same as Eβ(t
βB) ∗ Pg is differentiable at t− as well as d

dt
(
Eβ(t

βB) ∗ Pg
)
− =

Bϕ(t) + Pg(t).
We indicate ϕ(t) := Eβ(−tβB)b. According to Lemma 2(iv) and (5)

|Bξ ϕ(t+ k)− Bξ ϕ(t)|p =

∣∣∣∣ ∫ t+k

t
−sβ−1Bξ Eβ,β(−sβ−1B)bds

∣∣∣∣
p

≤
∫ t+k

t
sβ−1|Bξ−αEβ,β(−sβ−1B)Bβb|pds

≤ L1

∫ t+k

t
sβ(1+α−ξ)−1ds|Bβb|p

=
L1|b|Hα,p

β(1 + α− ξ)
kβ(1+α−ξ).

Thus, Bξ ϕ ∈ Cθ((0,T], Qp).
For each small ε > 0, take k in such a way that ε ≤ t < t+ k ≤ k, since

|Bξ ϕ(t+ k)− Bξ ϕ(t)|p ≤
∣∣∣∣ ∫ t+k

t
(t+ k− s)β−1Bξ Eβ,β(−(t+ k− s)βB)Pg(s)ds

∣∣∣∣
p

+

∣∣∣∣Bξ
(
(t+ k− s)β−1Eβ,β(−(t+ k− s)βB)

− (t− s)β−1Eβ,β(−(t− s)βB)
)

Pg(s)ds
∣∣∣∣

p

= ϕ1(t) + ϕ2(t).
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By applying (H1) and Lemma 5, we have

ϕ1(t) ≤ C1

∫ t+k

t
(t+ k− s)β(1−ξ)−1|Pg(s)|pds

≤ C1N (t)
∫ t+k

t
(t+ k− s)β(1−ξ)−1s−β(1−α)ds

≤ N (t)
C1

β(1− ξ)
kβ(1−ξ)t−β(1−α)

≤ N (t)
C1

β(1− ξ)
kβ(1−ξ)ε−β(1−α).

To prove ϕ2(t), we consider the inequality

d
dt
(
tβ−1Bξ Eβ,β(−tβB)

)
=

1
2πι

∫
Γ

νξtβ−2Eβ,β−1(−νtβ)(νI + B)−1dν

=
1

2πι

∫
Γ′
−
(
− ζ

tβ

)ξ

tβ−2Eβ,β−1(ζ)

(
− ζ

tβ
I + B

)−1 1
tβ

dζ.

This gives that ‖ d
dt
(
tβ−1Bξ Eβ,β(−tβB)

)
‖ ≤ Cβt

β(1−ξ)−2. By Mean Value Theorem

‖tβ−1Bξ Eβ,β(−tβB)− sβ−1Bξ Eβ,β(−sβB)‖ ≤
∫ t

s

∥∥∥∥ d
dτ

(
τβ−1Bξ Eβ,β(−τβB)

)∥∥∥∥dτ

≤ Cβ

∫ t

s
τβ(1−ξ)−2dτ = Cβ

(
sβ(1−ξ)−1 − tβ(1−ξ)−1),

thus

ϕ2(t)

≤
∫ t

0
|Bξ
(
(t+ k− s)β−1Eβ,β(−(t+ k− s)βB)− (t− s)β−1Eβ,β(−(t− s)βB)

)
Pg(s)ds|p

≤
∫ t

0

(
(t− s)β(1−ξ)−1 − (t+ k− s)β(1−ξ)−1)|Pg(s)|pds

≤ CβN (t)

( ∫ t

0
(t− s)β(1−ξ)−1s−β(1−α)ds−

∫ t+k

0
(t− s + k)β(1−ξ)−1s−β(1−α)ds

)
+ CβN (t)

∫ t+k

t
(t− s + k)β(1−ξ)−1s−β(1−α)ds

≤ CβN (t)
(
tβ(α−ξ) − (t+ k)β(α−ξ)

)
B(β(1− ξ), 1− β(1− α)) + CβN (t)kβ(1−ξ)t−β(1−α)

≤ CβN (t)kβ(1−ξ)[ε(ε + k)]β(α−ξ) + CβN (t)kβ(1−ξ)ε−β(1−α),

which shows that Bξ ϕ ∈ Cθ([ε,T], Qp). Therefore Bξ ϕ ∈ Cθ([0,T], Qp), because of arbi-
trary ε.

Recall

ψ(t) =
∫

0t(t− s)β−1Eβ,β(−(t− s)βB)F(v(s), v(s))ds.

Since |F(v(s), w(s))|p ≤ NR2(t)s−2β(ξ−α), where R(t) := sups∈[0,t] sβ(ξ−α)|v(s)|Hξ,p in
(0,T], is bounded and continuous. A similar conversation made it possible to provide the
Hold̈er continuity of Bξ ψ in Cθ((0,T], Qp). Hence, we have Bξ v(t) = Bξ ϕ(t) + Bξ ϕ(t) +

Bξψ(t) ∈ Cθ((0,T], Qp).

Since F(v, w) ∈ Cθ((0,T], Qp), by Step 2, this proves that CDβ
t ψ ∈ Cθ((0,T], Qp),

Bψ ∈ Cθ((0,T], Qp). and CDβ
t ψ = −Bψ + F(v, w). We obtain CDβ

t v ∈ Cθ((0,T], Qp),

Bv ∈ Cθ((0,T], Qp) and CDβ
t v = −Bv + F(v, w) + Pg.
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Hence, we prove that v is a classical solution.

6. Example

In this section, we present an example to indicate the applicability of our results:

Example 1. Suppose that Y ∈ L2(0, 2π) as well as em(y) = 3
√

3
2 π cos x, m = 1, 2, .... At that

point, we define infinitesimal dimensional space U = Y and consider a system
CD

4
5
t Z(t, y) =C D

2
3
t Z(t, y) + f (t,Z(t, y)) + Qw(t, y), 0 < t < d, 0 < y < 2π,

Z(0, y) = Z0(y), 0 ≤ y ≤ 2π,
Z(t, 0) = Z(t, 2π), 0 ≤ y ≤ d,

where (H1) is satisfied by the nonlinear function f as an operator for every w ∈ L2(0, d;U ) and
∑∞

m=1 ŵms(t)em. Consider

Qw(t) =
∞

∑
m=1

ŵms(t)em,

ŵm(t) =

{
0, 0 ≤ t < d(1− 1

m ),
wm(t), d(1− 1

m ) ≤ t ≤ d.

Because
‖Qw‖L2(0,d;U ) ≤ ‖w‖L2(0,d;U )′ ,

from U into L2(J, Y), the operator Q is bounded. However, it is not easy to see that QU 6= L2(J, Y).
Suppose that ϕ is an arbitrary element in L2(0, d, Y) and k ∈ Y is defined as

k = Eβ(−d− s)βZ(0)y +
∫ d

0
(d− s)β−1T4

5
(d− s)ϕ(s)ds.

Suppose that

ϕ(t) =
∞

∑
m=1

fm(t)em,

as well as

k =
∞

∑
m=1

km(t)em.

Hence, we declare that for each given ϕ ∈ L2(0, d, Y), there exist w ∈ U in such a way that

Eβ(−d− s)βZ(0)y +
∫ t

0
(d− s)β−1T4

5
(d− s)Qw(s)ds

= Eβ(−d− s)βZ(0)y +
∫ d

0
(d− s)β−1T4

5
(d− s)ϕ(s)ds,

this indicates that (H2) is fulfilled.

7. Conclusions

The purpose of this paper is to study the time fractional NS-equations using initial
value problem with the Caputo derivative. We proved the global and local existence of mild
solution in Hα,p. We established sufficient conditions for the existence and uniqueness of
the mild solution for problem (2) in Hα,p. Moreover, we showed that classical solutions that
satisfy problem (2) are regular. Furthermore, we presented the regularity of mild solutions
for time fractional NS-equations. In the end, we presented an example.
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