
Citation: Cruz Rojas, J.; Demircik, T.;

Järvinen, M. Popcorn Transitions and

Approach to Conformality in

Homogeneous Holographic Nuclear

Matter. Symmetry 2023, 15, 331.

https://doi.org/10.3390/

sym15020331

Academic Editor: Mannque Rho

Received: 27 December 2022

Revised: 13 January 2023

Accepted: 17 January 2023

Published: 25 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Popcorn Transitions and Approach to Conformality in
Homogeneous Holographic Nuclear Matter
Jesús Cruz Rojas 1 , Tuna Demircik 2 and Matti Järvinen 1,3,*

1 Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
2 Institute for Theoretical Physics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
3 Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
* Correspondence: matti.jarvinen@apctp.org

Abstract: We study cold and dense nuclear matter by using the gauge/gravity duality. To this end, we
use the Witten–Sakai–Sugimoto model and the V-QCD models with an approach where the nuclear
matter is taken to be spatially homogeneous. We focus on the “popcorn” transitions, which are phase
transitions in the nuclear matter phases induced by changes in the layer structure of the configuration
on the gravity side. We demonstrate that the equation of state for the homogeneous nuclear matter
becomes approximately conformal at high densities, and compare our results to other approaches.
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1. Introduction

Recent observations of neutron star mergers by the LIGO/Virgo collaboration have
opened a new window for studying dense matter in quantum chromodynamics (QCD).
In particular, the gravitational and electromagnetic waves observed from the GW170817
merger event [1] have already set highly nontrivial constrains for the QCD equation of
state [2] at low temperatures and high densities. This progress has boosted interest in
theoretical studies of dense QCD, which is a challenging topic, as standard theoretical
and computational tools do not work in extensive regions of the phase diagram (see the
overview in [3]). These include the region of dense nuclear matter, i.e., a nucleon liquid at
baryon number densities well above the nuclear saturation density ρs ≈ 0.16 fm−3.

The difficulty of solving the properties of dense matter calls for new methods. A
possibility is to use the gauge/gravity duality. Indeed, applications of holographic QCD
models to dense matter have received significant interest recently. There has been progress
in developing models for quark matter [4–9], nuclear matter [10–14], and other phases
(such as color superconducting or quarkyonic phases) [15–18]. See also the reviews [19,20].

The natural starting point for describing nuclear matter is to study the holographic
duals for nucleons. The standard approach [21] boils down to describing them as soli-
tonic “instanton” solutions of bulk gauge fields, i.e., the gauge fields living in the higher
dimensional gravity theory. These solitons are localized both in the spatial directions and
in the holographic direction (but not in time). Solitons that are duals of isolated nucleons
have been solved in various holographic models [22–31]. However, constructing more
complicated solutions and eventually the holographic dual of dense nucleon matter out
of these bulk solitons is challenging. Some results, which use instanton gases without
interactions, are available [13,32–36] and also include two-body interactions [10]. Moreover,
at large Nc, the nuclear matter is a crystal rather than a liquid of nucleons [37]. Such crystals
have been studied by using different toy models and approximations [38–43].

In this article, we focus on a simpler approach, which treats dense nuclear matter as a
homogeneous configuration of the non-Abelian gauge fields in the bulk. This approach
was applied to the Witten–Sakai–Sugimoto (WSS) model [44–46] in [47] and argued to
be a reasonable approximation at high density. An even simpler approach is to treat the
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baryons as point-like sources in the bulk, which may be a better approximation at low
density [47,48]. The homogeneous approach was further developed in [49,50] and applied
to other models in [11,14]. Interestingly, dense (and cold) homogeneous holographic
nuclear matter was seen to have a high speed of sound, clearly above the value c2

s = 1/3
of conformal theories [11] (see also [51,52]). That is, the equation of state is “stiff”. This is
important, as it helps to construct models that pass observational bounds [53–55].

Changes in the structure of dense nuclear matter may give rise to transitions within
the nuclear matter phase. At large Nc, nuclear matter is a crystal of skyrmions, solitons of
the low energy chiral effective theory [56]. As the density increases, the skyrmion crystal is
expected to undergo a transition into half-solitons, where each node of the crystal carries
baryon number of one half [57–60]. Similar structures have been studied by using the
gauge/gravity duality in [39].

This topology changing transition has been studied extensively by using an effec-
tive field theory approach, which introduces the σ meson of QCD as a pseudo-Nambu–
Goldstone mode of broken scale invariance, and vector mesons through the hidden local
symmetry approach [61,62]. This approach is supported by the analysis of the nucleon
axial coupling gA for heavy nuclei [63]. Above the transition density, it was found that the
speed of sound rapidly approaches the conformal value c2

s = 1/3 [64]. At the same time,
the polytropic index γ = d log p/d log ε takes small values [65,66] compared to what is
usually found in nuclear theory models [67,68]. The transition has also been argued [69] to
be indicative of quark–hadron continuity [70], which states that there is no phase transition
between nuclear and quark matter. Whether the continuity is a feasible possibility is a
matter of ongoing debate’ see [71–74] (also, [15] for a holographic discussion).

A closely related transition realized in holographic setups is the transition from a
single-layer configuration into a double layer configuration. Recall that in the holographic
method, each nucleon is dual to a five dimensional soliton on the gravity side, and the dual
nuclear matter is therefore obtained as an ensemble of such solitons. In the low density
limit, the location of each soliton is found by individually minimizing its energy, so that
the solitons form a single layer at a specific value of the holographic coordinate. For dense
configurations, however, the repulsive interactions between solitons will eventually force
them out of this layer, which leads to a double layer or a more complicated configuration.
This transition was coined the “popcorn” transition in [40]. If interactions between the
solitons are attractive at large distances (as is the case for real QCD), the picture is more
complicated, as the solitons clump together even at low densities, but the transition may
still be present. Various phases appear as the density increases further [41,42] in setups
motivated by the WSS model. The simplest case of the transition is, however, the separation
of a single layer into two layers. This kind of transition was also found to take place in
the WSS model in various approximations: when the instantons were approximated as
point-like objects [17], when including finite widths [36], and when using a homogeneous
approach [50]. Indications of such a transition were also seen when using a homogeneous
Ansatz for nuclear matter in the hard wall model of [14], where it was interpreted as a
transition to a quarkyonic phase [75].

In this article, we study the popcorn transitions within cold homogeneous holographic
nuclear matter by using two different models: the top-down WSS model and the bottom-up
V-QCD model [19,76]. These two are arguably the most developed holographic top-down and
bottom-up models for QCD at finite temperature and density. For the WSS model, a similar
analysis was carried out in [50]. This reference used an approach which is slightly different
from ours; in their case, a zero curvature condition for the non-Abelian gauge fields in the
Lagrangian density is imposed before approximating the density to be homogeneous. We
use a somewhat simpler approach where the fields are assumed to be homogeneous to start
with. In our case, as we will discuss in detail below, a discontinuity of the gauge fields as a
function of the holographic coordinate is required to have nonzero baryon density [47]. This
may appear to be a weakness of the simpler approach, but we remark that the discontinuity is
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actually well motivated, as it can be seen to arise from the non-analyticity of the instanton
solutions at their centers after smearing over the spatial dimensions [19].

The main goal in this article is to analyze the softening of the equation of state at the
phase transition. The main indicators for this are the speed of sound and the polytropic
index γ. We compute these quantities in both holographic models and compare them
to results in other setups. In particular, we find interesting similarities with the effective
theory approach for the topology changing transition [62,64].

The rest of the article is organized as follows. In Section 2, we review the setup with
homogeneous nuclear matter for the WSS model; in Section 3, we do the same for the
V-QCD model. In Section 4, we discuss the numerical results for the solutions, the phase
transitions, and the equation of state. Finally, we discuss our findings in Section 5.

2. Homogeneous Nuclear Matter in the Witten–Sakai–Sugimoto Model

The phase diagram of QCD has been studied by using several holographic “top-down”
models, i.e., models directly based on string theory, such as the Witten–Sakai–Sugimoto
model [45,46]. In this model, Witten’s non-supersymmetric model for low-energy QCD [44]
has been successfully applied to study the spectra and the properties of mesons and baryons.

In the WSS model, the pure glue physics of the QFT is described by the dual gravi-
tational background and is sourced by Nc D4-branes in type-IIA superstring theory. Fun-
damental degrees of freedom are included by adding N f pairs of D8 and D8-branes, such
that the strings connecting D4− D8 and D4− D8 branes are associated with left- and
right-handed fermions.

Witten’s model includes a phase transition involving a topologically nontrivial change
in geometry from a low temperature “cigar” geometry to a high temperature black hole
geometry [77]. We focus here on the low temperature geometry, which we will give
explicitly below. In the low temperature geometry, the D8 and D8-branes join at the tip
of the cigar (see Figure 1), which locks together the flavor transformations on the branes,
indicating chiral symmetry breaking. As shown in the figure, we assume the simplest case
where the D8 and D8-branes are antipodal, i.e., are located at exactly opposite curves on
the cigar. In this setting, all quark masses are equal to zero. A chemical potential for the
baryon number can be turned on by adding a nonzero source for the temporal component
of the Abelian gauge field on the D8-branes.

x4

UKK

∞

U
z =+∞

z =0

z =-∞

z =-zc

x4

UKK

∞

U

z =-∞

z =+∞

z =+zc

Figure 1. Setup in the WSS model. The coordinate z runs between z = −∞ and z = ∞ between the two
boundaries of the D8 brane embedding as indicated in the figure. The blobs show the locations of the
discontinuities for the single-layer configuration (left) and for the double-layer configuration (right).
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2.1. Expanding the Dirac-Born-Infeld Action

The 10-dimensional metric of the confined low temperature geometry in the Witten
model can be written as [78,79]

ds2 =

(
U
R

)3/2[
dxµdxµ + f (U)dx2

4

]
+

(
R
U

)3/2[ dU2

f (U)
+ U2dΩ2

4

]
(1)

where R is the curvature radius,

f (U) = 1−
U3

KK
U3 (2)

with UKK denoting the end of space and dΩ2
4 the metric of S4. For the Minkowski metric

dxµdxµ, we use mostly plus conventions, and the x4 coordinate is compactified on a circle.
The dilaton is given by

eφ = gs

(
U
R

)3/4
, (3)

where gs is the string coupling.
In the (x4, U)-coordinates, this geometry takes the form of a cigar and the regularity

at the tip of the cigar links the radius of compactification R4 of the x4 coordinate to the

Kaluza–Klein scale characterized by UKK, as R4 = (4π)R3/2

3
√

UKK
; we can also define the mass

scale M−1
KK = R4

2π . The simplest D8 brane embedding within the cigar geometry is the
antipodal one, given (for example) by x4 = 0 and x4 = πR4. By changing the coordinates
to U = UKK(1 + z2)1/3 the induced metric on the brane can be written as

ds2
ind =

(
UKK

R

)3/2√
1 + z2 dxµdxµ +

(
R

UKK

)3/2 4dz2

9(1 + z2)
5/6 + R3/2

√
UKK

6
√

1 + z2dΩ2
4 . (4)

Here, the coordinate z takes both positive and negative values on different branches
of the brane. The boundary is at z = ±∞ and the tip of the cigar at z = 0. See Figure 1 for
illustration.

We work in units where UKK = 1 and R3 = 9/4, making all quantities dimensionless.
This can be interpreted such that we show dimensionful quantities in units of the Kaluza–
Klein mass MKK, which is also set to one. We also start from the Dirac–Born–Infeld action

SDBI = −τ8

∫
d9x e−φtr

√
−det(g +F ) , (5)

where the trace is over flavor indices. The brane tension is given by

τ8 =
1

(2π)8l9
s
=

λ9/2

157464
√

2π8
. (6)

Here, ls is the string length, λ is the ’t Hooft coupling, and F is the field strength
tensor of the gauge field A. We used the relations R3 = πgsNcl3

s and 2πlsgsNc = λ.
We use a similar expansion as in the case of V-QCD below [11] so that the non-

Abelian components of the gauge fields are treated as small, but the Abelian terms are
kept unexpanded. To do so, we separate the gauge field into non-Abelian and Abelian
components: A = A + Â, where A is non-Abelian and Â is Abelian, i.e., proportional to
the unit matrix in flavor space (and similarly, F = F + F̂ for the field strengths). We take
only the temporal component of the Abelian gauge field to be nonzero, assume that it
depends only on the holographic coordinate z, and assume no dependence on the angular
coordinates of Ω4 for all fields, so that these coordinates can be integrated out. Then, the
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five-dimensional effective action for the gauge fields to leading nontrivial order in the
non-Abelian field strength tensor F is given as

S = S(0)
DBI + S(1)

DBI + SCS (7)

where the terms arising from the Dirac–Born–Infeld action read

S(0)
DBI = −

λ3NcN f

19683π5

∫
d5x 3
√

1 + z2
√
(1 + z2)

2/3 − (1 + z2)Φ′(z)2 (8)

and

S(1)
DBI = −

λNc

216π5

∫
d5x tr

[
−

F2
tz
(
1 + z2)(

1− 3
√

1 + z2Φ′(z)2
)3/2 −

F2
ti

3
√

1 + z2
√

1− 3
√

1 + z2Φ′(z)2

+
F2

ij

√
1− 3
√

1 + z2Φ′(z)2

2 3
√

1 + z2
+

F2
zi
(
1 + z2)√

1− 3
√

1 + z2Φ′(z)2

]
, (9)

where the spatial indices i, j are summed over. Notice that the general Dirac–Born–Infeld
action is ambiguous for non-Abelian fields, but up to second order in the expansion the
action is non-ambiguous. The Chern–Simons term is

SCS =
Nc

24π2

∫ {
ω5 + d

[
Â ∧ tr

(
2A ∧ F +

i
2

A ∧ A ∧ A
)]

+ 3Â ∧ tr(F ∧ F)
}

(10)

with the Abelian gauge field normalized as Φ = 2λÂt/(
√

729π). Here

ω5 = tr
(

A ∧ F ∧ F +
i
2

A ∧ A ∧ A ∧ F− 1
10

A ∧ A ∧ A ∧ A ∧ A
)

(11)

gives the standard Chern0-Simons term for the brane. We used conventions where
F = dA − iA ∧ A. Notice that in (10), the Abelian field couples to the instanton den-
sity in the bulk as expected (see the last term). Indeed, notice that S(0)

DBI and S(1)
DBI depend on

the Abelian gauge field only through its z-derivative, and only SCS contains non-derivative
dependence on this field. Since the total baryon charge density is defined as

ρ0 = −
(

δS
δÂ′t

)
bdry

=
∫

dz
δS

δÂt
, (12)

according to the holographic dictionary, the baryon charge is given by the coupling of the
non-Abelian field to Ât in SCS. In other words, the Chern–Simons term determines how
the solitons source baryonic charge.

We also remark that the construction of the precisely consistent Chern–Simons term is
actually rather involved in general [80], but in the simple case considered here, complica-
tions do not arise.

2.2. The Homogeneous Ansatz

Then, as the next step, we set N f = 2 and insert the homogeneous Ansatz

Ai = h(z)σi (13)
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where h(z) is a scalar function and σi are the Pauli matrices. The non-Abelian At and Az
components are set to zero. We then find that

Fzi = h′(z)σi , Fij = 2h(z)2εijkσk (14)

while other components of the field strength are zero. We obtain

S(1)
DBI = −

λNc

36π5

∫
d5x

[
4h(z)4

√
1− 3
√

1 + z2Φ′(z)2

3
√

1 + z2
+

(h′(z))2(1 + z2)√
1− 3
√

1 + z2Φ′(z)2

]
(15)

and the Chern–Simons action contributes as

SCS =
3Nc

π2

∫
h(z)2h′(z)Â ∧ dz ∧ dx1 ∧ dx2 ∧ dx3 (16)

as well as a boundary term

SCS,bdry =
3Nc

4π2

∫
bdry

h(±∞)3 Â ∧ dx1 ∧ dx2 ∧ dx3 (17)

which, however, will vanish when it is evaluated on the solution in our case.

2.3. The Single-Layer Solution

In order to have explicit parity invariance, we assume that h(z) = −h(−z).
Following [47], we assume that the field h has a discontinuity at z = 0, denoted by the blob
in Figure 1 (left), and approaches different constant values as z→ 0 either from above or
from below. As we mentioned above, the discontinuity is required to have a non-vanishing
baryon density. Defining the bulk charge density as

ρ(z, xµ) = − δS
δ ∂z Ât(z, xµ)

(18)

the equation of motion for Â implies

ρ′(z) =
3Nc

π2 h(z)2h′(z) . (19)

The continuous and symmetric solution is given by

ρ(z) =

{
ρ0 +

Nc
π2 h(z)3 , (z < 0)

−ρ0 +
Nc
π2 h(z)3 , (z > 0)

(20)

where
ρ0 =

Nc

π2 lim
z→0+

h(z)3 = −Nc

π2 lim
z→0−

h(z)3 (21)

is the boundary charge density. Notice that, as expected, it is sourced by the discontinuity
of h. This solution is identified as the single-layer solution. To finalize the construction, we
require that h satisfies the equation of motion arising from minimizing the action, except at
z = 0, where the discontinuity is located.

2.4. The Double-Layer Solution

A slightly more general solution than the single-layer solution exists; it is possible that the
discontinuity of the h field does not take place at the tip, but at a generic value of the holographic
coordinate. The simplest of such solutions, which still respects the symmetry h(z) = −h(−z),
is where h(z) vanishes when −zc < z < zc so that the discontinuity is located at z = ±zc; see
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Figure 1 (right). Similar solutions were considered in [17] for point-like instantons. In this case,
the solution for the bulk charge density is given by

ρ(z) =


ρ0 +

Nc
π2 h(z)3 , (z < −zc)

−ρ0 +
Nc
π2 h(z)3 , (z > zc)

0 , (−zc < z < zc)

(22)

where
ρ0 =

Nc

π2 lim
z→zc+

h(z)3 = −Nc

π2 lim
z→(−zc)−

h(z)3 . (23)

This solution is identified as the double-layer solution.

2.5. Legendre Transform to Canonical Ensemble

To determine the phase diagram, one needs to determine the free energy, the en-
ergy densities, and the grand potential for the different phases. Thus, we first need to
compute the free energy of the baryonic phase. For this purpose we first evaluate the
on-shell action, as this is related by the holographic dictionary to the four-dimensional
free energy density of the field theory (neglecting any singular contributions due to the
discontinuity of h; see Appendix A). Then, we minimize the action for h to determine the
location of the discontinuity.

It is convenient to work at fixed baryonic charge rather than chemical potential. To
this end, we perform a Legendre transformation for the action (7):

S̃ = S +
∫ d

dz
(

Ât ρ
)
dz (24)

The Legendre transform is introduced only for convenience; in our setup, the compu-
tation is simpler in the canonical ensemble, where the Abelian gauge field is not dynamical.
One could also work in the grand canonical ensemble. For convenience, we rescale ρ

as ρ → 4λ4

531441π6 ρ ≡ ρ̂. Expanding to first nontrivial order in h(z) and h′(z), and using
Equation (18), we can solve for Φ′(z):

Φ′(z) = − ρ̂

R(z, ρ̂)(1 + z2)Nc
−

2187ρ̂
(
−4h(z)4(1 + z2)

2
3 + h′(z)2(1 + z2)2R(z, ρ̂)2

)
8λ2Nc(1 + z2)

8
3 R(z, ρ̂)3

, (25)

where we define

R(z, ρ̂) =

√
1 +

ρ̂2

(1 + z2)
5/3N2

c

. (26)

Then, the Legendre transformed action is

S̃ = −Nc

∫
d5x

[
2λ3(1 + z2)

2
3 R(z, ρ̂)

19683π5 +

+
λ
(

4h(z)4(1 + z2)
2
3 + h′(z)2((1 + z2)2R(z, ρ̂)2))

36π5((1 + z2)R(z, ρ̂))

]
. (27)

Now we can find the equation of motion for h(z) and solve it. For this purpose, we
need to find the appropriate asymptotics of the field h at the boundary:

h ' h1

z
, (28)

with h1 remaining as a free parameter.
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3. Homogeneous Nuclear Matter in the V-QCD Model

V-QCD is bottom-up holographic model that contains both glue and flavor sectors.
The glue sector is given by the improved holographic QCD framework [81,82] in which a
dilaton field and the potential depending on it are used to implement the essential features
of the related QCD sector, i.e., asymptotic freedom, and confinement to deconfinement
phase transition. The flavor sector arises from a pair of dynamical space filling flavor
branes [83,84]. In V-QCD, the full back-reaction of the flavor branes is taken into account
via the Veneziano limit [85], in which both Nc and N f are large but their ratio is kept O(1),
as it is in real QCD [76]. In the V-QCD flavor sector, a tachyon field is used to realize the
breaking/restoration of the chiral symmetry. In both sectors, the model parameters are
also fixed by considering perturbative QCD results (running of coupling constant and
quark mass) at weak coupling [76,81,82] by requiring qualitative agreement with QCD (e.g.,
confinement and discrete spectrum) at strong coupling [86], and by fitting to QCD data (e.g.,
meson and glueball masses and the equation of state at finite temperature) [6,31,87–89].
For a more complete review about the construction of the V-QCD model, the fit to fix the
potentials, and comparison with the data, we refer the reader to [19]. In this article, we use
one of the models defined in [6] (potentials 7a). This also means that all quark masses are
set to zero. The parameter b appearing in the Chern–Simons action [11] is set to b = 10.

There are two possible geometries in V-QCD: a horizon-less geometry ending in a
“good” kind of singularity [90] (dual to a chirally broken confined phase) and a geometry of
a charged “planar” black hole [91,92] (dual to a chirally symmetric deconfined phase). In
this article, we focus on the former geometry, which is the relevant geometry for cold and
dense nuclear matter. This phase also includes chiral symmetry breaking, which is induced
by the condensate of a scalar field τ (the “tachyon”) in the bulk.

In order to discuss nuclear matter, we will employ here an approach that is essentially
the same as the homogeneous approach introduced for the WSS model above [11].

This approach has been improved by combining the predictions of V-QCD with other
models [93–96]. The resultant equation of states have been widely investigated. It was
shown that the resultant equations of state are feasible in the sense of being consistent
with neutron star observations [93,94,96–100]. They were also used in phenomenologi-
cal applications such as modeling spinning neutrons stars [98] and neutron star merger
simulations [93,99,100].

In the first two subsections below, we outline the implementation of homogeneous
Ansatz in V-QCD and discuss the single-layer solution. For more details, we refer to [19]. In
the last two subsections, we present the generalization to double-layer solution and investi-
gate the possibility of a transition from the single-layer to a double-layer configuration.

3.1. The Homogeneous Ansatz

For V-QCD, we use the action with finite baryon density, which can be written as

SV−QCD = Sglue + SDBI + SCS. (29)

The explicit expression for the action can be found in [11]. The renormalization group
flow of QCD is modeled through a nontrivial evolution of the geometry between the weak
coupling (ultraviolet, UV) and strong coupling (infrared, IR) regions. We will be using here
the conformal coordinate r in the holographic direction [81,82] for which the UV boundary
is located at r = 0 while the IR singularity is at r = ∞. As in the case of the WSS model
above, we separate the gauge field into non-Abelian and Abelian components:

AL/R = AL/R + ÂL/R . (30)

Here, the left- and right-handed fields arise from D4 and D4 branes, respectively [83,84].
Similarly, as in the case of the WSS model above, we turn on the temporal component of
the vectorial Abelian gauge field
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ÂL = ÂR = IN f×N f Φ(r)dt . (31)

Then, on top this background, the non-Abelian baryonic terms are treated as a pertur-
bation. We expand the DBI action up to a first nontrivial order in the non-Abelian fields
(quadratic in the field strengths F(L/R)).

After the expansion, we insert the homogeneous Ansatz for non-Abelian gauge field, i.e.,

Ai
L = −Ai

R = h(r)σi (32)

where h(r) is a smooth function and σi are Pauli matrices introducing the non-trivial flavor
dependence SU(2). As result, the action for the flavor sector is written as

Sh = S(0)
DBI + S(1)

DBI + SCS (33)

where S(0)
DBI is the DBI action in the absence of solitons, S(1)

DBI is the expansion of the DBI
action with homogeneous Ansatz at the second order, and SCS is the Chern–Simons term
with the homogeneous Ansatz (the explicit expressions are given in [11]).

3.2. The Single-Layer Solution

The solution for the bulk charge density is found by considering the Φ equation of
motion [11]

ρ′ = − d
dr

δSh
δΦ′

= − δSh
δΦ

=
2Nc

π2
d
dr

[
e−bτ2

h3(1− 2bτ2)
]
, (34)

where b is a parameter in the Chern–Simons term, ρ is the bulk charge density, and τ is the
tachyon field. However, the solution for ρ implied by this equation vanishes both in the
UV and in the IR. That is to say, diverging tachyons in the IR set the solution to zero via
the exponential factor and the boundary condition for h in UV requires it to vanish (since
there is no external baryon source). Therefore, as was the case in the WSS model above, the
baryon density is zero, unless we impose an abrupt discontinuity in the field h.

Motivated by these considerations, we write the “single-layer” solution for V-QCD
as [11]

ρ =

{
ρ0 +

2Nc
π2 e−bτ2

h3(1− 2bτ2), (r < rc)
2Nc
π2 e−bτ2

h3(1− 2bτ2), (r > rc)
(35)

where ρ0 is boundary baryon charge density (the physical density) and rc is the location of
the discontinuity. The explicit expression for ρ0 is

ρ0 =
2Nc

π2 e−bτ(rc)2
(1− 2bτ2(rc))Disc(h3(rc)), (36)

where we use the notation Disc(g(rc)) ≡ limε→0+(g(r + ε)− g(r− ε)).
For future convenience, we briefly discuss the asymptotics of the field h. In the UV, h

has the asymptotics typical for gauge fields:

h ' h1 + h2r2 . (37)

We require that non-Abelian sources vanish; therefore, h1 = 0, but h2 remains as a free
parameter (which also determines rc for given ρ0; see Appendix A.2). Following [11], we
set h(r) = 0 for r > rc.

3.3. The Double-Layer Solution

In this subsection, we generalize the single-layer solution for baryon field h to have
two discontinuities, i.e.,

ρ =


ρ01 +

2Nc
π2 e−bτ2

h3(1− 2bτ2), (r < rc1)

ρ02 +
2Nc
π2 e−bτ2

h3(1− 2bτ2), (rc1 < r < rc2)
2Nc
π2 e−bτ2

h3(1− 2bτ2), (r > rc2)

(38)
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which we will be called the double-layer solution. There is also a continuity condition on ρ
that must be satisfied, which is given as

ρ02 = −2Nc

π2 (1− 2bτ2)e−bτ2
Disc h3|r=rc2 , ρ01 − ρ02 = −2Nc

π2 (1− 2bτ2)e−bτ2
Disc h3|r=rc1 . (39)

Therefore, summing the equalities above, we identify the boundary baryon charge
density ρ0 as ρ01:

ρ0 = ρ(r = 0) = ρ01 = −2Nc

π2

2

∑
i=1

(1− 2bτ2)e−bτ2
Disc h3|r=rci . (40)

We stress, however, that even though we call this solution by the same name as the
double-layer solution for the WSS model, these solutions are quite different. In particular,
the double-layer V-QCD solution has discontinuities at two values of the holographic
coordinate, whereas the WSS solution only has discontinuities at a single value. Actually,
the single-layer solution of the V-QCD model is closer to the double-layer solution of the
WSS model than the double-layer solution of the V-QCD model. We will discuss this
difference in more detail below.

The double-layer solution depends on four parameters at fixed ρ0; there is one addi-
tional parameter from the location of the extra discontinuity with respect to the single-layer
solution, and as the solution for h in the second interval rc1 < r < rc2 is independent of
the solution in the first interval, there are two additional integration constants from the
solution of h. Finally, the generalization to triple-layer solution or even to a solution with
a higher number of flavors is straightforward. One only needs to modify the piecewise
solution for the charge density ρ with addition of new intervals. This will introduce three
new parameters for each interval.

3.4. Legendre Transform to Canonical Ensemble

As in the analysis of the WSS model above, it is convenient to work in the canonical
ensemble. The Legendre transformed action for V-QCD becomes [11]

S̃h = −
∫

d5xVρG

√
1 +

ρ2

(Vρwe−2A)2

[
1 +

6w2e−4Ah4 + 6κτ2e−2Ah2

1 + ρ2(Vρwe−2A)−2 +
3
2

w2e−4A f (h′)2

G2

]
. (41)

4. Results
4.1. Second-Order Transition in the Witten–Sakai–Sugimoto Model

We start by analyzing the configurations in the WSS model. We set λ = 16.63 [46])
and analyze the solutions numerically (see Appendix A). As a function of the chemical
potential, we find three phases (see Figure 2, where we show the grand potential and the
baryon charge density as a function of the chemical potential):

1. Vacuum for µ < µc with µc ' 0.205;
2. Single-layer phase for µc < µ < µl with µl ' 0.342;
3. Double-layer phase for µ > µl .

The phase transition at µ = µc (µ = µl) is of the first (second) order. Here the second-
order transition (at the higher value of the chemical potential, µ = µl), is identified as the
popcorn transition. Notice that in the approach of [50], which used a different variation of
the homogeneous approach, both the vacuum-to-nuclear and popcorn transitions were of
the first order. Even though we are not attempting a serious comparison to QCD data, we
note that by setting MKK = 949 MeV as determined by the mass of the ρ meson [46], we
have (for the quark chemical potential) µc ' 195 MeV and µl ' 325 MeV, i.e., numbers in
the correct ballpark. We note that µl/µc ' 1.67. Denoting the density of the single-layer
configuration at µ = µc as ρc (i.e., the analogue of the saturation density), the density ρl at
the second-order transition satisfies ρl/ρc ' 3.4.
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Here, we are mostly interested in the second-order transition from the single- to double-
layer phase. We show the relevant configurations in Figure 3 for a choice of densities ρ0
around the critical value ρl ' 2.52× 10−4. Recall that the single-layer configuration is unique
for fixed ρ0, whereas the double-layer configuration also depends on zc. We show here the
double-layer profiles, which minimize the free energy. They are separate from the single-layer
configuration only for ρ0 > ρl (the three highest values in the figure), where they have
lower free energies than the single-layer solutions. Interestingly, the single- and double-layer
solutions at the same ρ0 are close; the functions h(z) deviate by at most a few percentage
points in the region z > zc. The deviations for ρ(z) are slightly higher, and the single-layer
solution can be viewed as a smoothed out version of the double-layer solution. That is, even if
we were not considering the double-layer solutions explicitly, their presence could be guessed
from the single-layer solutions. In both cases, deviation is largest close to zc. We also remark
that the single-layer profiles h(z) appear to be qualitatively similar to the solutions found in
the approach of [50] (see Figure 4 in this reference), up to a shift by a constant.
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μ
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ρ c
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WSS d.l.
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Figure 2. The normalized grand potential Ω/(µcρc) (left) and the normalized charge density ρ0/ρc

(right). The solid red, dashed green, and dot-dashed blue curves are the results for the single-layer
configuration in the WSS model, double-layer configuration in the WSS model, and the V-QCD model,
respectively. The vacuum-to-nuclear-matter transitions occur at µ/µc = 1.

ρ0 = 0.0002 ρ0 = 0.0003 ρ0 = 0.0005 ρ0 = 0.0010

1 2 3 4 5
z

-0.15

-0.10

-0.05

h

1 2 3 4 5
z

0.2

0.4

0.6

0.8

1.0

ρ/ρ0

Figure 3. The profile of the gauge field h(z) (left) and the bulk charge density ρ(z) (right) for the
single-layer (solid curves) and double-layer (dashed curves) configurations for various values of
the charge density. The vertical dashed lines in the left hand plot denote the discontinuities of the
double-layer solutions at z = zc.

4.2. Analysis of Configurations in V-QCD

We construct the double-layer and single-layer solutions using the procedure outlined
in Appendix A.2. The essence of the procedure is the minimization of the free energy
density at fixed ρ0, depending on the free parameters. In the case of the single layer, there
is only one parameter, rc, or equivalently, h2, and it is straightforward to solve the equation
of state in this case. The results of this minimization procedure (the grand potential and the
baryon charge density as a function of chemical potential) for the single-layer solution are
shown in Figure 2 with the blue dot-dashed curves in the plots.
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For the double-layer solution, there are four parameters that make the numerical
minimization procedure challenging in contrast to the single-layer solution. Therefore,
while we perform minimization of the single-layer solution for a large domain of ρ0 values,
we investigate presence of the lower free energy density of the double-layer solution only
for solutions obtained by gluing together single-layer solutions for some representative
values of ρ0, changing from 0.8 to 2.5.

Denoting ∆hi = Disc h(rci), we investigate three qualitatively different configurations.
We consider ∆h1 < 0 and ∆h1 > 0 for a double-layer solution and ∆h1 > 0, ∆h2 > 0
for a triple-layer solution. For boundary baryon number charge, we consider the values
of ρ0 = 0.5, ρ0 = 0.8 and ρ0 = 2.5, which correspond to µ/µc = 1.65, µ/µc = 2.04 and
µ/µc = 3.57 for the thermodynamics determined by the single-layer solution, respectively.
While the first choice roughly corresponds to chemical potential values in which double-
layer solutions in WSS become dominant (as it is seen from Figure 4 below), the other two
choices are even larger than that.

In Figure 4, the results for the three representative case are shown. The baryon field
profile h(r) and corresponding baryon number densities ρ0(r) in the bulk are shown in the
first and second column, respectively. In each plot, the single-layer solution minimizing the
free energy is shown with gray dashed curves whose parameters are given in the first row
of Table 1. The red, blue, and green solid curves show ∆h1 < 0 and ∆h1 > 0 double-layer
and (∆h1 > 0, ∆h2 > 0) triple-layer solutions. The parameters rci, h2i, ρ0i, where h2i are the
asymptotic constants h2 for the single-layer solutions that were glued together to obtain the
multilayer solutions, and the corresponding free energy densities f are shown in Table 1.
The locations of the discontinuities and ρ0i are also shown in the figures with the blobs.

We were able to find double-layer solutions that have lower free energy than the
single-layer solution at a fixed charge density for the cases of ∆h1 > 0 i.e., the second row
of Figure 4. However, we were not able to find double-layer solutions with ∆h1 < 0 that
would have lower free energy than the single-layer solution (configurations in the first
row of the figure). Notice that having solutions with ∆h1 > 0 means that contributions to
the total charge from the two discontinuities have opposite signs. This means that in the
instanton picture, the discontinuities must arise from smearing instantons with opposite
charges. This suggests that proton–antiproton pairs are created, which should be forbidden
due to the large energy required for such a pair creation. Therefore, the configuration of
the first row is not physically sound. We suspect that it appears because the homogeneous
approximation works poorly with configurations with discontinuities at several values of
the holographic coordinate. We also show the example of a triple-layer configuration with
∆h1 > 0 and ∆h2 > 0 on the third row of the plot.

Table 1. The values of {rc, h2, ρ0, f } for the single-layer configuration (first row) and {rci, h2i, ρ0i, f }
for the multi-layer configurations (second–fourth rows)shown in Figure 4.

rc h2 ρ0 f

0.570 2.991 0.80 1.745

{0.483, 0.539} {3.90, 3.10} {0.80, 0.59} 2.003

{0.487, 0.525} {2.90, 4.10} {0.80, 0.72} 1.626

{0.476, 0.498, 0.533} {2.90, 3.20, 3.90} {0.80, 0.74, 0.64} 1.642

4.3. Speed of Sound and Polytropic Index

We now study the physical implications of the phase transition. To this end, we plot
the speed of sound and the polytropic index γ = d log p/d log ε for the WSS and V-QCD
models in Figure 5. In these plots, the chemical potential was normalized using the value
at the vacuum-to-nuclear-matter transition.

In both models, the speed of sound is below the value c2
s = 1/3 of conformal theories

right above the transition to nuclear matter. When µ increases, however, the speed of sound



Symmetry 2023, 15, 331 13 of 20

crosses this value and reaches values well above it [11]. The speed of sound has a maximum
in both model. Even though the location of the maximum is different between the models,
the maximal values are rather close; the maximum of c2

s is 0.463 (at µ/µc = 1.355) for the
WSS model and 0.504 (at µ/µc = 2.246) for V-QCD. Eventually, at higher densities, the
speed of sounds decreases to values closer to the conformal value. This is clearer in the
WSS than in the V-QCD model. In the WSS model, where the popcorn transition from a
single- to a double-layer configuration is found, the speed of sound drops to a roughly
constant value, which closely agrees with the conformal value in the double-layer phase;
the speed of sound squared is about one percent higher than the conformal value 1/3.
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Figure 4. The profile of the gauge field h(r) (left) and the bulk charge density ρ(r) (right) for a double-
layer configuration with ∆h1 < 0 (first row), double-layer configuration with ∆h1 > 0 (second row),
and triple-layer configuration with ∆h1 > 0 and ∆h2 > 0 (third row). The single-layer configuration
with the same boundary charge density ρ0 = 0.8 is shown with the gray dashed curve in each plot.
The parameters rci and ρ0i that characterize the multi-layer configurations are shown by blobs. The
values of rci, h2i, ρ0i, and f are given in Table 1.

Similar results are found for the polytropic index γ in the right-hand plot of Figure 5. In
both models, γ decreases with µ in the (single-layer) nuclear matter phase. This decrease is
fast in the sense that γ drops below the value of γ = 1.75, which was used as a criterion to
separate nuclear matter from quark matter in [67,68], where equations of state obtained as
interpolations between known results from nuclear theory at low density and perturbation
theory at high density were considered. For µ/µc > 1.5, the results from both model are
below this value. At the popcorn transition of the WSS model, γ drops to a value close to one.
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Figure 5. The speed of sound (left) and the polytropic index γ = d log p/d log ε (right). The solid
red, dashed green, and dot-dashed blue curves are the results for the single-layer configuration in the
WSS model, double-layer configuration in the WSS model, and the V-QCD model, respectively.

Our findings indicate that the homogeneous holographic nuclear matter behaves
approximately conformally at high densities, i.e., at densities well above the nuclear
saturation density (see also [101]). This is particularly clear for the WSS model, which
becomes approximately conformal at the popcorn transition. These findings are consistent
with earlier studies of homogeneous nuclear matter in the WSS (see, e.g., [102]) and the
V-QCD (see, e.g., [94]) models. They also agree with the results found in the effective theory
approach of [62,64]. This agreement is strikingly good for the WSS model, where the results
both for the speed of sound (see [64]) and for the polytropic index (see [65]) have been
computed. For example, our results for the maximal value of the speed of sound (our value
is cs,max ≈ 0.68) and the density at the popcorn transition (we found nl/nc ≈ 3.4) agree
rather well with those of these references; our value for the speed of sound (transition
density) is a bit below (above) the values of the effective theory approach.

We also remark that the non-monotonic behavior of the speed of sound in the WSS
model qualitatively agrees with that found in the point-like instanton gas approach in [15],
albeit with a different embedding for the D8 branes. The maximal value found in this
reference is also close to the maximal value obtained here. This agreement is interesting,
as the results were obtained in a completely different approach, which is expected to be
reliable at lower densities. Moreover we compare our results to the different approach of
homogeneous nuclear matter derived in [50] in Appendix B, and mostly find qualitative
agreement.

5. Conclusions

In this article, we analyzed nuclear matter using a homogeneous approach in two
different holographic models: the top-down WSS model and the bottom-up V-QCD model.
We focused on two topics: popcorn transitions, where the layer structure of the nuclear
matter changes in the bulk, and approach to conformal behavior at high densities. We found
a second-order popcorn transition in the WSS model and signs of approach to conformality
in both holographic setups.

We have several remarks about our results. Firstly, the results in the WSS and V-QCD
models appeared to be quite different; in particular, the popcorn transition was only found
to take place in the WSS model. However, this is not surprising at all and can be seen to
follow from the differences in the geometry and the realization of chiral symmetry breaking
between the models, as we now explain. Recall that in the WSS model, the geometry ends
at the tip of the cigar in the confined phase as shown in Figure 1, and chiral symmetry
breaking is realized by the joining of the two branches of flavor branes at the tip. In the
V-QCD picture, there is no cigar structure, and chiral symmetry breaking arises from a
condensate of a bulk scalar field. In the WSS model, nuclear matter at low densities is seen
to arise from instantons located at the tip, and it is not possible to assign such instantons to
be left- or right-handed. In V-QCD, however, nuclear matter is stabilized at a nontrivial
value of the holographic coordinate due to interaction with the bulk scalar field [11] and,
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by definition, always contains left- and right-handed components. Therefore, in V-QCD,
separate configurations analogous to the single- and double-layer configurations of WSS in
Figure 1 do not exist. The configurations of this figure map have the same configuration
as in V-QCD, which is what we called the single-layer configuration. The double-layer
configuration in V-QCD defined in (38) would map to a more complicated configuration in
the WSS model, where discontinuities of the h field are found at two distinct values of z.

We found that the results for the equation of state near the popcorn transition of
the WSS model closely resemble those obtained by the framework of [62,64], where ef-
fective theory was used to analyze the transition of the skyrmion crystal to a crystal of
half-skyrmions. This suggests that the transition in the holographic model should be
identified with the topology changing transition where half-skyrmions appear (we thank
N. Kovensky and A. Schmitt for correspondence on this question). It is, however, difficult
to say anything definite about this because the holographic approach that we used does not
contain individual instantons. Moreover, in [50], it was argued that the topology changing
transition should not be identified as the transition between the single- and double-layer
solutions, but should take place between solutions of qualitatively different behavior within
the single-layer solution. Another point is that chiral symmetry should be restored globally
at the topology changing transition (meaning that the averages of the condensate over large
regions should vanish). This, however, will not happen for any of the configurations in
the WSS approach because the D8 brane action is treated in the probe approximation, and
the embedding of the brane is independent of the density. Nevertheless, we remark that,
as seen from the expressions for the single- and double-layer configurations in (20) and
in (22), the bulk charge density has support near the tip of the cigar only for the single-
layer configuration, where the flavor branes join, breaking chiral symmetry. Therefore, the
double-layer configuration can also exist in chirally symmetric backgrounds. Examples of
such chirally symmetric double-layer configurations were indeed found in [17] (the chirally
symmetric quarkyonic matter phase of this reference).

Finally, we demonstrated that the homogeneous nuclear matter becomes approxi-
mately conformal at high densities, i.e., a few times above the nuclear saturation density.
That is, the values of the speed of sound lie close to the value c2

s = 1/3 of conformal
theories, and similarly γ values lie close to the value γ = 1. In particular, the polytropic
index reached values well below the value γ = 1.75 both in the V-QCD model and in the
WSS model, which has been used to classify equations of state for nuclear and quark matter
in the approach of [67,68]. That is, part of the single-layer phase and all of the double-layer
phase would be classified as quark matter in this approach. This appears consistent with
the interpretation that the double-layer phase is smoothly connected to quark matter [69].
In the V-QCD setup, however, there is a separate strong first-order phase transition from
nuclear to quark matter at higher densities [11,94]. In the WSS model, there is a separate
quark matter phase as well, but in this case, the transition is weak and even continuity
between the phases is a possibility [10].
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Appendix A. Numerical Details

Appendix A.1. Constructing the Solution in the Witten–Sakai–Sugimoto Setup

Here, we summarize the basic steps we followed to find the free energy and the
equation of state for the case of the simple profile for the charge density (20):

1. We derive from the action (27) the equation of motion for h(z). After plugging the
baryon charge density ρ and fixing Nc → 3 and λ→ 16.63, the only free parameter is
the boundary charge density ρ0. Then, we can simply solve the equation for h(z) for
fixed ρ0 from the UV boundary (we still need to fix h1);

2. We fix the value of h1 by solving for h for a given fixed ρ0 and choose a value of h1
such that ρ(h) = 0 at z = 0. After this, we can determine the bulk charge density ρ
profile by considering (20);

3. The free energy density is given by explicit integration of (27) from zero to a large
cut-off. At this step, we (re)normalize the free energy by subtracting S̃ in the absence
of baryons from the original S̃. Notice that this prescription means that singular
contributions at the discontinuity of h are neglected. When h is discontinuous, h′(z)2

is, in principle, proportional to the delta function squared, but such contributions are
not taken into account;

4. From the tabulated data {ρ0, F}, we can construct F(ρ0) and find at which value of ρ
the transition to nuclear matter happens. The corresponding chemical potential and
grand potential can be obtained via µ = dF/dρ0 and Ω = F− ρ0µ = −p.

For the case of the more general solution (22), we need to find the value zc where
the charge density vanishes; then, the procedure to find the energy as a function of ρ0 is
analogous to the single-layer solution above. However, one difference with respect to the
previous single-layer solution is that the value of h1 that minimizes the energy changes for
densities larger than a critical value.

From the comparison of the free energy, we can see that there is a second-order
phase transition at this critical density ρc from the single-layer solution to the double-
layer solution.

Appendix A.2. Constructing the Solution in the V-QCD Setup

In this subsection, we summarize and outline the calculation of free energy density
and the minimization procedure:

1. We work in the probe limit. We first construct the thermal gas background solution
for the geometry [76] in the absence of the baryons;

2. Then, from (41), we derive equations of motion for h. After plugging background
fields and baryon charge density ρ, the only free parameter is the boundary charge
density ρ0. Thus, we can simply solve the equation of motion for h for fixed ρ0 by UV
boundary;

3. After solving for h for a given fixed ρ0 and choosing h2, we can determine the bulk
charge density ρ profile by considering (35). Note that the vanishing point of bulk
density profile gives the location of the soliton, i.e., ρ(rc) = 0;

4. The free energy density is given by explicit integration of (41) from the boundary to
the location of the discontinuity. At this step, we also subtract S̃h in the absence of
baryons from the original S̃h to (re)normalize the free energy;
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5. Now, we can return to our main purpose of minimizing free energy at a fixed ρ0
depending on the free parameter rc or, equivalently, h2. We can simply perform
abovementioned procedure with a loop over h2 values;

6. From the tabulated data, we can construct F(h2) and minimize it. The correspond-
ing chemical potential and grand potential can be obtained via µ = dF/dρ0 and
Ω = F− ρ0µ = −p.

For the case of the multi-layer configurations, the number of parameters that should
be used in the minimization procedure increases, making similar analysis numerically
expensive. This is beyond the scope of this project. Therefore, we decided to analyze the
situation by considering some representative situations (the details of which are given in the
main text in Section 4.2) and searching for solutions with lower f than that of single-layer
configurations.

Appendix B. Comparison to a Different Homogeneous Approach

In this appendix, we compare our results to those obtained by employing the ho-
mogeneous approach of [50], where one uses a zero curvature condition before taking
the system to be homogeneous in the WSS model. We set the parameter Λ = 8λ/(27π)
to the value Λ ≈ 1.568 for consistent comparison with our approach. The results are
shown in Figure A1. We see that the maximal value of the speed of sound is higher in the
approach of [50] than in the other approaches, and the value of µ at the popcorn transition
is likewise higher than in the approach we used here. For the ratio of transition densities of
single-layer nuclear matter, we find ρl/ρc ≈ 8.0. Similarly, the value of the polytropic index
γ is relatively high when using the approach of [50]. This also means that the agreement
with the effective theory model of [62,64], which was discussed in the main text, is worse
for this approximation.
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Figure A1. The speed of sound (left) and the polytropic index γ = d log p/d log ε (right) for single-
layer (cyan curves) and double-layer (magenta curves) solutions in the approach of [50]. The gray
curves show the WSS and V-QCD results presented in Figure 5.
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