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Abstract: We address classification of permutation matrices, in terms of permutation similarity
relations, which play an important role in investigating the reducible solutions of some symmetric
matrix equations. We solve the three problems. First, what is the canonical form of a permutation
similarity class? Second, how to obtain the standard form of arbitrary permutation matrix? Third, for
any permutation matrix A, how to find the permutation matrix T, such that T−1 AT is in canonical
form? Besides, the decomposition theorem of permutation matrices and the factorization theorem of
both permutation matrices and monomial matrices are demonstrated.
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1. Introduction

The incidence matrix of a projective plane of order n is a 0-1 matrix of order n2 + n + 1.
Two projective planes are isomorphic if the incidence matrix of one projective plane can
be transformed into the incidence matrix of the other one by permutation of rows and/or
columns. After sorting the rows and columns, the incidence matrix of a projective plane can
be reduced to (not unique) a standard form. In the reduced form, the incidence matrix can
be split into blocks. Most blocks are permutation matrices (see [1]). If we keep the position
of every block of the reduced form and perform permutations of the rows and columns,
every permutation matrix is transformed into another matrix that is permutationally similar
to the original one.

The members in the symmetry group Sn of order n are called permutations. They are
tightly connected with permutation matrices of order n. Permutation matrices are powerful
tools in the representation theory of groups, discrete mathematics, applied mathematics,
and some engineering technology (see [2–5]). They play an important role in the study
of the reducible solutions of matrix equations (see [6]). Since the elementary row (or
column) transformations are inevitable in solving matrix equations, which are equivalent
to the multiplication by permutation matrices or diagonal matrices. The tricks of matrix
transformations (especially the row or column permutations) are applicable.

This paper is devoted to the permutational similarity relation and to the classification
of the permutation matrices. In particular, we focus on the standard structure of a general
permutation matrix, on the canonical form of a permutation similarity class, and on how to
generate the canonical form. Furthermore, a theorem is presented about the decomposition
of a permutation matrix into a diagonal matrix and some generalized cycle matrices of
type II. A factorization theorem shows that an arbitrary non-identity permutation matrix is
the product of some generalized cycle matrices of type I. These contents are represented in
Section 3 which is the main part of this paper.

The number of permutational similarity classes of a permutation matrices of order n is
discussed in Section 4. A similar factorization for monomial matrices is discussed at the
end of the paper.
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2. Preliminary

Let n be a positive integer, P be a square matrix of order n. If P is a binary matrix
(i.e. elements are either 0 or 1, also referred to as 0-1 matrix or (0, 1) matrix) and there
is a unique “1” in every row and every column, then P is called a permutation matrix. If
we substitute the “1”s in a permutation matrix by other non-zero elements, we obtain a
monomial matrix, also referred to as a generalized permutation matrix.

As a matter of fact, there is a reason for the name “permutation matrix”. If a matrix T of
size n × r is multiplied by a permutation matrix P of order n (from the left side of T), we
obtain a permutation of the rows of T. If U is a matrix of size t by n, and P acts on U on the
right, we have a permutation of the columns of U. The inverse of a permutation matrix
P−1 coincides with the transpose PT while P−1 itself is a permutation matrix.

Let k be a positive integer greater than 1, C be an invertible (0, 1) matrix of order k, if
Ck = Ik (Ik is the identity matrix of order k) and Ci 6= Ik for any i (1 ≤ i < k), then C will be
referred to as a cycle matrix of order k. A cycle matrix of order k of the form

0 1
1 0

1
. . .
. . . . . .

1 0


is a standard cycle matrix. The identity matrix of order 1 represents a cycle matrix of order 1.

If C1 is a permutation matrix of order n, and there are exactly k zero diagonal elements
(here 2 6 k 6 n), if Ck = In and Ci 6= In for any i (1 6 i < k), then C1 is termed a generalized
cycle matrix of Type I with cycle order k.

If C2 is a (0, 1) matrix of order n, rank C2 = k, with k non-zero entries, (2 6 k 6 n),
if Ck is a diagonal of rank k, and Ci is non-diagonal (1 6 i < k), then C2 will be called a
generalized cycle matrix of type II with cycle order k. Obviously, a generalized cycle matrix of
type II plus some suitable diagonal (0, 1) matrix gives a generalized cycle matrix of type I
with the same cycle order.

Let A and B be two monomial matrices of order n, if there is a permutation matrix T
such that B = T−1 AT, then A and B are permutationally similar. The permutation similarity
relation is an equivalence relation. Hence the set of the permutation matrices (or monomial
matrices) or order n may be naturally split into equivalence classes.

3. Main Results

In this section, we attend to give 3 main theorems about the canonical form, the
decomposition and the factorization of a permutation matrix, respectively.

Theorem 1 solves the following three problems (which arise naturally from the
definitions),

(a) What is the canonical form of a permutation similarity class?
(b) How to generate the canonical form of a given permutation matrix?
(c) If B is the canonical form of the permutation matrix A, how to find the permutation

matrix T, such that B = T−1 AT?

Now we give some theorems that would solve these problems.
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Theorem 1. (Similarity Theorem) For any permutation matrix A of order n, there is a permutation
matrix T, such that, T−1 AT = diag {It, Nk1 , · · · , Nkr}, where

Nki
=



0 1
1 0

1
. . .
. . . . . .

1 0


is a cycle matrix of order ki in standard form, (i = 1, 2, · · · , r), 2 6 k1 6 k2 · · · 6 kr, 0 6 r 6

⌊n
2

⌋
,

0 6 t 6 n, and
r
∑

i=1
ki + t = n. T, t, r, kr are determined by A.

If A is an identity matrix, then t = n, r = 0. When A is a cycle matrix, t = 0, r = 1,
k1 = n. In this theorem, the quasi-diagonal matrix (or block-diagonal matrices) diag {It,
Nk1 , · · · , Nkr} will be called the canonical form of a permutation matrix in permutational
similarity relation.

The main idea of this proof is similar to that concerning the decomposition of a root
subspace into cyclic subspaces.

In a root subspace Vλ associated with a linear transformation B and the eigenvalue λ
of a matrix B, if v is a root vector of height n belonging to B, then the subspace spanned

by
{
(B − λI)n−1v, (B − λI)n−2v, · · · , (B − λI)v, v

}
is a cyclic subspace, and Vλ is the

direct sum of some cyclic subspaces.

Proof. For any permutation matrix A of order n, let A be a linear transformation defined
on the vector space Rn with bases

B = { e1, e2, · · · , en }, (1)

where
ei = (0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

)T, ( i = 1, 2, · · · , n ). (2)

Here the regular letter “T” in the upper index means transposition. Suppose A is the
matrix of the transformation A in the basis B, and for any vector α ∈ Rn with coordinates
x (in the basis B), the coordinates of A α is Ax, i.e., A α = BAx. Here the coordinates are
written as a column vector.

It is clear that the coordinates of ei in the basis B is (0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

)T. Since A

is a permutation matrix, Aei is the i’th column of A.

We decompose Rn into some subspaces. In each subspace Vi, there is a basis
{

ei, Aei,

A2ei, · · · , Aki−1ei

}
, where Aki ei = ei. The positive ki is the minimal integer satisfying this

condition, i.e. the dimension of the cyclic subspace. Using this basis, the matrix of the
transformation A restricted in Vi, can be written by

0 1
1 0

1
. . .
. . . . . .

1 0


ki×ki

.
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Let us now find all these cyclic subspaces. In order to describe the procedure precisely
and concisely, we will use some auxiliary variables.

Step 1: Let S = {1, 2, · · · , n}, C =
{

ei
∣∣ i ∈ S

}
, a11 = min S, F1 = [a11], G1 = [ea11 ]. (Here

F1 and G1 are sequences, or sets equipped with precedence).
For the first cyclic subspace, of course Aea11 ∈ C. If Aea11 6= ea11 , assume ea12 = Aea11 ,

then put a12 and ea12 at the end of the sequences F1 and G1, respectively. If Aea1,j 6= ea11 ,
assume ea1,(j+1) = Aea1,j , (i.e., Ajea11 = ea1,(j+1) ), then add a1,(j+1) and ea1,(j+1) at the end of
sequences F1 and G1, respectively (j = 1, 2, · · · ). Since Aei ∈ C (∀i ∈ S), there is an integer
h1 such that Aea1,h1

= ea11 (otherwise the sequence ea11 , Aea11 , A2ea11 , A3ea11 , · · · is infinite).
Suppose that h1 is the minimal integer satisfying this condition (1 6 h1 6 n). It is clear
that Ah1 ea11 = ea11 , Ah1 ea1j = ea1j , (1 6 j 6 h1). It is possible that h1 = 1 or h1 = n. At last
|F1| = |G1| = h1. Finally, remove the elements of G1 from C, and the elements of F1 from S.

The first cyclic subspace is thus spanned by the basis G1 =
[

ea11 , ea12 , · · · , ea1h1

]
.

Usually, a basis of a linear space is denoted by braces, not brackets. However, braces
denote sets, and this disregards the precedence. In order to avoid ambiguities, here we
use brackets, which stand for sequences, where precedence is relevant. The dimension
of this subspace is |F1| = h1. The matrix of the transformation A , restricted to this cyclic
subspace, is

Nh1 =



0 1
1 0

1
. . .
. . . . . .

1 0


h1×h1

.

Let us now search for the next cyclic subspace, if it exists.
Step 2: If S 6= Ø, let a21 = min S, F2 = [a21], G2 = [ea21 ]. It is clear that Aea21 ∈ C.

(Otherwise we would have Aea21 ∈ G1. However, since all the elements in G1 are removed
from C, then it exists k0, s.t. Ak0 ea11 = Aea21 with k0 6= 0, so, Ak0−1ea11 = ea21 as A is
invertible, which means that ea21 = Ak0−1ea11 is in the set G1, which is a contradiction.) If
Ai−1ea21 6= ea21 , suppose Ai−1ea21 = ea2i (i = 2, 3, · · · ), then add a2i and ea2i at the end of
the sequences F2 and G2, respectively. There will be a h2, such that Ah2 ea21 = ea21 (let h2
be the minimal integer satisfying this condition. It is possible that h2 = 1 or h2 = n− h1).
Obviously, Ah2 ea2i = ea2i , (1 6 i 6 h2). Then remove the elements of G2 from C, and remove
the elements of F2 from S.

Now another cyclic subspace is spanned by the basis G2 =
[

ea21 , ea22 , · · · , ea2h2

]
. The

dimension of this subspace is |F2| = h2. The matrix of the transformation A restricted to
this cyclic subspace is Nh2 .

Step 3: If S 6=Ø, goto step 2 and construct F3, F4, · · · and G3, G4, · · · . This leads to
other cyclic subspaces, their basis, and the matrices of the transformation A restricted to
these cyclic subspaces. The procedure stops after a finite number of steps since n is finite.

Assume that we have F1, F2, · · · , Fu and G1, G2, · · · , Gu, such that
u⋃

i=1
Fi = { 1, 2, · · · ,

n},
u⋃

i=1
Gi = { e1, e2, · · · , en }, Fi ∩ Fj = Gi ∩ Gj = Ø, (1 6 i 6= j 6 u).

There is a possibility that u = 1 (when A is a cycle matrix of order n) or n (when A is
an identity matrix).

Step 4: Sort F1, F2, · · · , Fu by candinality, s.t.
∣∣F′1∣∣ 6 |F′2| 6 · · · 6 |F′u|. Then sort Gi

correspondingly, i.e., G′i =
{

ex
∣∣ x ∈ F′i

}
(i = 1, 2, · · · , u).

Suppose
∣∣F′1∣∣ = |F′2| = · · · = |F′t | = 1. If t = n then A is an identity matrix. It is possible

that t = 0.
Let r = u− t. Denote the unique element in G′i by e′i (i = 1, 2, · · · , t). Let k j =

∣∣∣G′t+j

∣∣∣,
and denote the elements in G′t+j by e′j,v (j = 1, 2, · · · , r; v = 1, 2, · · · , k j). Then, the matrix
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of A restricted to the subspace spanned by the bases D0 =
{

e′1 , e′2, · · · , e′t} } is It since
A e′i = e′i (i = 1, 2, · · · , t), or A D0 = D0 It; and the matrix of A restricted in the subspace

spanned by the bases Dj = G′t+j =
{

e′j,1, e′j,2, · · · , e′j,kj

}
(j = 1, 2, · · · , r) is

Nkj
=



0 1
1 0

1
. . .
. . . . . .

1 0

,

which is a cycle matrix of order k j, as A e′j,v = e′j,v+1, (v = 1, 2, · · · , k j − 1), and A e′j,kj
= e′j,1,

i.e., A Dj = DjNkj
(j = 1, 2, · · · , r). So, the matrix of A with bases

D =
{

e′1, e′2, · · · , e′t; e′1,1, e′1,2, · · · , e′1,k1
; · · · · · · ; e′r,1, e′r,2, · · · , e′r,kr

}
(3)

is
B = It ⊕ Nk1 ⊕ · · · ⊕ Nkr = diag{It, Nk1 , · · · , Nkr}.

Since D is a reordering of B, there is a permutation matrix T, such that D = BT. Then
B = T−1 AT and Theorem 1 is proved.

Take the matrix

P2 =



0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1


as an example, and assume it is the matrix of a transformation P2 in the basis

{
e1, e2, e3,

· · · , e7

}
in R7.

Let us now search for the first cyclic subspace.
Since P2e1 = e6, P2e6 = e1, we have F1 = [1, 6], and the first cyclic subspace is spanned

by the basis
{

e1, e6

}
. Its dimension is |F1| = 2. The matrix of the transformation P2

restricted to this cyclic subspace is N2 =
[

1
1

]
.

Since P2e2 = e3, P2e3 = e4, P2e4 = e2, so F2 = [2, 3, 4], |F2| = 3. The second cyclic

subspace is spanned by the basis
{

e2, e3, e4

}
, and its dimension is |F2| = 3. The matrix of

the transformation P2 restricted to this cyclic subspace is N3 =

 1
1

1

.

Since P2e5 = e5, F3 = [5], |F3| = 1. The third cyclic subspace is spanned by the basis{
e5

}
, and the dimension is |F3| = 1. The matrix of P2 restricted to this cyclic subspace is

N1 = [1]. Finally, since P2e7 = e7, F4 = [7], |F4| = 1. The fourth cyclic subspace is spanned

by the basis
{

e7

}
, the dimension is |F4| = 1. The matrix of P2 restricted to this cyclic

subspace is N1 = [1].
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Overall, we have that P2 is permutationally similar to the canonical form

B2 = diag {I2, N2, N3} =



1
1

0 1
1 0

0 0 1
1 0 0
0 1 0


,

or

P2{e5; e7; e1, e6; e2, e3, e4}
={e5; e7; e6, e1; e3, e4, e2}

={e5; e7; e1, e6; e2, e3, e4}



1
1

0 1
1 0

0 0 1
1 0 0
0 1 0


.

Now we find T2, such that B2 = T−1
2 P2T2.

It follows from

(e5, e7, e1, e6, e2, e3, e4) = (e1, e2, e3, e4, e5, e6, e7)



1 0 0 0 0
0 1 0 0
0 0 1 0

0 0 0 0 0 0 1
1 0
0 1
0 1 0 0


,

denote

T2 =



1 0 0 0 0
0 1 0 0
0 0 1 0

0 0 0 0 0 0 1
1 0
0 1
0 1 0 0


,

which implying

T−1
2 = TT

2 =



1 0 0
0 1

1 0 0 0 0 0 0
0 1 0
0 1
0 0 1
0 0 0 1


,
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so P2 = T2 B2 T−1
2 , that is,

0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1



=



1 0 0 0 0
1 0 0

1 0
0 0 0 0 0 0 1
1
0 1
0 1 0 0





1
1

0 1
1 0

0 0 1
1 0 0
0 1 0





1 0 0
0 1

1 0 0 0 0 0 0
0 1 0
0 1
0 0 1
0 0 0 1


.

Then, B2 = T−1
2 P2T2, i.e.,

1
1

0 1
1 0

0 0 1
1 0 0
0 1 0



=



1 0 0
0 1

1 0 0 0 0 0 0
0 1 0
0 1
0 0 1
0 0 0 1





0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1





1 0 0 0 0
1 0 0

1 0
0 0 0 0 0 0 1
1
0 1
0 1 0 0


.

Theorem 2. (Decomposition Theorem) For any permutation matrix A of order n, if A is not the
identity, then there are some generalized cycle matrices Q1, Q2, · · · , Qr of type II and a diagonal
matrix Dt of rank t, such that, A = Q1 + Q2 + · · ·+ Qr + Dt, where the non-zero elements in Dt

are all ones ,
r
∑

i=1
rankQi + t = n; 1 6 r 6

⌊n
2

⌋
, r, Qi (i = 1, 2, · · · , r) and Dt are determined by A.

If the cycle order of Qi is ki, (i = 1, 2, · · · , r), then 2 6
r
∑

i=1
ki 6 n. If A is a cycle matrix,

then t = 0, r = 1, k1 = n.
The main idea of the proof may be summarized as follow.
Denote by Om a zero square matrix of order m. By Theorem 1 , there is a permutation

matrix T, such that, T−1 AT = diag {It, Nk1 , · · · , Nkr}. Then consider the matrices
M0 = diag {It, Ok1 , · · · , Okr},
M1 = diag {Ot, Nk1 , Ok2 , · · · , Okr},
M2 = diag {Ot, Ok1 , Nk2 , Ok3 , · · · , Okr},
· · · · · · ,
Mr = diag {Ot, Ok1 , Ok2 , · · · , Okr−1 , Nkr},
clearly,

diag{It, Nk1 , · · · , Nkr} = M0 + M1 + M2 + · · ·+ Mr,
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and

A = T diag {It, Nk1 , · · · , Nkr} T−1

= TM0T−1 + TM1T−1 + TM2T−1 + · · ·+ TMrT−1.

It is clear that rank Mi = ki ( i = 1, 2, · · · , r ), and rank M0 = t. The matrix Mi is a
generalized cycle matrix of type II with cycle order ki. Since T is invertible, rank TMiT−1

= rank Mi = ki. T and T−1 are permutation matrices, so Qi = TMiT−1 is also a 0-1 matrix
with the same rank. Since Nki

ki
= Iki

,

Mki
i = diag{Ot, Ok1 , · · · , Iki

, · · · , Okr},

is a diagonal matrix of rank ki, and
(
TMiT−1)ki = TMki

i T−1 is a diagonal matrix of rank ki,
too. If the exponent is less than ki, the conclusion does not hold (but it will cost us some
more words to prove this proposition). Then,

Qi = TMiT−1 (4)

is a generalized cycle matrix of type II with cycle order ki. Analogously,

Dt = TM0T−1 = T diag{It, Ok1 , · · · , Okr} T−1 (5)

is a diagonal matrix of rank t.
Following this idea, we may prove Theorem 2 in a different way. However, this

requires to obtain Qi and Dt directly, which may be challenging. We prefer to move on
with another proof following the idea of the proof of Theorem 1. In this way, we construct
Qi and Dt more conveniently.

Proof. Starting from the F′i generated above, one may construct a 0-1 matrix Dt of order n,

such that the j’th column of Dt is the j’th column of A (∀j ∈
t⋃

i=1
F′i ) and the other columns

of Dt are 0 vectors. Of course, Dt is a diagonal matrix of rank t, as the j’th column of A is ej
(by definition, Aej = ej).

Then, construct a 0-1 matrix Qi ( i = 1, 2, · · · , r ) of order n, such that the j’th column
of Qi is the j’th column of A (j ∈ F′t+i) and the other columns of Qi are 0 vectors. As(

t⋃
i=1

F′i

)⋃( r⋃
i=1

F′t+i

)
=

u⋃
i=1

Fi = {1, 2, · · · , n}, (6)

and
Fi1 ∩ Fi2 = ∅ (1 6 i1 6= i2 6 u),

every column of A appears exact once in a matrix (Dt or Qi, denoted by M) in the expression
r
∑

i=1
Qi + Dt, in the same position as it appears in A. Besides, the columns in the same

position in the matrices other than M appeared in the sum
r
∑

i=1
Qi + Dt are all 0 vectors.

Overall, we have
r

∑
i=1

Qi + Dt = A.

Let us now prove that Qi is a generalized cycle matrix of type II with cycle order ki.
Assume that the members in F′t+i (i = 1, 2, · · · , r) are a′i,1, a′i,2, · · · , a′i,ki

, and that
F′t+i = Fs for some s (1 6 s 6 u). Then we have a relation about the members in G′t+i and
the members in a certain Gs, i.e., e′i,v = ea′i,v

∈ Gs, v = 1, 2, · · · , ki. By the definition of Fs, we

know that Aea′i,v
= ea′i,v+1

, (v = 1, 2, · · · , ki − 1), Aea′i,ki
= ea′i,1

, so ea′i,v+1
is the a′i,v’th column

of A.
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As Qi is made of some 0 vectors and ki columns of A, and the columns of A are
linearly independent, the rank of Qi is ki. The a′i,v’th column of Qi is the a′i,v’th column of
A, so Qiea′i,v

= ea′i,v+1
, (v = 1, 2, · · · , ki − 1), Qiea′i,ki

= ea′i,1
, Qiel = 0 (∀el ∈ D

∖
G′t+i ). Therefore

Qv
i ea′i,1

= ea′i,v+1
(v = 1, 2, · · · , ki − 1), Qki

i ea′i,1
= ea′i,1

, (so Qv
i is not diagonal as Qv

i ea′i,1
= ea′i,v+1

6= ea′i,1
). Then

Qki
i ea′i,v

= Qv−1
i

(
Qki−v+1

i ea′i,v

)
= Qv−1

i

(
ea′i,1

)
= ea′i,v

, (v = 1, 2, · · · , ki).

Hence Qki
i is a diagonal matrix of rank ki. Therefore Qi is a generalized cycle matrix of

type II with cycle order ki.

Theorem 3. (Factorization Theorem) For any permutation matrix A of order n, if A is not
the identity, then there are some generalized cycle matrices P1, P2, · · · , Pr of type I , such that,
A = P1P2 · · · Pr, where 1 6 r 6

⌊n
2

⌋
; r, Pi (i = 1, 2, · · · , r) are determined by A. Pi1 and Pi2

commute (1 6 i1 6= i2 6 r) .

If the cycle order of Pi is ki, (i = 1, 2, · · · , r), then 2 6
r
∑

i=1
ki 6 n.

Since T−1 AT = diag {It, Nk1 , · · · , Nkr}, for convenience, we denote
Y1 = diag {It, Nk1 , Ik2 , · · · , Ikr},
Y2 = diag {It, Ik1 , Nk2 , Ik3 , · · · , Ikr},
· · · · · · ,
Yr = diag {It, Ik1 , Ik2 , · · · , Ikr−1 , Nkr}.
Obviously,

diag{It, Nk1 , · · · , Nkr} = Y1Y2 · · ·Yr

and
A = T diag{It, Nk1 , · · · , Nkr} T−1 = TY1Y2 · · ·YrT−1

=
(

TY1T−1
)(

TY2T−1
)
· · ·
(

TYrT−1
)

.

Obviously,
(

Nki

)ki = Iki
,
(

Nki

)ki−j 6= Iki
, 0 < j < ki.

So (Yi)
ki = In, (Yi)

ki−j 6= In, 0 < j < ki.
It is clear that Yi is a generalized cycle matrix of type I with cycle order ki (i = 1, 2, · · · ,

r), and it is thus sufficient to prove that

Pi = TYiT−1 (7)

is a generalized cycle matrix of type I with cycle order ki. Rather obviously, Pki
i = TYki

i T−1

= TInT−1 = In, however, it is not easy to prove that there are exact ki vanishing entries
in the diagonal of Pi, and that ki is the minimal positive integer satisfying the condition
Pki

i = In.

Proof. Let D(b)
t = In − Dt, where Dt is determined by Equation (5). Then

rankDt = t, rankD(b)
t = n− t.

Now build a 0-1 matrix Ja
i (i = 1, 2, · · · , r) of order n, such that the j’th column of Ja

i is
the j’th column of In (j ∈ F′t+i), and the other columns of Ja

i are 0 vectors. So

r

∑
i=1

J(a)
i + Dt = In.



Symmetry 2023, 15, 332 10 of 14

Let J(b)i = In − J(a)
i , then

rankJ(a)
i = ki, rankJ(b)i = n− ki.

We have

D(b)
t Dt = DtD

(b)
t = 0, J(a)

i J(b)i = J(b)i J(a)
i = 0, Qi J

(b)
i = J(b)i Qi = 0,

Qi1 J(a)
i2

= J(a)
i2

Qi1 = 0, J(a)
i1

J(a)
i2

= J(a)
i2

J(a)
i1

= 0, Qi1 Qi2 = Qi2 Qi1 = 0,

and
Qi1 J(b)i2

= J(b)i2
Qi1 = Qi1 6= 0, J(a)

i1
J(b)i2

= J(b)i2
J(a)
i1

= J(a)
i1
6= 0,

where 1 6 i1 6= i2 6 r, Qi is defined above Equation (6) on page 8.
It is not difficult to prove that

J(b)i1
J(b)i2

= J(b)i2
J(b)i1

= In − J(a)
i2
− J(a)

i1
.

If we denote Pi = Qi + J(b)i , we have

rankPi = n, In + Qi = Pi + J(a)
i .

Clearly,

Pi1 Pi2 =
(

Qi1 + In − J(a)
i1

)(
Qi2 + In − J(a)

i2

)
= Qi1 + Qi2 + In − J(a)

i1
− J(a)

i2
,

and

Pi2 Pi1 =
(

Qi2 + In − J(a)
i2

)(
Qi1 + In − J(a)

i1

)
= Qi2 + Qi1 + In − J(a)

i2
− J(a)

i1
.

So, Pi1 Pi2 = Pi2 Pi1 , i.e., Pi1 and Pi2 commute.
Hence

r

∏
i=1

Pi =
r

∏
i=1

(
Qi + In − J(a)

i

)
=

r

∑
i=1

Qi + In −
r

∑
i=1

J(a)
i =

r

∑
i=1

Qi + Dt = A.

We can also prove the equality above in a different way.
Because Qi1 Qi2 = 0, Qi1 Dt = DtQi1 = 0, (1 6 i1 6= i2 6 r), then

(In + Dt)
r

∏
i=1

(In + Qi) = In +
r

∑
i=1

Qi + Dt = In + A. (8)

Since DtQi = QiDt = 0, we have Dt J(a)
i = J(a)

i Dt = 0.

By construction, when 1 6 i 6 r, v ∈ F′t+i
⋃( t⋃

i=1
F′i

)
, the v’th column (or the v’th row)

of Pj (1 6 j 6 r, j 6= i) is equal to the v’th column (or the v’th row) of In, so the v’th column

(or the v’th row) of
r

∏
16j6r

j 6=i

Pj is equal to the v’th column (or the v’th row) of In.
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Therefore, when J(a)
i is multiplied by

r
∏

16j6r
j 6=i

Pj , the v’th column does not change,

while the other columns of J(a)
i are 0 vectors, such that

J(a)
i

r

∏
16j6r

j 6=i

Pj = J(a)
i .

For the same reason, Dt
r

∏
i=1

Pi = Dt.

Noting that

(In + Dt)
r

∏
i=1

(In + Qi)

=(In + Dt)
r

∏
i=1

(
Pi + J(a)

i

)

=(In + Dt)


r

∏
i=1

Pi +
r

∑
i=1

J(a)
i

r

∏
16j6r

j 6=i

Pj



 (J(a)
i1

J(a)
i2

= J(a)
i2

J(a)
i1

= 0, i1 6= i2)

=(In + Dt)

(
r

∏
i=1

Pi +
r

∑
i=1

J(a)
i

)

=
r

∏
i=1

Pi +
r

∑
i=1

J(a)
i + Dt

r

∏
i=1

Pi + Dt

r

∑
i=1

J(a)
i

=
r

∏
i=1

Pi +
r

∑
i=1

J(a)
i + Dt + 0 =

r

∏
i=1

Pi + In,

we have that

(In + Dt)
r

∏
i=1

(In + Qi) =
r

∏
i=1

Pi + In. (9)

It follows from Equations (8) and (9), that

r

∏
i=1

Pi + In = In + A,

thus
r

∏
i=1

Pi = A.

Now, we prove that Pi is a generalized cycle matrix of type II with cycle order ki.

Since Pi = Qi + J(b)i , Qi J
(b)
i = J(b)i Qi = 0, then Pm

i = Qm
i +

(
J(b)i

)m
= Qm

i + J(b)i (∀m ∈

Z+), and Pki
i = Qki

i + J(b)i .
It follows from Qki

i ea′i,v
= Aki ea′i,v

= ea′i,v
(v = 1, 2, · · · , ki) that

∀el ∈ D\G′t+i, Qiel = 0 =⇒ Qki
i el = 0.

Here D is defined in Equation (3).
On the other hand, J(b)i ea′i,v

= 0 (v = 1, 2, · · · , ki), J(b)i el = el , (∀el ∈ D
∖

G′t+i ).
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So, for any el in B, if el ∈ G′i , then
(

Qki
i + J(b)i

)
el = Qki

i el = el ; otherwise, el /∈ G′i , then(
Qki

i + J(b)i

)
el = J(b)i el = el .

This means that Pki
i el = (Qki

i + J(b)i )el = el (∀el ∈ B), i.e. Pki
i (e1, e2, · · · , en) = (e1, e2,

· · · , en), or Pki
i In = In. (Actually, by Qki

i = J(a)
i , we have that Pki

i = Qki
i + J(b)i = J(a)

i + J(b)i =
In.)

When 1 6 m < ki, Qm
i is not diagonal, and neither is Qm

i + J(b)i = Pm
i . So, Pi is a

generalized cycle matrix of type II with cycle order ki.

4. On the Number of Permutation Similarity Classes

The number of permutation similarity classes of permutation matrices of order n is
the partition number p(n). There is a recursion formula for p(n),

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + · · ·+

(−1)k−1 p
(

n− 3k2 ± k
2

)
+ · · · · · ·

=
k1

∑
k=1

(−1)k−1 p
(

n− 3k2 + k
2

)
+

k2

∑
k=1

(−1)k−1 p
(

n− 3k2 − k
2

)
, (10)

(see [7], p. 55), where

k1 =

⌊√
24n + 1− 1

6

⌋
, k2 =

⌊√
24n + 1 + 1

6

⌋
, (11)

and p(0) = 1. In the above formula, bxc denotes the floor function, i.e. the maximum
integer that is less than or equal to the real number x.

Asymptotically, we have (see e.g., [8,9] )

p(n) ∼ 1
4n
√

3
exp

(√
2
3

πn1/2

)
. (12)

This formula has been obtained by Godfrey H. Hardy and Srinivasa Ramanujan in
1918 [10] (In [11,12], one may find two different proofs. The evaluation of the constants can
be found in [13]).

Formula (12) is relevant for theoretical analysis and very convenient to estimate the
value of p(n) by simple means. However, the accuracy of the asymptotic Formula (12)
is limited when n is small. Another celebrated formula, given in term of a convergent
series, has been found by Rademacher in 1937, based on the work of Hardy and Srinivasa
Ramanujan, see [7,14].

In [15], several other formulae modified from Formula (12) have been obtained,
showing high accuracy and yet expressed in terms of elementary functions, e.g.

p(n) ≈

 exp
(√

2
3 π
√

n
)

4
√

3
(
n + C′2(n)

) + 1
2

, 1 6 n 6 80 (13)

with a relative error less than 0.004%, where

C′2(n) =

{
0.4527092482×

√
n + 4.35278− 0.05498719946, n = 3, 5, 7, · · · , 79;

0.4412187317×
√

n− 2.01699 + 0.2102618735, n = 4, 6, 8, · · · , 80.
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and

p(n) ≈

 exp
(√

2
3 π
√

n
)

4
√

3(n + a2
√

n + c2 + b2)
+

1
2

, n > 80 (14)

with a relative error less than 5 × 10−8 when n > 180, where a2 = 0.4432884566,
b2 = 0.1325096085 and c2 = 0.274078.

5. Results for Monomial Matrices

Any monomial matrix M can be written as a product of a permutation matrix P and
an invertible diagonal matrix D. Turn all the non-zero elements of M into 1, then we have a
permutation matrix P. Suppose that the unique non-zero elements in the i’th row of M is ci,
and the unique non-zero element in the i’th column of M is di, i = 1, 2, · · · , n. Let D1 = diag
{ c1, c2, · · · , cn }, D2 = diag { d1, d2, · · · , dn }, then we have M = PD2 = D1P.

For the permutation matrix P, there is a permutation matrix T such that T−1PT = Y
has the canonical form diag {It, Nk1 , · · · , Nkr} as proved in Theorem 1. In the expression
T−1PT, the permutation matrix T−1 changes only the position of the rows, and T just
changes the position of the columns of P. Since the non-zero elements of M and P share
the same locations in the matrices, so do T−1MT and T−1PT. Denote the unique non-zero
element in the i’th row of T−1MT by ai, and the unique non-zero element in the i’th column
of T−1MT by bi, i = 1, 2, · · · , n. Let D3 = diag { a1, a2, · · · , an }, D4 = diag { b1, b2, · · · , bn },
then T−1MT = D3Y = YD4.

Finally, we have that

M = D1T


It

N1
. . .

Nr

T−1 = T


It

N1
. . .

Nr

T−1D2

= TD3


It

N1
. . .

Nr

T−1 = T


It

N1
. . .

Nr

D4T−1.

D1, D2, D3 and D4 could be easily obtained from M directly. Their relations can be
stated as below.

D2 = P−1D1P, D3 = T−1D1T, D4 = Y−1D3Y.

6. Conclusions

For any permutation matrix A of order n, we can obtain its canonical form
B = diag{It, Nk1 , · · · , Nkr} and a permutation matrix T by the algorithm described in the
proof of Theorem 1, such that, B = T−1 AT, where t, r, k1, · · · , kr and T are uniquely
determined from A. Any matrix permutationally similar to A has the same canonical form.

The permutation matrix A can be written as the sum of some generalized cycle
matrices Q1, Q2, · · · , Qr of type II and a diagonal matrix Dt of rank t, where t and r are
the same as that mentioned above, Q1, Q2, · · · , Qr and Dt are determined from A by
Equations (4) and (5) in the proof of Theorem 2.

We can also denote A as the product of some generalized cycle matrices P1, P2, · · · , Pr
of type I, where t is the same as that mentioned above, P1, P2, · · · , Pr can be constructed
from the Equation (7) in the proof of Theorem 3.

7. Concluding Remark

We can also prove Theorem 1 by the combinatorial method, which may seem easier.
But the other two theorems could not be easily proved in the same way. Theorem 1 could
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be written in the form of permutation transformations (which are the members of the
symmetry group Sn). If L is a Latin square, every row (or column) of L could be considered
as a permutation transformation. When searching for the invariant isotopism group of L, we
will encounter the canonical form of the permutational similarity relations (of permutation
matrices or of permutation transformations in Sn). So the conclusions obtained here could
be applied in Latin squares or projective planes.
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