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Abstract: In this study, we present a new approach with semi-analytical and numerical findings for 
solving equations of motion of small orbiter m, which is moving under the combined gravitational 
attraction of three primaries, 1M , 2M , and 3M , in case of the bi-elliptic restricted problem of

four bodies (BiER4BP), where three such primaries, 1M , 2M , and 3M , are moving on elliptic

orbits with hierarchical configuration 3M  << 2M  << 1M  within one plane as follows: third

primary body 3M  is moving on elliptical orbit around second 2M , and second primary 2M
is moving on elliptical orbit around first 1M . Our aim for constructing the aforementioned qua-

si-planar motion of planetoid m is obtaining its coordinates supporting its orbit in a regime of close 
motion to the plane of orbiting the main bodies 1M , 2M , and 3M . Meanwhile, the system of

equations of motion was successfully numerically explored with respect to the existence and stable 
positioning of approximate solution for a Dyson sphere. As a result, the concept of the Dyson sphere 
for possible orbiting variety of solar energy absorbers was transformed to the elongated Dyson 
space net with respect to their trajectories for the successful process of absorbing the energy from 
the Sun; this can be recognized as symmetry reduction. We obtain the following: (1) the solution for 
coordinates {x, y} is described by the simplified system of two nonlinear ordinary differential 
equations of second order, depending on true anomaly f; (2) the expression for coordinate z is given 
by an equation of Riccati-type where small orbiter that quasi-oscillates close to the fixed plane 

}0,,{ yx .

Keywords: restricted problem of four bodies (BiER4BP); quasi-planar elliptical motion; Dyson 
sphere; equation of Riccati-type; Dyson swarm; quasi-oscillating 

1. Introduction
It is a well-established fact in celestial mechanics that equations of the restricted 

three-body problem [1–5], hereafter referred to as R3BP, are nonintegrable (where we 
consider orbiting of infinitesimal planetoid gravitationally influenced by a duet of two 
primaries 1M  (Sun) and 2M  (planet), both orbiting in Kepler-type dynamics, and 2M
is assumed to be less than 1M ); we should note that the hypothesis that one of the pri-
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maries has a bigger mass than the other is basically extraneous to the problem: it enters 
the game later, when the researcher’s attention is focused on practical applications. This 
is a classical well-known problem: two primaries revolve on Keplerian orbits around the 
barycenter, and a third body, named planetoid, moves under the gravitational attraction 
of the primaries, without affecting their motion. If the motion of the primaries is circular, 
then one obtains the classical R3BP. It is worth noting a valuable contribution of famous 
participants of the celestial mechanics community regarding analytical methods and the 
obtained results in R4BP [6–9], stability of solutions in R3BP [10–12], input of such find-
ings to investigation of influence of tidal phenomena on dynamics of fluidic envelope of 
fluid-type planets and their rotational dynamics along with their satellites [13], variety of 
partial formulations [14–18] and applications in celestial mechanics (including of those of 
nongravitational nature [19]), investigations of stability of the solutions (including of 
those in the vicinity of libration points), and partially applying the aforedescribed find-
ings in investigations of various nonlinear perturbing effects and phenomena, e.g., in 
investigations of the escape and collision dynamics as well. Especially, let us mention a 
case of an elliptic restricted three-body problem [12–16] (ER3BP, where primaries are or-
biting not far from their center of masses on elliptic orbits) and, also, of BiER4BP 
(bi-elliptic restricted four-body problem) [7]. 

The problem investigated here may be enunciated as follows: let us suppose that 
three primaries move on elliptic orbits located preferably within one plane (which is the 
plane of orbital motion of two main primaries) orbiting there in a hierarchical configura-
tion: the third primary body is moving on an elliptical orbit around the second primary 
(whereas mass of first, second, and third primary are supposed to be arranged hierar-
chically; the first primary has the mass which is much more massive than the combined 
mass of the second and third primaries, while the third primary has a mass much less 
than the second primary); let us study the dynamics of a fourth body, the planetoid, 
subjected to the attraction of the primaries without affecting their orbits. The existence of 
the motions in such a problem was considered in [20], but they neglected the terms in 
basic equations of motion depending on the elliptical motion of the third primary body 
around the second primary. The idea exploited in this paper is as follows: using the same 
model formulated in [20] as a basis, let us explore solutions taking into account the terms 
depending on elliptical motion of the third primary body around the second primary, 
including those depending on the true anomaly of such secondary motion (i.e., depend-
ing on the second true anomaly, where the first true anomaly corresponds to the angular 
motion of the second primary in its elliptical motion around the first primary body). 

As an obvious practical application, we refer to the idea of the Dyson sphere [21], for 
which Freeman J. Dyson himself stated, regarding the idea of the Dyson sphere, that (1) 
“he had not envisioned a monolithic shell or ring which he wrote would be mechanically 
impossible”, (2) “but rather a loose collection or swarm of objects traveling on inde-
pendent orbits around the star”. Thus, we will consider the Dyson sphere in a form (2) 
above, i.e., as a “swarm of objects traveling on independent orbits around the star”. 

Therefore, it is a quite intriguing question to illuminate whether such stable orbits 
do exist within formulation of the aforementioned BiER4BP (bi-elliptic restricted 
four-body problem), because, if even one shell of such swarm has no stable orbit, the idea 
of the Dyson sphere is merely a fantastic dream. 

Let us note that we schematically imagine in Figure 1 the motions of multiple 
swarms of planetoids (on their stable orbits around the Sun, between the system 
“Moon–Earth” and Sun) absorbing the light power from the Sun, which will be then af-
terwards converting such power to other types of energy (EM energy), further transfer-
ring to the Earth as, e.g., a laser beam or via microwave-length radiation. 
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Figure 1. Dyson sphere (as a swarm of objects traveling on orbits around the star). 

2. Description of the Model, Equations of Motion 
Let us present in the current investigation a novel method for resolving equations of 

a quasi-planar orbiting of infinitesimal planetoid m close to the plane of mutual orbitings of 
the main primaries around each other (in the case of a special type of BiER4BP), illumi-
nating the results by numerical findings. 

We consider three primaries, 1M , 2M , and 3M , which are orbiting on elliptical 

orbits within one plane (which is a plane of orbital motion of two main primaries, 1M  

and 2M ) orbiting there with hierarchical configuration as follows: the third primary 

body, 3M , is moving on an elliptical orbit around the second primary, 2M  (whereas 
masses of the first, second, and third primaries are supposed to be arranged hierarchi-
cally: the first primary 1M  is much more massive than the combined mass of the second 

and third primary bodies { 2M , 3M }, while the third primary, 3M , has a mass much 

less than the second primary 2M ). Our aim for constructing the aforementioned qua-
si-planar motion is to obtain coordinates of an infinitesimal planetoid m which maintains 
its orbit located close to the plane of orbiting primaries 1M , 2M , and 3M . 

According to the approach in [20], equations of BiER4BP for a small orbiter can be 
presented in the synodic constantly rotating cartesian coordinates r = {x, y, z} in non-
dimensional scaling type (for given initial conditions): 
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where ′ denotes (d/d f) in (1), and Ω  is scalar function. 

 

(2) 

and μi = ( iM /M ) (i = 1, 2, 3), ir  is the nondimensional distance between orbiter m and 
i-th primary [20], which are to be determined as follows: 

 

(3) 

where, r is the relative distance from primary 2M  to 3M ; in the meantime, θ denotes 

angle between radius-vector from center of mass of { 2M , 3M } to 3M  and Ox axis (M 
is the combined sum of masses of primaries, the unit of time is chosen so [20] that con-
stant G equals 1, where G is the Gaussian constant of gravitation law). The expression for 
r can be written as 
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(5) 

where θ0 is initial value of θ. Meanwhile, from (4)–(5), we obtain 

 

(6) 

Let us note that with regard to the orbiter’s motion, we will consider the Cauchy 
problem in the whole space, here and below. 

Then, further, with help of (2)–(6), system (1) can be transformed as follows: 
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(8)

3. Semi-analytical Approximate Solution to the System of Equation (7) 

Assuming that the orbiter m is moving around and close to the primary 3M , we can 

conclude that 1/,1/ 1323 <<<< rrrr  in Equation (7). 
Such approximation yields, from (7) with the help of (8), 
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(9) 

Let us recall our valid (realistic) assumptions which were made previously in [20]: μ3 
<< μ2  (μ3 · μ2)/(μ3 + μ2) ≅ μ3. 

In addition, we assumed that z belongs to the subclass of trapped motions where 
condition z << 1 should be valid in (9). This means that orbiter m is supposed to be in 
quasi-oscillating regime close to the fixed plane 0},,{ →zyx . 

Thus, let us neglect all terms such as 2z  and less in Equation (9). We will obtain 
from the third equation of (9) (taking into account (6)): 
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Thus, we obtain from the first and second equations in Equation (9) (taking into ac-
count also that 02 →z , μ3 << μ2, e2 << 1, and by three primaries, we mean 
“Sun–Earth–Moon” in BiER4BP): 

  

(11)

Equation (11) above is the system of two nonlinear differential equations of second 
order, which depends on true anomaly f (independent variable); general solution of 
equations of this such type is unknown. 

4. Families of Quasi-Stable Plane Orbits 0},,{ →zyx  of System (7) and Equation 
(11), Their Graphical and Numerical Solutions 

Let us present furthermore the schematic plots for numerical solutions of Equation 
(7) 0},,{ →zyx  and (11) (see Figures 2–7), where we use approximation (11) if as-

sumption 1/,1/ 1323 <<<< rrrr  is valid for initial conditions (initial data) when 
constructing the numerical solutions.   

Regarding the initial data, we have chosen the following: 

0x  = 0.03, 0)(x′  = 0; 2) 0y  = 0.03, 0)(y′ = 0 

In a series of graphical solutions obtained numerically in Figures 2–18 we used the 
Runge–Kutta fourth-order method (step 0.001 with launching algorithm from initial da-
ta). 
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Figure 2. Schematic plot for x(f) with the help of Equation (11) (true anomaly f is depicted as ab-
scissa). 

 
Figure 3. Schematic plot for y(f) with the help of Equation (11) (true anomaly f is depicted as ab-
scissa). 

 
Figure 4. Schematic plot for distance r1 (f) with the help of Equation (11) (true anomaly f is depicted 

as abscissa), 222
231 )( zyxr ++μ+μ+= . 
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Figure 5. Schematic plot for distance r2 (f) from Earth with the help of Equation (11) (true anomaly f 
is depicted as abscissa), 
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Figure 6. Schematic plot for distance r3 (f) from Moon with the help of Equation (11) (true anomaly f 

is depicted as abscissa), 23
222

13 ,)sin()cos( μ<<μ+θ++θ+μ−≅ zryrxr . 
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Figure 7. Numerically obtained solution of Equation (11) for dependence y(x) (which means the 
actual trajectory of the small orbiter starting from initial conditions in a plane {x, y, 0}). 

 
Figure 8. Schematic plot for x(f) with the help of Equation (11) (true anomaly f is depicted as ab-
scissa). 

 
Figure 9. Schematic plot for y(f) with the help of Equation (11) (true anomaly f is depicted as ab-
scissa). 
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Figure 10. Schematic plot for distance r1 (f) with the help of Equation (11) (true anomaly f is depicted 

as abscissa), 222
231 )( zyxr ++μ+μ+= . 

 
Figure 11. Schematic plot for distance r2 (f) from Earth with the help of Equation (11) (true anomaly 
f is depicted as abscissa), 
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Figure 12. Schematic plot for distance r3 (f) from Moon with the help of Equation (11) (true anomaly 

f is depicted as abscissa), 23
222

13 ,)sin()cos( μ<<μ+θ++θ+μ−≅ zryrxr . 
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Figure 13. Schematic plot for x(f) with the help of Equation (11) (true anomaly f is depicted as ab-
scissa). 

 
Figure 14. Schematic plot for y(f) with the help of Equation (11) (true anomaly f is depicted as ab-
scissa). 

 
Figure 15. Schematic plot for distance r1 (f) with the help of Equation (11) (true anomaly f is depicted 

as abscissa), 222
231 )( zyxr ++μ+μ+= . 
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Figure 16. Schematic plot for distance r2 (f) from Earth with the help of Equation (11) (true 
anomaly f is depicted as abscissa), 

23
22

2

32

2

3
12 ,)sin()cos( μ<<μ+θ

μ
μ

−+θ
μ
μ

−μ−≅ zryrxr .

 
Figure 17. Schematic plot for distance r3 (f) from Moon with the help of Equation (11) (true anomaly 

f is depicted as abscissa), 23
222

13 ,)sin()cos( μ<<μ+θ++θ+μ−≅ zryrxr . 

 
Figure 18. Numerical solution for coordinate z(f) using Equation (10) (depending on true anomaly f, 
depicted on abscissa axis). 
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We can conclude from Figure 4 that the orbiter will be leaving outside the sphere of 
strong influence of the Sun. The abovementioned regime of the orbiter’s space drift in an 
outward direction from the Sun stems, as we guess, from accelerating by centrifugal force 
from Sun (since we consider this motion in the synodic constantly rotating Cartesian 
system) at its motion in ER4PB (case “Moon–Earth–Sun” for system “small orbit-
er–Sun–Earth–Moon”). Regarding similarity of graphical plots in Figures 5 and 6, it is 
quite obvious for the chosen case of the three primaries “Moon–Earth–Sun”, where the 
distance from the Moon to Earth is permanently negligible with respect to the distance 
from Earth to the Sun. Therefore, the distance from the Moon to the Sun is circa the same 
as the distance from Earth to the Sun for all the range of true anomaly f (which deter-
mines the angular motion of Earth on orbit around the Sun). 

5. Discussion 
We consider in the current study the plane approximation for BiER4BP (bi-elliptic 

restricted four-body problem) formulated in (1)–(11). In the meantime, coordinate z 
should quasi-periodically oscillate nearby the plane }0,,{ yx . 

However, even without approximation (11), we tested a lot of initial data for the 
numerical solutions of system (7); the most successful case is presented in Figures 2–7. 
Others exhibit very fast movement in an outward direction from the Sun, which stems, as 
we guess, from accelerating by centrifugal force from the Sun (in the synodic constantly 
rotating cartesian coordinates). 

We wish also to clearly outline the simplifying assumptions made above with re-
spect to the solution with the aim of further numerical solving: 

1. We consider in (11) two primaries of masses { 2M , 3M }, μ3 << μ2, rotating on elliptic 
orbits, whereas their barycenter is Kepler-rotating around the main primary M1, μ2 
<< μ1. 

2. The motions of the primaries are preferably coplanar (while it is a well-known fact 
that the orbit of the Moon is inclined on circa 5 degrees with respect to the invariable 
plane of rotation of Earth around the Sun). 

3. Eccentricity e2 of orbit 3M  around 2M  is negligible, e2 << 1. 

4. Orbiter m is moving outside the Hill sphere [15] of second primary 2M  with radius 
(minimal distance) ~ 0.101 AU for the system “Sun–Earth”. 

5. Small orbiter m is assumed to oscillate nearby plane 0},,{ →zyx . 
6. Masses of all primaries are constant. 

Meanwhile, the aforepresented list of simplifications demonstrates that the formu-
lated problem discussed hereby is far from realistic conditions. Indeed, while we can ex-
clude the influence of Mercury (due to its thin Hill sphere [15] ~ 0.015 AU), the attraction 
of Venus can be ignored insofar as only if it is remaining sufficiently distant from the 
small orbiter on its current orbit in the aforeformulated kind of BiER4BP. 

Let us also present other distinguished cases for the aforeinvestigated motion of 
small satellite or orbiter inside the spheres of influences by participants of duet “second 
primary body + third primary body” (here, “Earth + Moon”). 

First, as previously, we choose initial conditions 0x  = 0.03, 0)(x′  = 0; 0y  = 0.03,

0)(y′ = 0 for plots depicted in Figures 8–12 (but we chose the larger range of true anom-
aly, up to f = 65). 

Secondly, let us choose the initial conditions to be 0x  = 0.05, 0)(x′  = 0; 0y  = 0.05, 

0)(y′ = 0 for plots numerically depicted in Figures 13–17 (where we also chose the range of 
true anomaly up to f = 65). 
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As we can see from Figures 8–17, the dynamical character of the resulted numerical 
graphical solutions was typically the same for all range of initial data that we used in our 
numerical experiments. Namely, there are growing oscillations to the solutions for x(f), 
y(f), r2 (f), and r3 (f) shown in Figures 8–17, and graphical solutions for r1 (f) demonstrate to 
us that the orbiter will move outside the most active sphere of influence by the Sun and 
Earth. However, this does not mean there will be a divergence for the solution (as soon as 
true anomaly moves to infinity), or this does not relate with respect to a correction to the 
position, or any numerical error associated with the solution to the equations. This means 
that there are not any stable orbits (which were supposed to be existing in the concept of 
Dyson sphere), or at least quasi-stable orbits, within formulation of the aforementioned 
bi-elliptic restricted four-body problem. 

To finalize the discussion, it is worth noting the demonstration of stable character of 
coordinate z(f) on Figure 18, obtained numerically for solutions illuminated in Figures 

13–17; we chose the initial data as follows: 0z  = 0.001, 0)(z′  = 0 (where we also chose 
the range of true anomaly up to f = 20, which can be surely prolongated further, up to f = 
65 as in Figures 13–17). 

6. Conclusions 
In this study, we presented a novel algorithm with semi-analytical and numerical 

findings for motion of a small orbiter m, governed by the combined Newtonian attraction 
of three primaries, 1M , 2M , and M3, in the case of a bi-elliptic restricted four-body 

problem, where three primaries, 1M , M2, and M3, are Kepler-moving on their orbits (M3 

<< 2M  << 1M ) in one plane as follows: the third primary body, 3M , is moving on an 

elliptical orbit around the second, 2M , the second primary, 2M , is moving on an el-

liptical orbit around the first, 1M . Our aim for constructing the aforementioned qua-
si-planar motion of a planetoid or an orbiter m is to obtain its coordinates supporting its 
orbit in a regime of close motion to the plane of orbiting the main bodies 1M , 2M , and 

3M . We considered stable positioning of approximate solution for elements of the Dyson 
sphere (Dyson swarm) for the aforeformulated problem from the point of view of equations 
of motion in celestial mechanics formulated in the case of BiER4BP. 

Our findings are the following: 1) the pair {x, y} of orbiter’s coordinates is described 
by the simplified system of two nonlinear ODEs of second order (in dependence on true 
anomaly f); 2) vertical coordinate z is described by an equation of Riccati-type where 
small orbiter is supposed to be in quasi-oscillating regime close to the fixed plane 

}0,,{ yx . 
As the main conclusion with respect to exploring the stable positioning of the ele-

ments of a Dyson sphere (considered here as a swarm of small planetoids orbiting around 
the primary star), we should illuminate and definitely clarify that we have not found any 
stable orbits for the aforesupposed Dyson sphere even for one shell of such swarm sur-
rounding the Sun with various initial data of their positioning, nearby and far away. 

Nevertheless, we can see from Figures 11, 12, 16 and 17 that the small orbiter will 
return close to Earth approximately at the meaning of true anomaly f ≅ 21 (which corre-
sponds to more than three revolutions of Earth around the Sun or to more than three 
years); at this moment, the shell may transfer the absorbed energy to Earth or to the In-
ternational Space Station by means of laser beam. Thus, we can conclude that the Dyson 
sphere appears to be transformed to the phenomenon of a dynamical Dyson space net, 
shells of which are allocated at a distance of circa 2 AU from the Sun and forming a space 
net of shells absorbing energy from the Sun. 

Apparently, such a clearly formulated transformation of conception of a sphere in 
three dimensions for possible orbiting variety of solar energy absorbers (here, Dyson 
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sphere) to the elongated quasi-ellipse preferably in two dimensions (presented above as 
Dyson space net), with respect to their trajectories for the successful process of absorbing 
energy from the Sun, can be recognized as symmetry reduction. 

It is worth noting that the best initial conditions we tested were located from ( 0x , 

0y ) = (0.03, 0.03) (corresponds to 1r equals circa 0.042 AU) to ( 0x , 0y ) = (0.08, 0.08) 

(corresponds to 1r equals circa 0.113 AU) with various starting velocities: the dynamical 
character of the resulted numerical solutions (graphical plots) was typically the same as 
for those presented in Figures 2–17. 

For optimizing the governing of maneuvering between elements of the abovemen-
tioned Dyson space net, we can use (with the aim of choosing the optimal set of initial 
data) the analogue of continuity equation for spatial spreading of velocities of such dis-
crete shells to form a large-scale coherent structure [22] from them located close one to 
another in space. Such an analogue of continuity equation should be determined by 
condition (12) for compactness of a Dyson space net as follows: 

 

(12) 

where n is the number of shell, nV


 is the vector of velocity of the n-th small orbiter 

(shell), and 
z

k
y

j
x

i
∂
∂+

∂
∂+

∂
∂=∇

  is the well-known Hamilton operator. It is worth 

noting that ultimate restricting condition (12) should be tested additionally in numerical 
experiments for adjusting of configuration of a Dyson space net for the sets of realistic ini-
tial conditions chosen for its elements (shells). 

Thus, we illuminated and outlined the main features determining the stable drift 
dynamics of approximate solutions for an analogue of a Dyson sphere considered in the 
current research as a swarm of small artificial satellites (on their orbits around the Sun, 
between system “Moon–Earth” and Sun), which are absorbing the light power from the 
Sun, then afterwards converting such power to other types of energy (EM energy) and 
further transferring to the Earth as, e.g., a laser beam or via microwave-length radiation. 

Furthermore, an additional list of related articles should be mentioned which may 
be important for understanding aspects of the problem under consideration [23–61] 
(where review [28] tackles the theme of orbital resonances in the solar system, whereas 
works [29,30] describe external or internal (tidal) effects influencing on orbits of planet-
oids; influencing tidal effects [30], and losses of angular momentum via tidal interactions 
on the dynamics of celestial bodies are tackled in [42]). 

In addition, we should especially remark that we restricted ourselves in exploring 
the case of the orbiter’s motion close to invariable plane z = 0 (while Equation (9) or (11) 
for modelling of approximate motion can be easily updated for any fixed, sufficiently 
small value of coordinate z in the vicinity of which oscillating motion of an orbiter takes 
place). 

Meanwhile, in the section “Energy Capturing Megastructure Dyson Spheres?” of 
article [33], the author presents a brief review of possible existence and discovery of 
megastructures surrounding host stars in a space which reduces their natural radiation 
flux (which are thus supposed to be acting in a manner similar to Dyson spheres around 
their host stars). 

It is worthwhile to clearly state the conclusions, impacts, applications, and the “main 
points”: 
• Elegant ansatz is developed for analysis of motion of a small mass in BiER4BP. 

( ) 0n
n
V∇ ⋅ =
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• Three primaries rotate around a barycenter on bi-elliptic orbits: 3M  << 2M , 2M  

<< 1M . 
• Coordinate z is considered to be stable in oscillating close to fixed plane {x, y, 0}. 
• The planar bi-elliptic restricted four-body problem (BiER4BP) is investigated well. 
• Stable drift dynamics of solutions for analogue of a Dyson sphere are analyzed. 
• No stable solutions for a Dyson swarm were found, but an orbiter will flyby near 

Earth. 

Author Contributions: Conceptualization, S.E.; methodology, S.E.; software, E.Y.P.; validation, 
S.E., D.L. and E.Y.P.; formal analysis, S.E.; investigation, S.E.; data curation, E.Y.P.; writing: original 
draft, S.E.; writing: review and editing, S.E.; visualization, S.E. and E.Y.P.; supervision, S.E. and 
D.L.; project administration, D.L. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: No data associated with the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Celletti, A. Stability and Chaos in Celestial Mechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. 
2. Wintner, A. The Analytical Foundations of Celestial Mechanics; Princeton University Press: Princeton, NJ, USA, 1941. 
3. Szebehely, V. Theory of Orbits. The Restricted Problem of Three Bodies; Yale University: New Haven, CT, USA.; Academic Press 

New York, NY, USA and London, UK, 1967. 
4. Siegel, C.L.; Moser, J. Lectures on Celestial Mechanics; Springer-Verlag: Berlin/Heidelberg, Germany, 1971. 
5. Marchal Ch. The Three-Body Problem; Elsevier, Amsterdam, The Netherlands, 1990. 
6. Chakraborty, A.; Narayan, A. A new version of restricted four body problem. New Astron. 2019, 70, 43–50. 
7. Chakraborty, A.; Narayan, A. BiElliptic Restricted Four Body Problem. Few Body Syst. 2019, 60, 1–20. 
8. Dewangan, R.R.; Chakraborty, A.; Narayan, A. Stability of generalized elliptic restricted four body problem with radiation 

and oblateness effects. New Astron. 2020, 78, 101358. 
9. Ansari, A.A.; Prasad, S.N. Generalized elliptic restricted four-body problem with variable mass. Astron. Lett. 2020, 46, 275–288. 
10. Singh, J.; Leke, O. Stability of the photogravitational restricted three-body problem with variable masses. Astrophys. Space Sci. 

2010, 326, 305–314. 
11. Kushvah, B.S.; Sharma, J.P.; Ishwar, B. Nonlinear stability in the generalised photogravitational restricted three body problem 

with Poynting-Robertson drag. Astrophys. Space Sci. 2007, 312, 279–293. 
12. Ershkov, S.; Abouelmagd, E.I.; ; Rachinskaya, A. A novel type of ER3BP introduced for hierarchical configuration with 

variable angular momentum of secondary planet. Arch. Appl. Mech. 2021, 91, 4599–4607. 
13. Ershkov, S.; Leshchenko, D.; Abouelmagd, E. About influence of differential rotation in convection zone of gaseous or fluid 

giant planet (Uranus) onto the parameters of orbits of satellites. Eur. Phys. J. Plus 2021, 136, 387. 
14. Llibre, J.; Conxita, P. On the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 1990, 48, 319–345. 
15. Ershkov, S.; Rachinskaya, A. Semi-analytical solution for the trapped orbits of satellite near the planet in ER3BP. Arch. Appl. 

Mech. 2021, 91, 1407–1422. 
16. Aslanov, V.S.; Ledkov, A.S. Swing principle in tether-assisted return mission from an elliptical orbit. Aerosp. Sci. Technol. 2017, 

71, 156–162. 
17. Ansari, A.A.; Singh, J.; Alhussain, Z.A.; Belmabrouk, H. Perturbed Robe’s CR3BP with viscous force. Astrophys. Space Sci. 2019, 

364, 95. 
18. Ershkov, S.V.; Leshchenko, D. Solving procedure for 3D motions near libration points in CR3BP. Astrophys. Space Sci. 2019, 364, 

207. 
19. Ershkov, S.V. The Yarkovsky effect in generalized photogravitational 3-body problem. Planet. Space Sci. 2012, 73, 221–223. 
20. Ershkov, S.V.; Leshchenko, D.; Rachinskaya, A. Solving procedure for the motion of infinitesimal mass in BiER4BP. Eur. Phys. 

J. Plus 2020, 135, 603. 
21. Wright, J.T. Dyson spheres. Serb. Astron. J. 2020, 200, 1–18. https://doi.org/10.2298/SAJ2000001W. 
22. Ershkov, S.V.; Rachinskaya, A.; Prosviryakov, E.Y.; Shamin, R.V. On the semi-analytical solutions in hydrodynamics of ideal 

fluid flows governed by large-scale coherent structures of spiral-type. Symmetry 2021, 13, 2307. 



Symmetry 2023, 15, 326 19 of 20 
 

 

23. Shen, H.-X.; Luo Y-Zh Zhu, Y.-H.; Huang, A.-Y. Dyson sphere building: On the design of the GTOC11 problem and summary 
of the results. Acta Astronautica 2022, (Article in Press). https://doi.org/10.1016/j.actaastro.2022.08.040. 

24. Absil, C.O.; Serra, R.; Martinez, I.S.; Charpigny, N.; Labroquère, J.; Morales, V.M.; Olympio, J.; Rodriguez-Fernandez, V. 
Design of impulsive asteroid flybys and scheduling of time-minimal optimal control arcs for the construction of a Dyson ring 
(GTOC 11). Acta Astronautica 2022, 201, 94–110. 

25. Huston, M.; Wright, J. Evolutionary and Observational Consequences of Dyson Sphere Feedback—IOPscience. Astrophys. J. 
2022, 924, 78. https://iopscience.iop.org/article/10.3847/1538-4357/ac3421. 

26. Suazo, M.; Zackrisson, E.; Wright, J.; Korn, A.J.; Huston, M. Project Hephaistos—I. Up. Limits Part. Dyson Spheres Milky Way. 
Mon. Not. R. Astron. Soc. 2022, 512, 2988–3000. https://doi.org/10.1093/mnras/stac280. 

27. Abouelmagd, E.I.; Ansari, A.A. The motion properties of the infinitesimal body in the framework of bicircular Sun perturbed 
Earth–Moon system. New Astron. 2019, 73, 101282. 

28. Peale, S.J. Orbital Resonances In The Solar System. Annu. Rev. Astron. Astrophys. 1976, 14, 215–246. 
29. Ershkov, S.V.; Leshchenko, D. Revisiting Apophis 2029 approach to Earth (staying on shoulders of NASA’s experts) or Can we 

be sure in almost ricocheting fly-by of Apophis on 13 of April 2029 near the Earth? J. Space Saf. Eng. 2022, 9, 363–1374. 
30. Ershkov, S.V. About tidal evolution of quasi-periodic orbits of satellites. Earth Moon Planets 2017, 120, 15–30. 
31. Smith, J. Review and viability of a Dyson Swarm as a form of Dyson Sphere. Phys. Scr. 2022, 97, 122001. 

https://doi.org/10.1088/1402-4896/ac9e78. 
32. Liu, C.; Gong, S. Hill stability of the satellite in the elliptic restricted four-body problem. Astrophys. Space Sci. 2018, 363, 162. 
33. Veysi, H. Technological Evolution of Extraterrestrial Civilizations: Dyson Spheres, Warp Drives, Energy Capturing 

Conquerors. J. Astrobiol. 2022, 13, 14–25. 
34. Meena, P.; Kishor, R. First order stability test of equilibrium points in the planar elliptic restricted four body problem with 

radiating primaries. Chaos Solitons Fractals 2021, 150, 111138. 
35. Dyson, F.J. Search for artificial stellar sources of infrared radiation. Science 1960, 131, 1667–1668. 
36. Zhang, Z.; Zhang, N.; Guo, X.; Wu, D.; Xie, X.; Li, J.; Yang, J.; Chen Sh Jiang, F.; Baoyin, H. GTOC 11: Results from Tsinghua 

University and Shanghai Institute of Satellite Engineering. Acta Astronautica 2022, (Article in Press). 
https://doi.org/10.1016/j.actaastro.2022.06.028. 

37. Umar, A.; Jagadish, S. Semi-analytic solutions for the triangular points of double white dwarfs in the ER3BP: Impact of the 
body’s oblateness and the orbital eccentricity. Adv. Space Res. 2015, 55, 2584–2591. 

38. Ershkov, S.; Leshchenko, D.; Rachinskaya, A. Revisiting the dynamics of finite-sized satellite near the planet in ER3BP. Arch. 
Appl. Mech. 2022, 92, 2397–2407. 

39. Ershkov, S.; Leshchenko, D.; Rachinskaya, A. Capture in regime of a trapped motion with further inelastic collision for 
finite-sized asteroid in ER3BP. Symmetry 2022, 14, 1548. 

40. Ershkov, S.; Leshchenko, D.; Rachinskaya, A. Semi-analytical findings for rotational trapped motion of satellite in the vicinity 
of collinear points {L1, L2} in planar ER3BP. Arch. Appl. Mech. 2022, 92, 3005–3012. 

41. Dziobek, O. Ueber einen merkwürdigen Fall des Vielkörperproblems. Astron. Nachr. 1900, 152, 33–46. 
42. Ershkov, S.; Leshchenko, D. Estimation of the size of the solar system and its spatial dynamics using Sundman inequality. 

Pramana J. Phys. 2022, 96, 158. 
43. Ershkov, S.; Leshchenko, D.; Prosviryakov, E.Y. A novel type of ER3BP introducing Milankovitch cycles or seasonal 

irradiation processes influencing onto orbit of planet. Arch. Appl. Mech. 2022, (In Press). 
https://doi.org/10.1007/s00419-022-02300-4. 

44. Ershkov S., Leshchenko D. Analysis of the size of Solar system close to the state with zero total angular momentum via 
Sundman’s inequality. Anais da Academia Brasileira de Ciências, Vol. 93 (Suppl. 3),2021, e20200269 

45. Zotos, E.E.; Chen, W.; Abouelmagd, E.I.; Han, H. Basins of convergence of equilibrium points in the restricted three-body 
problem with modified gravitational potential. Chaos Solitons Fractals 2020, 134, 109704. 

46. Alshaery, A.A.; Abouelmagd, E.I. Analysis of the spatial quantized three-body problem. Results Phys. 2020, 17, 103067. 
47. Abozaid, A.A.; Selim, H.H.; Gadallah, K.A.; Hassan, I.A.; Abouelmagd, E.I. Periodic orbit in the frame work of restricted three 

bodies under the asteroids belt effect. Appl. Math. Nonlinear Sci. 2020, 5, 157–176. 
48. Abouelmagd, E.I.; Mostafa, A.; Guirao, J.L.G. A first order automated Lie transform. Int. J. Bifurc. Chaos 2015, 25, 1540026. 
49. Abouelmagd, E.I.; Pal, A.K.; Guirao, J.L. Analysis of nominal halo orbits in the Sun–Earth system. Arch. Appl. Mech. 2021, 91, 

4751–4763. 
50. Ershkov, S.V.; Leshchenko, D. Revisiting Dyn. Sun Cent. Relat. Barycenter Sol. Syst. Or Can We Move Towards Stars Using Sol. 

Self-Resulting Photo-Gravit. Force? J. Space Saf. Eng. 2022, 9, 160–164. 
51. Abouelmagd, E.I.; Ansari, A.A.; Ullah, M.S.; García Guirao, J.L. A planar five-body problem in a framework of heterogeneous 

and mass variation effects. Astron. J. 2020, 160, 216. 
52. Mia, R.; Prasadu, B.R.; Abouelmagd, E.I. Analysis of stability of non-collinear equilibrium points: Application to Sun–Mars 

and Proxima Centauri systems. Acta Astronaut. 2023, 204, 199–206. 
53. Idrisi, M.J.; Ullah, M.S. A Study of Albedo Effects on Libration Points in the Elliptic Restricted Three-Body Problem. J. 

Astronaut. Sci. 2020, 67, 863–879. 
54. Younis, S.H.; Ismail, M.N.; Mohamdien, G.H.F.; Ibrahiem, A.H. Effects of Radiation Pressure on the Elliptic Restricted 

Four-Body Problem. J. Appl. Math. 2021, 2021, 5842193. 



Symmetry 2023, 15, 326 20 of 20 
 

 

55. Vincent, A.E.; Perdiou, A.E.; Perdios, E.A. Existence and Stability of Equilibrium Points in the R3BP With Triaxial-Radiating 
Primaries and an Oblate Massless Body Under the Effect of the Circumbinary Disc. Front. Astron. Space Sci. 2022, 9, 877459. 

56. Cheng, H.; Gao, F. Periodic Orbits of the Restricted Three-Body Problem Based on the Mass Distribution of Saturn’s Regular 
Moons. Universe 2022, 8, 63. 

57. Arif, M.; Ullah, M.S.; Kant, L. Photogravitational magnetic-binary problem with oblateness and belt of material points. New 
Astron. 2022, 97, 101877. 

58. Ansari, A.A. Kind of Robe's restricted problem with heterogeneous irregular primary of N-layers when outer most layer has 
viscous fluid. New Astron. 2010, 83, 101496. 

59. Ansari, A.A.; Singh, J.; Alhussain, Z.A.; Belmabrouk, H. Effect of oblateness and viscous force in the Robe's circular restricted 
three-body problem. New Astron. 2019, 73, 101280. 

60. Umar, A.; Hussain, A.A. Motion in the ER3BP with an oblate primary and a triaxial stellar companion. Astrophys. Space Sci. 
2016, 361, 344. 

61. Singh, J.; Umar, A. Effect of Oblateness of an Artificial Satellite on the Orbits Around the Triangular Points of the Earth–Moon 
System in the Axisymmetric ER3BP. Differ. Equ. Dyn. Syst. 2017, 25, 11–27. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury 
to people or property resulting from any ideas, methods, instructions or products referred to in the content. 


