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Abstract: In this article, the parameter of the decision maker’s familiarity with the attributes of the
alternatives is introduced for the first time in dynamic multi-attribute group decision making to avoid
the disadvantages arising from the inappropriate grouping of decision makers. We combine it with
fuzzy soft rough set theory and dynamic multi-attribute-grouping decision making to obtain a new
decision model, i.e., dynamic chaotic multiple-attribute group decision making. Second, we provide
an algorithm for solving this model under a weighted T-spherical fuzzy soft rough set, which can
not only achieve symmetry between decision evaluation and fuzzy information but also establish a
good symmetrical balance between decision makers and attributes (evaluation indexes). Finally, a
specific numerical computation case is proposed to illustrate the convenience and effectiveness of our
constructed algorithm. Our contributions to the literature are: (1) We introduced familiarity for the
first time in dynamic multi-attribute group decision making. This makes our given dynamic chaotic
multi-attribute group decision-making (DCMAGDM) model more general and closer to the actual
situation; (2) we combined dynamic chaotic multi-attribute group decision making with T-spherical
fuzzy soft rough set theory to make the model more realistic and reflect the actual situation. In
addition, our choice of T-spherical fuzzy soft rough set allows the decision maker to engage in a
sensible evaluation rather than sticking to numerical size choices; and (3) we constructed a new and
more convenient sorting/ranking algorithm based on weighted T-spherical fuzzy soft rough sets.

Keywords: multi-attribute group decision making; dynamic multi-attribute group decision making;
chaotic multi-attribute group decision making; fuzzy set; fuzzy soft rough set; weighted T-spherical
fuzzy soft rough set

MSC: 90B50

1. Introduction

As human society and the world at large become more complex, making the right
or acceptable decisions becomes increasingly difficult. In reality, all decision problems
themselves evolve over time, so none of the problems can be summarized in a static
framework. At the same time, the process of human decision making is dynamic, evolving,
interactive, and adaptive. Therefore, real decisions are usually dynamic and group-based,
while involving multiple attributes in a changeable space [1,2].

Given this dynamic nature of the real world and the continuous self-learning of
decision makers (DMs) and their interactions, relying on dynamic multi-attribute group
decision making (DMAGDM) is a very obvious and sensible choice in practice. At the same
time, in specific practical decisions, usually all information is uncertain and fuzzy. Therefore,
dynamic multi-attribute group decision making (DMAGDM) in fuzzy environments has
been a popular topic of research among scholars in recent years.

Xu [3] proposed a dynamic hybrid multi-attribute group decision-making method
based on the hybrid geometric aggregation (HGA) operator and the DWGA operator, and
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he also first introduced a new operator called a dynamic linguistic weighted geometric
(DLWG) operator [4]. Xu [5] firstly proposed a Poisson distribution-based method to
determine the weight vector associated with a time-weighted averaging (TWA) operator
and used this method to successfully solve the multi-stage multi-attribute group decision-
making (MS-MAGDM) problem. A new model for dynamic multi-attribute group decision
making based on a vague set and its TOPSIS solution was developed by Yang [6] in response
to the problem of four-dimensional decision making, which consists of an alternative set,
attribute set, time set, and valuator set. An interactive approach was devised by Su et al. [7]
to solve dynamic intuitionistic fuzzy multi-attribute group decision-making (DIF-MAGDM)
problems, in which all attribute values provided by decision makers (DMs) take the form
of intuitionistic fuzzy numbers (IFNs) at periods. For hesitant fuzzy multi-criteria decision
making (MCDM), which collects preference data on characteristics over time, Liao et al. [8]
proposed various weight determination methods. In linguistic contexts, Dutta and Guha [9]
proposed a flexible consensus technique that adopts a fresh advice-generating scheme by
taking decision makers’ attitudes into account in order to reach agreement at each round
of the consensus process. In regards to dynamic multi-attribute group decision-making
(DMAGDM) problems, where the weights (including expert, attribute, and time weights)
are unknown and the attribute values take the form of intuitionistic fuzzy values (IFVs),
the dynamic intuitionistic fuzzy power geometric weighted average (DIFPGWA) operator
and the improved prediction model were developed by Yin et al. [10]. Wang et al. [11]
proposed a novel multi-attribute group emergency decision-making (MAGEDM) method
that deals with not only the dynamic evolution of MAGEDM problems but also takes
into account experts’ hesitation. For complex multi-attribute large-group decision making
(CMALGDM), Chen et al. [12] proposed a random intuitionistic fuzzy factor analysis
model, which reduces the dimensionality of the original data and takes into account the
underlying random environmental factors that may affect the performances of alternatives.
In order to be more consistent with the advantages of both operators and deal with the
attitude of DMs more objectively, Aydemir and Gunduz [13] proposed a general score
function for q-rung orthopair fuzzy sets (q-ROFSs) and the power neutrality aggregation
operator. Li et al. [14] introduced a new MAGDM method that considers the dynamics
of DM’s opinions, where the opinions are represented using a 2-tuple linguistic model.
Furthermore, the technique of sequential preference with similarity to the ideal solution
(TOPSIS) was adopted. Ding et al. [15] introduced a interval-valued hesitant fuzzy TODIM
method to tackle the dynamic emergency decision-making problem. In dealing with the
intricate group decision problem of competitive strategies in a q-rung orthogonal fuzzy
environment, Yang and Ding [16] proposed a two-person noncooperative matrix game
approach based on a hybrid dynamic expert weight-determination model.Deb et al. [17]
gave a study on MAGDM by means of the double hesitant Pythagorean fuzzy Dombi
Bonferroni mean and the associated weighting operators. Some experts have also tried
to use other methods to study this problem, and they have also achieved success, such
as Zolfani et al. [18], who presented a new concept and a new approach in the MADM
field, which is called the prospective multiple attribute decision making (PMADM). The
PMADM model can very well cover the DMADM concept but instead chooses to focus
on future topics. Baykasoğlu and Gölcük [19] developed a data-driven DMAGDM model
in fuzzy conditions and proposed a dynamic MADM model by learning fuzzy cognitive
maps [20]. More relevant research results can be found in the following two review papers
(given by He and Xu [21] and Wang et al. [22]). All these researches not only enrich the
theory of DMAGDM but also play an important role in practical applications.

2. Motivation and Comparison

The existing literature gives a large number of methods that have been well applied
in solving DMAGDM problems, and most of these studies focus on aggregating or fitting
fuzzy information and then modeling the DMAGDM problem according to a specific fuzzy
set. However, there are still several aspects that need to be considered in DMAGDM.



Symmetry 2023, 15, 307 3 of 26

• How to group DMs more reasonably.

Although much of the literature provides some grouping methods for DMs, there
are still many problems, such as: if DMs are grouped, and each DM only evaluates the
attributes corresponding to their professional knowledge, then who should evaluate
the composite attributes that contain different professional knowledge? That is to say,
in practice, it is difficult to group DMs according to a certain condition because profes-
sional knowledge is also ambiguous. Since most DMs have relatively comprehensive
knowledge and a lot of practical experience, they will have good insights even when
evaluating attributes in non-professional fields. Therefore, simply grouping them will
inevitably lose many very valuable evaluations.

• The relationship between DMs and decision-making attributes.

Specifically, most studies weighted DMs and decision attributes or determined
the weights of DMs and decision attributes separately by certain methods, and then
aggregated evaluation scores. However, the weight of DMs’ evaluations of each
decision attribute is not considered, that is, the relationship between DMs and the
decision attribute is not considered.

Here is a good example to illustrate these two points. In hospitals, it is common to
encounter patients with serious conditions that require specialists from different medical
fields to consult and then give a surgical plan. Because specialists do not necessarily
specialize in the same field, their assessment of the same metric has a different impact
on the overall treatment plan. For example, the assessment of a specialist specializing in
surgery is more important in designing a procedure than that of a specialist specializing in
cardiovascular treatment.Conversely, even the best surgical specialist needs to consult with
the bedside nurse about the patient’s physical status because the nurse is more aware of
the patient’s true physical condition compared with the surgical specialist. This means that
the weight of the expert’s evaluations is related to the corresponding attribute and not only
to the popularity of the expert. Therefore, in MAGDM, we should consider not only the
weights of DMs and the weights of attributes but also the relationship between DMs and
decision attributes.

Based on these considerations, to avoid unreasonable groupings of DMs, and to
consider the relationship between DMs and decision-making attributes, we use “familiarity”
to describe the relationship between DMs and decision attributes. Since there will be a lot
of uncertainty and fuzziness in the actual DMAGDM problem, and also different scenarios
of DMADGMs will have different DMs and different decision attributes, in the absence of
a clear way to identify the relationship between DMs and decision attributes, it is a good
choice to use fuzzy theory to describe the familiarity of DMs with attributes.Therefore, we
chose to combine the T-spherical fuzzy soft rough set (T-SFSRS) [23] given by Muahmmad
and Martino with familiarity to obtain a new weighted T-SFSRS to describe all evaluation
scores in DMAGDM. Accordingly, a new ranking function is also given based on the new
weighted T-SFSRS. Thus, a new method for DMAGDM is given, and finally the good
practicality of the method is analyzed by numerical calculations. Our contributions to the
literature are:

• We introduced familiarity in DMAGDM for the first time to portray the relation-
ship between DMs and attributes. By introducing familiarity, the annoyance and
unreasonableness of DMs from groupings can be avoided;

• We obtained a more general new weighted T-SFSRS by considering the familiarity. By
giving the weighted T-SFSRS concept, familiarity can be better taken into account;

• We provided a model for the DMAGDM considering familiarity, which we call dy-
namic chaotic multi-attribute group decision making (DCMAGDM). This model can
better describe the real decision problem compared with the existing models;

• We provide an algorithm for DCMAGDM in complex fuzzy scenarios. A basic frame-
work structure is also provided for the algorithm of the DMAGDM problem.
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The remainder of this paper is structured as follows: The theoretical background on
the methodologies used within the scope of this paper is given in Section 3. The proposed
model and algorithm is provided in Section 4. The numerical analysis of the proposed
model is illustrated in Section 5. Conclusions are given in Section 6. The data we used in
the numerical case analysis can be found in Appendix A.

3. Preliminaries

In this section, to continuously extend the prevailing works, we recall several existing
theories, called fuzzy soft rough sets (FSRSs) and dynamic multiple-attribute group decision
making (DMAGDM), as well as their basic rules and properties.

3.1. Fuzzy Soft Rough Sets Theorem

In this subsection, according to the development order of fuzzy set, rough set, and soft
set theory, we give the basic preliminary concepts related to a fuzzy set (FS), soft set (SS),
rough set (RS), fuzzy soft set (FSS), and fuzzy soft rough set (FSRS), and their basic rules
and properties are also described.

3.1.1. Fuzzy Set (FS)

To deal with uncertainties and vagueness. Zadeh [24] explored a concept which may
be of use in dealing with “class” with a continuum of grades of membership, namely the
famous Fuzzy Set (FS). It is defined as follows:

Definition 1 (Zadeh [24]). A fuzzy set A on a universe X is an object of the form

A = {(x, µA(x))|x ∈ X} (1)

where µA(x) ∈ [0, 1] is called the “degree of membership of x in A”. The variable µA(x) is called
an ordinary fuzzy number (FN).

For situations in which there is uncertainty about the degree of membership, an
intuitionistic fuzzy set (IFS) was developed by Atanassov [25].

Definition 2 (Atanassov [26]). An intuitionistic fuzzy set A on a universe X is an object of
the form

A = {(x, µA(x), νA(x))|x ∈ X} (2)

where µA(x) ∈ [0, 1] is called the “degree of membership of x in A”, νA(x) ∈ [0, 1] is called the
“degree of non-membership of x in A”, and where µA(x) and νA(x) satisfy the following condition:

(∀x ∈ X) (µA(x) + νA(x) ≤ 1).

The pair (µA(x), νA(x)) is called an intuitionistic fuzzy number (IFN).

Smarandache [27] generalized intuitionistic fuzzy sets (IFSs) to neutrosophic sets (NSs).
Neutrosophic sets are characterized by truth membership function (T), indeterminacy
membership function (I), and falsity membership function (F).

Definition 3 (Smarandache [28]). A neutrosophic set A on a universe X is an object of the form

A = {(x, µA(x), ηA(x), νA(x))|x ∈ X} (3)

where µA(x) ∈ [0, 1] is called the “truth membership function of x in A”, ηA(x) ∈ [0, 1] is called
the “indeterminacy membership function of x in A”, νA(x) ∈ [0, 1] is called the “falsity membership
function of x in A”, and where µA(x), ηA(x) and νA(x) satisfy the following condition:

(∀x ∈ X) (µA(x) + ηA(x) + νA(x) ≤ 3).
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Cuong and Kreinovich [29] introduced the concept of a picture fuzzy set (PFS). PFS is
more practical for situations such as elections, where there are not only yes and no votes
but also abstentions. Obviously, PFS is a direct extension of the FS and the IFS.

Definition 4 (Cuong and Kreinovich [29]). A picture fuzzy set A on a universe X is an object
of the form

A = {(x, µA(x), ηA(x), νA(x))|x ∈ X} (4)

where µA(x) ∈ [0, 1] is called the “degree of positive membership of x in A”, ηA(x) ∈ [0, 1] is
called the “degree of neutral membership of x in A”, νA(x) ∈ [0, 1] is called the “degree of negative
membership of x in A”, and where µA(x), ηA(x) and νA(x) satisfy the following condition:

(∀x ∈ X) (µA(x) + ηA(x) + νA(x) ≤ 1),

then, for x ∈ X, let πA(x) = 1− (µA(x) + ηA(x) + νA(x)), and πA(x) could be called the
“degree of refusal membership of x in A”. Let PFS(X) denote the set of all the picture fuzzy sets on
a universe X. A triplet (µA(x), ηA(x), νA(x)) can be identified as a picture fuzzy number (PFN).

Human opinion cannot be restricted to yes or no, as depicted by an conventional
fuzzy set (FS) or intuitionistic fuzzy set (IFS), but it can be yes, abstain, no, and refusal,
as explained by picture fuzzy set (PFS). In order for DMs to focus their attention more
on scoring the decision attributes rather than on whether the scored values satisfy the
requirements of condition (∀x ∈ X) (µA(x) + ηA(x) + νA(x) ≤ 1) in the PFS. Mahmood
et al. [30] proposed the concept of a spherical fuzzy set (SFS) and T-spherical fuzzy set
(T-SFS) as a generalization of FS, IFS, and PFS.

Definition 5 (Mahmood et al. [30]). A T-spherical fuzzy set A on a universe X is an object of
the form

A = {(x, µA(x), ηA(x), νA(x))|x ∈ X} (5)

where µA(x) ∈ [0, 1] is called the “degree of positive membership of x in A”, ηA(x) ∈ [0, 1] is
called the “degree of neutral membership of x in A”, νA(x) ∈ [0, 1] is called the “degree of negative
membership of x in A”, and where µA(x), ηA(x) and νA(x) satisfy the following condition:

(∀x ∈ X) (µt
A
(x) + ηt

A
(x) + νt

A
(x) ≤ 1).

Then, for x ∈ X, let πA(x) = t
√

1− (µt
A
(x) + ηt

A
(x) + νt

A
(x)), and πA(x) could be called the

“degree of refusal membership of x in A”. Let T-SFS(X) denote the set of all the T-spherical fuzzy
sets (T-SFS) on a universe X. A triplet (µA(x), ηA(x), νA(x)) can be identified as a spherical fuzzy
number (T-SFN). If t = 2, the T-spherical fuzzy set is called a spherical fuzzy set (SFS), and the
corresponding SFS(X) denotes the set of all the spherical fuzzy sets on a universe X. A triplet
(µA(x), ηA(x), νA(x)) can be identified as a spherical fuzzy number (SFN).

Although there are many other fuzzy sets, such as the interval-valued fuzzy set (IVFS)
Zadeh [31], fuzzy multi-set (FMS) Yager [32], neutrosophic set (NS) Smarandache [28],
hesitant fuzzy set (HFS) Torra and Narukawa [33], Pythagorean fuzzy set (PyFS) Yager and
Abbasov [34], q-rung orthopair fuzzy sets (q-ROFS) Yager [35], Fermatean fuzzy set (FFS)
Senapati and Yager [36], hybrid fuzzy set, etc. These theories play a very important role
in practice; however, due to limited space and the focus of our article, we will not repeat
them here.

3.1.2. Rough Set (RS)

The concept of rough sets (RS) was proposed in 1982 by Pawlak as a mathematical
way to handle vagueness, uncertainty, and imprecision in data.
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Definition 6 (Pawlak [37]). Let R be an equivalence relation on the universe X (X 6= ∅) and
(X, R) be a Pawlak approximation space. A subset A ⊆ X is called definable if R(A) = R(A); in
the opposite case, i.e., if R(A)− R(A) 6= ∅, A is said to be a rough set, where the two operations
are defined as:

R(A) = {x ∈ X|[x]R ⊆ A} (6)

R(A) = {x ∈ X|[x]R ∩ A 6= ∅} (7)

As an illustration, let us consider the following Example 1.

Example 1. Suppose Table 1 is an information system of RS, the universe X = {ai|i = 1, 2, · · · , 8},
and A = {a1, a3, a5, a7}. Suppose the equivalence relation R is that the attributes c1, c3, and c5
have the same value, then [X]R = {{a1, a2}, {a3, a7}, {a4, a6, a8}, {a5}}. Thus, we can obtain the
following results: R(A) = {a3, a5, a7}, R(A) = {a1, a2, a3, a5, a7}. Since R(A)− R(A) 6= ∅, A
is a rough set.

Table 1. An information system of rough set.

c1 c2 c3 c4 c5

a1 1 2 0 0 1
a2 1 0 0 2 1
a3 2 0 0 1 0
a4 0 0 1 2 1
a5 2 1 0 2 1
a6 0 0 1 2 1
a7 2 0 0 1 0
a8 0 1 1 1 1

3.1.3. Soft Set (SS)

Molodtsov [38] proposed a mathematical theory to deal with uncertain information,
emphasizing the study of uncertainty information from the perspective of parameters—this
is the famous soft set (SS) theory.

Let X be the non-empty finite set of objects called the universe. C is a set of parameters
(attributes) about objects in X, and attributes are used to describe the characteristics or
properties of the object X. The (X, C) is called a soft space, and the mathematical concept
of a soft set is defined as follows:

Definition 7 (Molodtsov [38]). Let X be the universe. C is a set of parameters (attributes) about
objects in X, and C ⊆ C, ϕ is a mapping given by ϕ : C → 2X ; 2X is the power set of X, then a pair
(ϕ, C) is named a soft set (SS) over the universe X.

As an illustration, let us consider the following Example 2.

Example 2. Suppose Table 2 is an information system of soft set. A = {a1, a2, a3, a4} is a universe
of soft set, while C = {c1, c2, c3, c4, c5} is the set of parameters. According to Definition 7 of the
soft set, we could easily come to the results as follows:

ϕ(c1) = {a1, a2}; ϕ(c2) = {a2, a3, a4}, · · · ,

ϕ(c1, c2) = {a2}; ϕ(c1, c4) = {a1, a2}, · · · ,

ϕ(c2, c3, c5) = {a3}, ϕ(c2, c4, c5) = {a4}, · · · .

Take ϕ(c1, c4) as an example, meaning that the objects with attributes c1 and c4 are a1 and a2,
respectively.
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Table 2. An information system of the soft set.

c1 c2 c3 c4 c5

a1 1 0 0 1 0
a2 1 1 0 1 0
a3 0 1 1 0 1
a4 0 1 0 1 1

3.1.4. Fuzzy Soft Set (FSS)

Maji et al. [39] proposed the definition of fuzzy soft sets by combining fuzzy set theory
and soft set theory. In fact, a fuzzy soft set can be thought of as a parameterized fuzzy
set of a given universe, which is an object expression model with parameters and fuzzy
information. It is now more versatile and can be applied in a wide range of uncertainty-
related fields because it is no longer restricted to the soft set’s object parameters of 0 and
1 [40].

Definition 8 (Maji et al. [39]). Let X be a universal set , C be a collection of parameters regarding
X, and FS(X) represent the collection of all FSs over the universe X . A pair (ϕ, C) is said to be a
fuzzy soft set (FSS) over X, where C ⊆ C and ϕ : C → FS(X), and where FS(X) represents the
collection of all the fuzzy sets on a universe X. For every x ∈ X, the FSS can be defined as follows:

S = {(x, ϕ(x))|x ∈ C, ϕ(x) ∈ FS(X)} (8)

Particularly, when |C| = 1, the fuzzy soft set degenerates to a fuzzy set.

Example 3. Suppose Table 3 is an information system of the soft set and using IFS to score.
A = {a1, a2, a3, a4} is a universe of the soft set, C = {c1, c2, c3, c4, c5} is the set of parameters, and
C = {c1, c3}. According to Definition 8 of the FSS, we could easily obtain:

S = {(c1, {(a1, 0.6, 0.1), (a2, 0.8, 0.1)}), (c3, {(a3, 0.4, 0.4)})}

Table 3. An information system of fuzzy soft set.

c1 c2 c3 c4 c5

a1 (0.6, 0.1) (0.0, 0.0) (0.0, 0.0) (0.6, 0.2) (0.0, 0.0)
a2 (0.8, 0.1) (0.7, 0.2) (0.0, 0.0) (0.8, 0.1) (0.0, 0.0)
a3 (0.0, 0.0) (0.5, 0.3) (0.4, 0.4) (0.0, 0.0) (0.8, 0.1)
a4 (0.0, 0.0) (0.9, 0.1) (0.0, 0.0) (0.7, 0.2) (0.6, 0.4)

If the fuzzy set is a spherical fuzzy set, then we have the spherical fuzzy soft set (SFSS),
and the definition is as follows:

Definition 9 (Ahmmad et al. [41]). Let X be a universal set , C be a collection of parameters
regarding X, and SFS(X) represent the collection of all SFSs over the universe X . A pair (ϕ, C) is
said to be a spherical fuzzy soft set (SFSS) over X, where C ⊆ C and ϕ : C → SFS(X), and where
SFS(X) represents the collection of all the fuzzy sets on a universe X. For every x ∈ X, the SFSS
can be defined as follows:

S = {(x, ϕ(x))|x ∈ C, ϕ(x) ∈ SFS(X)}. (9)

Particularly, when |C| = 1, the fuzzy soft set degenerates to a spherical fuzzy set.

3.1.5. Fuzzy Soft Rough Set (FSRS)

By combining the FSS with the RS, we can obtain the FSRS, which is defined as follows:
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Definition 10 (Muahmmad and Martino [23]). Let X be the universe, C be a set of parameters
(attributes) about objects in X, T-SFS{X} be the collection of all T-spherical fuzzy soft sets over
the universe X, R be a T-spherical fuzzy soft set relation from universe X to C (that is, ∀c ∈ C ⊆
C,R(c) ∈T-SFSS(X)), and ψ be a mapping given by ψ : C → T-SFSS{X}. Then, (ψ, C,R) is
known as a T-spherical fuzzy soft rough approximation space. For every F ∈T-SFS(C), the lower
and upper approximation of F can be defined as follows:

R(F ) = {(x, µ(x), η(x), ν(x))|x ∈ X} (10)

R(F ) = {(x, µ(x), η(x), ν(x))|x ∈ X} (11)

where

µ(x) = ∧c∈C(µR(x, c) ∧ µF (c)), (12)

η(x) = ∨c∈C(ηR(x, c) ∨ ηF (c)), (13)

ν(x) = ∨c∈C(νR(x, c) ∨ νF (c)). (14)

and

µ(x) = ∨c∈C(µR(x, c) ∨ µF (c)), (15)

η(x) = ∧c∈C(ηR(x, c) ∧ ηF (c)), (16)

ν(x) = ∧c∈C(νR(x, c) ∧ νF (c)). (17)

Here, 0 ≤ µt(x) + ηt(x) + νt(x) ≤ 1, 0 ≤ µt(x) + ηt(x) + νt(x) ≤ 1, then,

R(F ) = (R(F ),R(F )) = {(x, (µ(x), µ(x)), (η(x), η(x)), (ν(x), ν(x)))|x ∈ X}. (18)

when t = 2, the T-SFSRS is a SFSRS, and when t = 1, the T-SFSRS is a PFSRS.

Definition 11 (Muahmmad and Martino [23]). Let

R(F ) = (R(F ),R(F )) = {(x, (µ(x), µ(x)), (η(x), η(x)), (ν(x), ν(x)))|x ∈ X}.

be a T-SFSRS on universe X, then the score function can be defined as:

S(x) = µt(x) + µt(x)− ηt(x)− ηt(x)− νt(x)− νt(x), (x ∈ X). (19)

Example 4. In a multi-attribute decision-making (MADM ) problem, suppose the set of alternatives
is A = {a1, a2, a3} and the set of attributes is C = {c1, c2, c3, c4}, which are presented in Table 4 .
Let F be a T-SFS over C, such that:

F = {(c1, 0.83, 0.12, 0.03), (c2, 0.76, 0.12, 0.04), (c3, 0.56, 0.21, 0.12), (c4, 0.16, 0.81, 0.03)}

Table 4. An information system of PFSS.

c1 c2 c3 c4

(0.83, 0.12, 0.03) (0.76, 0.12, 0.04) (0.56, 0.21, 0.12) (0.16, 0.81, 0.03)

a1 (0.96, 0.02, 0.01) (0.82, 0.13, 0.02) (0.73, 0.12, 0.13) (0.43, 0.34, 0.15)
a2 (0.97, 0.01, 0.01) (0.91, 0.05, 0.04) (0.77, 0.14, 0.18) (0.76, 0.07, 0.02)
a3 (0.92, 0.05, 0.02) (0.56, 0.26, 0.02) (0.78, 0.23, 0.01) (0.99, 0.01, 0.00)

Then, we can obtain the following results (here t = 1).

R(F ) = {(a1, 0.16, 0.81, 0.15), (a2, 0.16, 0.81, 0.18), (a3, 0.16, 0.81, 0.12)};
R(F ) = {(a1, 0.96, 0.02, 0.01), (a2, 0.97, 0.01, 0.01), (a3, 0.99, 0.01, 0.00)}.
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Additionally, S(a1) = 0.13,S(a2) = 0.12,S(a3) = 0.21, then S(a3) > S(a1) > S(a2).
So, we can obtain: a3 � a1 � a2.

3.2. Dynamic Multiple-Attribute Group Decision Making (DMAGDM)

In this subsection, descriptions of general MAGDM and DMAGDM are given first,
followed by the definition of chaotic MAGDM, and finally the concept of dynamic chaotic
MAGDM.

3.2.1. Multi-Attribute Group Decision Making (MAGDM)

A decision-making problem can be defined simply as a problem of choosing the
best answer from a set of possible answers based on a set of attributes or criteria. Let
A = {a1, a2, . . . , am} be the set of alternatives (the set of possible answers) that are evaluated
from different aspects, named attributes, criteria, or objects (C = {c1, c2, . . . , cn} is the set
of criteria). That is, for attribute cj, for instance, the alternative Ai is described by the
evaluation value xij, named evaluation value, or the preference of the ith alternative
against the jth attribute. Thus, for each alternative Ai, we have an evaluation vector
xi = (xi1, xi2, . . . , xin)

T . Such problems, including a set of alternatives and a set of attributes,
are called multi-attribute decision-making (MADM) problems. In these problems, making
a decision or choosing the best answer is based on a set of attributes. A MADM method
shows how attribute information should be processed in order to obtain a choice. To decide,
a decision maker (DM) must assess the alternatives. These assessments are performed
in two basic ways. The first, named the ordinal method, arranges alternatives from the
worst to the best; however, the superiority of one over the other is ignored. The second,
named the cardinal method, not only ranks the alternatives but also specifies the priority
value [42].

In many real problems, we have a group of decision makers (DMs). The correspond-
ing MADM becomes multi-attribute group decision making (MAGDM). The following
notations are used to depict the MAGDM problems:

• A = {a1, a2, . . . , am} is the set of considered alternatives;
• C = {c1, c2, . . . , cn} is the set of attributes, which are used for evaluating alternatives;
• E = {e1, e2, . . . , el} is the set of the DMs involved in the decision-making process;
• w = (w1, w2, · · · , wn)T is the weight vector of the attribute (w > 0, ∑n

j=1 wj = 1);

• τ = (τ1, τ2, · · · , τl)
T is the weight vector of the DMs (τ > 0, ∑l

k=1 τk = 1);
• X = {Xk|ek ∈ E} is the decision matrix set, while Xk is the decision matrix of the

kth DM:
c1 c2 · · · cn

Xk =

a1

a2
...

am



xk
11

xk
21
...

xk
m1

xk
12

xk
22
...

xk
m2

· · ·

· · ·
. . .

· · ·

xk
1n

xk
2n
...

xk
mn

 k = 1, 2, · · · , l;
(20)

• xk
ij is the kth DM evaluation of the ith alternative against the jth attribute

(k = 1, 2, · · · , l, i = 1, 2, · · · , m, j = 1, 2, · · · , n).

In order to describe MAGDM more clearly and concisely, a MAGDM problem can
usually be represented by a 6-tuple 〈A, C, E, w, τ, X〉, that is:

MAGDM = 〈A, C, E, w, τ, X〉. (21)
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3.2.2. Dynamic Multi-Attribute Group Decision Making (DMAGDM)

In practice, for the MAGDM = 〈A, C, E, w, τ, X〉 problem, all its parameters will
change according to the period κ (κ ∈ Z+). In this case, MAGDM is called dynamic
multi-attribute group decision making (DMAGDM). That is,

DMAGDM(κ) = 〈A(κ), C(κ), E(κ), w(κ), τ(κ), X(κ)〉. (22)

The following notations are used to depict the DMAGDM problems:

• A(κ) = {aκ
1, aκ

2, . . . , aκ
m(κ)
} is the set of considered alternatives and m(κ) is the number

of alternatives in the period κ;

• C(κ) = {cκ
1, cκ

2, . . . , cκ
n(κ)} is the set of attributes, which are used for evaluating of

alternatives, and n(κ) is the number of attributes in the period κ;

• E(κ) = {eκ
1, eκ

2, . . . , eκ
l(κ)} is the set of the DMs involved in the decision-making process

and l(κ) is the number of DMs in the period κ;

• w(κ) = (wκ
1, wκ

2, · · · , wκ
n(κ))

T is the weight vector of the attribute (wκ
j > 0, ∑

n(κ)
j=1 wκ

j = 1);

• τκ = (τκ
1 , τκ

2 , · · · , τκ
l(κ))

T is the weight vector of the DMs (τκ
k > 0, ∑

l(κ)
k=1 τκ

k = 1);

• X(κ) = {Xk(κ)|k = 1, 2, · · · , l(κ)} is the decision matrix set, while Xk(κ) is the

decision matrix of the kth DM in the period κ;

• xk
ij(κ) is the kth DM evaluation of the ith alternative against the jth attribute in the

period κ (k = 1, 2, · · · , l(κ); i = 1, 2, · · · , m(κ); j = 1, 2, · · · , n(κ)).

4. A Novel New Method for DCMAGDM under Weighted T-SFSRS

In this section, first, we construct a DCMAGDM model that is more consistent with
the actual decision; second, we define the concept of weighted T-SFSRS; third, we give
the dynamic transfer equation of DCMAGDM; and finally, we design a more accurate and
flexible algorithm for DCMAGDM.

4.1. Dynamic Chaotic Multi-Attribute Group Decision Making (DCMAGDM)

In the actual multi-attribute group decision-making process, it is often found that DMs
have different levels of familiarity with the attributes; in other words, different DMs may
have different levels of familiarity with the same attribute or the same DM has different
levels of familiarity with different decision attributes.

There is a very pertinent example to illustrate this situation. When a doctor encounters
a patient with a serious illness or a very complex condition, a group of specialists from
different departments will usually be consulted. Different specialists have different areas
of expertise, and different specialists are not necessarily familiar with the same areas, for
example, some specialists specialize in the treatment of heart and brain diseases, while
others are more familiar with the analysis of blood test results. In this case, the utility of
each expert’s evaluation of each indicator is related not only to that expert’s weight but
also to that expert’s familiarity with that indicator.

Therefore, how to take familiarity into account in dynamic multi-attribute group deci-
sion making (DMAGDM) is very meaningful and challenging research. In this subsection,
we propose a MAGDM with a new scenario or new condition in which not only the weights
of the DMs and the weights of the decision attributes are considered but also the familiarity
of the DMs with the attributes. That is, DMs must consider the influence of the DM’s
familiarity with the attributes in the decision-making process. Since the influence of the
DM’s familiarity with the attributes on the final decision is similar to the influence of
the initial values on a deterministic dynamic system, we similarly refer to this complex
MAGDM as “chaotic MAGDM”.
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Definition 12. Let MAGDM = 〈A, C, E, w, τ, X〉 be a multi-attribute group decision-making
process and Φ be a mapping given by Φ : (E, C)→ F (i.e., F = Φ(E, C)). Where F (the element
in F can be a definite real number or a fuzzy number) is known as the DM’s familiarity with the
attributes. Then 7-tuple 〈A, C, E, w, τ, X,F〉 is named as chaotic multi-attribute group decision
making and denoted as:

CMAGDM = 〈A, C, E, w, τ, X,F〉 (23)

Theorem 1. If ∀e ∈ E, ∀c ∈ C, F (e, c) ≡ α (α is any constant), then

〈A, C, E, w, τ, X, α〉 = 〈A, C, E, w, τ, X〉.

Proof. Obviously, if F is a constant, it means that all familiarities are the same, and that
there is no need to analyze the familiarity anymore. So, at this point, CMAGDM becomes
MAGDM.

Remark 1. A MAGDM is called CMAGDM if there exists at least one decision attribute such
that at least two DMs have the different familiarity with it, or the same DM has different levels of
familiarity with at least two different decision attributes.

To describe CMAGDM more intuitively, we give the CMAGDM information form, as
shown in Table 5.

Table 5. Chaotic MAGDM information form.

c1 c2 · · · cn

w1 w2 · · · wn

e1|τ1 f 1
1 f 1

2 · · · f 1
n

a1 x1
11 x1

12 · · · x1
1n

a2 x1
21 x1

22 · · · x1
2n

...
...

...
. . .

...
am x1

m1 x1
m2 · · · x1

mn

...
...

...
...

...

ei|τi f i
1 f i

2 · · · f i
n

a1 xi
11 xi

12 · · · xi
1n

a2 xi
21 xi

22 · · · xi
2n

...
...

...
. . .

...
am xi

m1 xi
m2 · · · xi

mn

...
...

...
...

...

el |τl f l
1 f l

2 · · · f l
n

a1 xl
11 xl

12 · · · xl
1n

a2 xl
21 xl

22 · · · xl
2n

...
...

...
. . .

...
am xl

m1 xl
m2 · · · xl

mn
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Similarly, for the CMAGDM = 〈A, C, E, w, τ, X,F〉 problem, all its parameters will
change accordingly with the period κ (κ ∈ Z+). In this case, CMAGDM is called dynamic
chaotic multi-attribute group decision making (DCMAGDM). That is

DCMAGDM(κ) = 〈A(κ), C(κ), E(κ), w(κ), τ(κ), X(κ),F (κ)〉, (24)

where A(κ), C(κ), E(κ), w(κ), τ(κ), X(κ) have exactly the same meaning as previously
given, and the meaning of F (κ) is as follows:

• F (κ) = {F 1(κ),F 2(κ), · · · ,F l(κ)(κ)} is the set of the familiarity of DMs with at-

tributes in the period κ;

• F k(κ) = ( f k
1 (κ), f k

2 (κ), · · · , f k
n(κ))

T is the familiarity vector of the kth DM in the period

κ (k = 1, 2, · · · , l(κ)) ;

• f k
j (κ) is the familiarity of the kth DM against the jth attribute in the period κ.

(k = 1, 2, · · · , l(κ); j = 1, 2, · · · , n(κ))

4.2. Weighted T-Spherical Fuzzy Soft Rough Sets

In the existing literature, many scholars have given different aggregation operators
based on the spherical fuzzy set [41,43,44]. There are also many results on aggregation
operators given on the basis of T-spherical fuzzy sets [45–48]. These results have been very
inspiring to us. In order to allow DMs to both accurately describe the fuzzy information in
DCMAGDM and to have a broader choice without having to be bound to the constraints of
the evaluation score values, we chose to use T-SFSRS to express all the fuzzy information in
the decision process. In addition, in order to better integrate familiarity F into the T-SFSRS,
based on Definition 10 proposed by Muahmmad and Martino, we redefined the lower and
upper approximation of F . We named it as the weighted t-spherical fuzzy soft rough set.
The definition is as follows:

Definition 13. Let X be the universe, C be a set of attributes with the weight wC about objects
in X, T-SFS{X} be the collection of all T-spherical fuzzy soft sets over the universe X, R be a
T-spherical fuzzy soft set relation from universe X to C (that is, ∀c ∈ C ⊆ C,R(c) ∈T-SFSS(X)),
and ψ be a mapping given by ψ : C → T-SFSS{X}. Then, (ψ, C,R, wC ) is known as a weighted
t-spherical fuzzy soft rough approximation space. For every F ∈T-SFS(C), the lower and upper
approximation of F can be defined as follows:

R(F ) = {(x, µ(x), η(x), ν(x))|x ∈ X} (25)

R(F ) = {(x, µ(x), η(x), ν(x))|x ∈ X} (26)

where

µ(x) = min
c∈C

(wc · µR(x, c) ·min(µF (c), t
√
(1− ηt

F (c)− νt
F (c)))), (27)

η(x) = max
c∈C

(wc · ηR(x, c) ·max(ηF (c),
t
√
(1− µt

F (c)− νt
F (c)))), (28)

ν(x) = max
c∈C

(wc · νR(x, c) ·max(νF (c),
t
√
(1− µt

F (c)− ηt
F (c)))). (29)
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and

µ(x) = max
c∈C

(wc · µR(x, c) ·max(µF (c), t
√
(1− ηt

F (c)− νt
F (c)))), (30)

η(x) = min
c∈C

(wc · ηR(x, c) ·min(ηF (c),
t
√
(1− µt

F (c)− νt
F (c)))), (31)

ν(x) = min
c∈C

(wc · νR(x, c) ·min(νF (c),
t
√
(1− µt

F (c)− ηt
F (c)))). (32)

where, 0 ≤ µt(x) + ηt(x) + νt(x) ≤ 1, 0 ≤ µt(x) + ηt(x) + νt(x) ≤ 1, then,

R(F ) = (R(F ),R(F )) = {(x, (µ(x), µ(x)), (η(x), η(x)), (ν(x), ν(x)))|x ∈ X}. (33)

The evaluation function in Definition 11 given by Muahmmad and Martino is:

S(x) = µt(x) + µt(x)− ηt(x)− ηt(x)− νt(x)− νt(x), (x ∈ X).

Given that the evaluation function’s value decreases as the parameter t rises, making
it difficult to calculate and compare numerical results, the evaluation function must be
optimized. Considering that the evaluation function value may be negative, it is natural to
think of selecting an odd number (2t− 1) for root operations in order to make sense of the
root operation. The new evaluation function is as follows.

Definition 14. The score function is as follows:

S(x) = (µt(x) + µt(x)− ηt(x)− ηt(x)− νt(x)− νt(x))
1

2t−1 , (x ∈ X). (34)

Example 5. Still analyzing the data in Example 4 with the weight vector w = {0.25, 0.25, 0.25, 0.25}T,
under new Definitions 13 and 14, the corresponding results (here t = 1) are:

R(F ) = {(a1, 0.0172, 0.0689, 0.0075), (a2, 0.0304, 0.0142, 0.0104), (a3, 0.0396, 0.0184, 0.0006)};
R(F ) = {(a1, 0.2040, 0.0006, 0.0001), (a2, 0.2061, 0.0003, 0.0001), (a3, 0.1955, 0.0015, 0.0000)}.

Additionally, S(a1) = 0.1442,S(a2) = 0.2116,S(a3) = 0.2146; then, S(a3) > S(a2) >
S(a1). So, we can obtain: a3 � a2 � a1.

Considering that different DMs have different decision weights, we give the corre-
sponding total evaluation function for the CMAGDM as follows:

Definition 15. In CMAGDM, the total evaluation score function is S(ai):

S(ai) =
l

∑
k=1

τkSk(ai) (35)

Sk(ai) is the kth DM’s score for the ith alternative (i = 1, . . . , m; k = 1, 2, . . . , l); τk is the weight
of the kth DM (τk > 0, ∑l

k=1 τk = 1).

In order to allow DMs to focus their attention on evaluation scoring without consid-
ering the limitations of scoring values, let DMs chose T-SFN (T-Spherical Fuzzy Number)
for evaluation scoring. Therefore, after the DMs give the evaluation score, we need to
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determine the value of the corresponding parameter t. The value of the parameter t can be
obtained by solving a nonlinear programming problem as follows:

min t

s.t.


µt
R(ai, cj) + ηt

R(ai, cj) + νt
R(ai, cj) ≤ 1

µt
F (ai, cj) + ηt

F (ai, cj) + νt
F (ai, cj) ≤ 1

i = 1, 2, 3 . . . , m; j = 1, 2, 3 . . . , n; t ∈ Z+

(36)

4.3. Dynamic Transfer Equation of DCMAGDM

Considering the dynamic nature of the decision process, in DCMAGDM, a central
issue is how to transfer past evaluations of alternatives to the next period. In other words,
how to establish a reasonable transfer function is the key to solving DCMAGDM.

In this subsection, we first give the general form of the dynamic transfer equation for
DCMAGDM; then, we provide the definition of the dynamic transfer equation chosen for
this paper

4.3.1. General Dynamic Transfer Equation in DCMAGDM

Definition 16. In period κ (κ ∈ Z+), let DCMAGDM be as follows.

DCMAGDM(κ) = 〈A(κ), C(κ), E(κ), w(κ), τ(κ), X(κ),F (κ)〉, (37)

with the corresponding evaluation function for the ith alternative in the κth period by the kth DM
as Sk

κ (ai).
The total evaluation score function in the κth period is

Sκ(ai) =

 0, ai /∈ A(κ)

ξ(w(κ), τ(κ), X(κ),F (κ)), ai ∈ A(κ)
(38)

where ξ(·) is called the information aggregation function (it can be any function with practical
meaning, and 0 ≤ ξ(·) ≤ 1).

The total evaluation value up to the κ period is as follows:

Ŝκ(ai) =

 S1(ai), κ = 1

Sκ(ai) + ψ(Ŝκ−1(ai)), κ ≥ 2
(39)

where ψ(·) is called the evaluation cumulative function (it can be any function with practical
meaning, and 0 ≤ ψ(·) ≤ 1), and Equation (39) is called a general dynamic transfer equation.

Usually, ξ(·) and ψ(·) can be chosen according to the specific reality of the decision
problem, and in most studies the weighted arithmetic average operator or the weighted
geometric average operator becomes the frequently chosen method.

4.3.2. Weighted Dynamic Transfer Equation Based on T-SFSRS

Our study is based on the following hypotheses:

• All objects in A(κ) and C(κ) may change with the period κ;
• All elements in w(κ) and τ(κ) are the real number;
• All elements in X(κ) and F (κ) are presented in the form of the T-Spherical Fuzzy

Number (T-SFN);
• For the information aggregation function ξ(·), we choose the weighted arithmetic

mean operator:
ξ(w(κ), τ(κ), X(κ),F (κ)) = ∑

ai∈A(κ)

τkSk
κ (ai);
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• For the evaluation cumulative function ψ(·), considering that the evaluation score
of the previous period will weaken as the period κ keeps increasing, we choose the
following processing means to reflect this point,

ψ(Ŝκ−1(ai)) = θ Ŝκ−1(ai),

where 0 6 θ < 1, which we name as the discount coefficient.

Based on these assumptions, we can obtain the following definition:

Definition 17. Let DCMAGDM(κ) = 〈A(κ), C(κ), E(κ), w(κ), τ(κ), X(κ),F (κ)〉, (κ ∈ Z+),
while the corresponding evaluation function for the ith alternative in the κth period by the kth DM
is Sk

κ (ai):

Sk
κ (ai) = (µt(ai) + µt(ai)− ηt(ai)− ηt(ai)− νt(ai)− νt(ai))

1
2t−1 , ai ∈ A(κ) (40)

The total evaluation score function in the κth period is

Sκ(ai) =


0, ai /∈ A(κ)

∑
ek∈E(κ)

τkSk
κ (ai), ai ∈ A(κ)

(41)

The total evaluation value up to the κ period is as follows:

Ŝκ(ai) =

 S1(ai), κ = 1

Sκ(ai) + θ Ŝκ−1(ai) κ ≥ 2
(42)

we call Equation (42) the weighted dynamic transfer equation based on T-SFSRS, where θ (0 6 θ < 1)
is a real number, which we call the discount coefficient.

Theorem 2. For ∀κ ∈ {1, 2, · · · ,N} and ∀ai ∈
N⋃

κ=1
A(κ), the value of Ŝκ(ai) must be bounded.

Proof. Since the elements in the T-SFN are all greater than or equal to zero and less than or
equal to 1, from Equations (40) and (41), we can derive:

|Sκ(ai)| 6 6,

from Equation (42), we have:

∣∣∣Ŝκ(ai)
∣∣∣ = ∣∣∣∣∣ κ

∑
r=1

θ(κ−r)Ŝr(ai)

∣∣∣∣∣
6

κ

∑
r=1

θ(κ−r)
∣∣∣Ŝr(ai)

∣∣∣
6 6

κ

∑
r=1

θ(κ−r)

6
6

1− θ
.

The boundedness analysis helps us to better choose the value of the discount coefficient
θ when making specific decisions.
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4.4. The Algorithm for DCMAGDM

Through the analysis in the previous subsection, we can then design an algorithm that
can reflect the symmetry between decision evaluations and fuzzy information, while also
achieving a symmetric balance between decision makers and attributes (evaluation metrics)
as well. We summarize the Algorithm 1 for solving DCMAGDM as follows:

Algorithm 1 The Algorithm for DCMAGDM.

Input:
Total number of periods: N
Discount Coefficient: θ
for κ = 1 to N do

Input: A(κ), C(κ), E(κ), w(κ), τ(κ), X(κ),F (κ).
end for

Output:
Sorting/Ranking of alternatives: a∗1 � a∗2 � · · · � a∗i � · · · ;
Step 1:
Calculate the evaluation score.
for κ = 1 to N do

for ai ∈ A(κ) do
for ek ∈ E(κ) do

Calculate Sk
κ (ai) according to the Formula (40)

end for
Calculate Sκ(ai) according to the Formula (41)

end for
end for
Calculate Ŝκ(ai) according to the Formula (42)
Step 2:
Sorting by the value of Sκ(ai) and Ŝκ(ai)
return a∗1 � a∗2 � · · · � a∗i � · · · ; and â∗1 � â∗2 � · · · � â∗i � · · · ;

5. Numerical Analysis

To better illustrate our model, let us introduce a simple numerical example. It is
assumed that this case has the following characteristics:

• DM has different weights in different periods, and there are three DMs in the whole
decision-making process, E = {e1, e2, e3};

• Each attribute may have different weights in different periods, with a total of five
attributes to be considered, C = {c1, c2, c3, c4, c5};

• There are nine alternatives, each of which may or may not appear in a given period,
A = {a1, a2, · · · , a9};

• DMs select T-SFN for scoring evaluation.

All the evaluation information is shown in Tables A1–A3 in Appendix A.

5.1. First Iteration

In the first period, we consider the inclusion of only eight alternatives,

A(1) = {a1, a2, a3, a4, a5, a6, a7, a8},

and a reasonable explanation is that a9 is not found by the DMs in this period.

Step 1:

By Equation (36), we can obtain t = 5.

Step 2:
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According to Definition 13, we can obtain the lower and upper bounds of T-SFSRS
and the score in the first period, as shown in Table 6.

Table 6. The lower and upper bounds of T-SFSRS for the first period.

( µ , η , ν ) ( µ , η , ν ) S

e1

a1 (0.04485, 0.02494, 0.01918) (0.24750, 0.00013, 0.00000) 0.46037
a2 (0.04485, 0.03093, 0.01353) (0.24500, 0.00050, 0.00000) 0.45778
a3 (0.04347, 0.02355, 0.01740) (0.23750, 0.00013, 0.00000) 0.44994
a4 (0.04623, 0.03866, 0.02030) (0.24000, 0.00000, 0.00000) 0.45256
a5 (0.04347, 0.03480, 0.01535) (0.23750, 0.00000, 0.00000) 0.44994
a6 (0.04140, 0.02513, 0.03286) (0.24750, 0.00025, 0.00000) 0.46036
a7 (0.04416, 0.03383, 0.03286) (0.24250, 0.00000, 0.00000) 0.45517
a8 (0.04623, 0.02632, 0.02610) (0.24500, 0.00013, 0.00000) 0.45778

e2

a1 (0.08742, 0.04534, 0.02625) (0.22000, 0.00006, 0.00018) 0.43165
a2 (0.08554, 0.07266, 0.03873) (0.22000, 0.00003, 0.00012) 0.43143
a3 (0.08460, 0.03580, 0.04295) (0.21250, 0.00005, 0.00021) 0.42342
a4 (0.08930, 0.04844, 0.03147) (0.21750, 0.00002, 0.00021) 0.42899
a5 (0.08836, 0.04117, 0.03873) (0.21500, 0.00001, 0.00000) 0.42626
a6 (0.08836, 0.05570, 0.06293) (0.21750, 0.00002, 0.00007) 0.42885
a7 (0.08742, 0.03580, 0.09440) (0.22500, 0.00000, 0.00012) 0.43641
a8 (0.08930, 0.04773, 0.02662) (0.21750, 0.00001, 0.00021) 0.42900

e3

a1 (0.08010, 0.09444, 0.02802) (0.23750, -0.00020, -0.00013) 0.44965
a2 (0.07740, 0.04843, 0.04670) (0.24750, -0.00020, -0.00003) 0.46049
a3 (0.07920, 0.03970, 0.01935) (0.24250, -0.00050, -0.00008) 0.45535
a4 (0.08100, 0.08475, 0.05322) (0.24250, -0.00050, -0.00003) 0.45509
a5 (0.07650, 0.08233, 0.08467) (0.24250, -0.00010, -0.00003) 0.45484
a6 (0.07650, 0.06296, 0.03387) (0.25000, 0.00000, -0.00005) 0.46302
a7 (0.08010, 0.06054, 0.09193) (0.23750, -0.00030, 0.00000) 0.44966
a8 (0.07830, 0.04671, 0.06290) (0.24500, -0.00010, -0.00003) 0.45787

Step 3:

According to Equation (41), we can calculate the total evaluation score in this period,
as shown in Table 7. So, the final ranking obtained is

a6 � a2 � a1 � a8 � a7 � a4 � a5 � a3 (43)

Table 7. Total score and best ranking for the first period.

κ = 1

â1∗
− = a1∗

− A(1) Ŝ1 = S1

a1∗
1 a6 0.450521

a1∗
2 a2 0.449652

a1∗
3 a1 0.448642

a1∗
4 a8 0.448302

a1∗
5 a7 0.447825

a1∗
6 a4 0.445317

a1∗
7 a5 0.443153

a1∗
8 a3 0.442324

5.2. Second Iteration

In the second iteration, we consider seven alternatives: A(2) = {a3, a4, a5, a6, a7, a8, a9},
for the following reasons:
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• We remove alternatives a1 and a2 from A(1) because at the end of an iteration, an
alternative will be included in the history set, which means that it may or may not
appear in the next iteration. For example, in the new period, the historical alternative
no longer exists;

• A new alternative a9 appears at beginning of the second period.

In addition, the weights of DMs and the weights of attributes also changed in the new
period. A reasonable interpretation is as follows:

• The weights of DMs have changed because of the addition of completely new DMs or
the reallocation of the weights of DMs in the new period.

• The weights of the attributes have changed because of the DM’s perspective in the
new period or because new attribute requirements have been introduced.

Next, we analyze and solve for the second period of decision making. The analysis
and solution process is exactly the same as in the previous Section 5.1, and we end up with
the following results, as shown in Table 8.

Table 8. Total score and best ranking for the second period.

κ = 2

a2∗
− A(2) S2

a2∗
1 a6 0.498813

a2∗
2 a3 0.497476

a2∗
3 a5 0.493123

a2∗
4 a9 0.491535

a2∗
5 a8 0.490639

a2∗
6 a4 0.489837

a2∗
7 a7 0.486844

In this article, we choose the discount coefficient: θ = 0.25 using Equation (42), and
the total evaluation score of the attributes up to the end of the second period is calculated.
Take a6 as an example:

Ŝ2(a6) = S2(a6) + θ Ŝ1(a6) = 0.498813 + 0.25× 0.450521 = 0.611443 (44)

Until the end of the second period, the final scores and ranking results are shown in
Table 9.

Table 9. Total score and best ranking until the end of the second period.

κ = 2

â2∗
− A(1) ∪ A(2) Ŝ2

â2∗
1 a6 0.611443

â2∗
2 a3 0.608057

â2∗
3 a5 0.603911

â2∗
4 a8 0.602714

â2∗
5 a4 0.601166

â2∗
6 a7 0.598800

â2∗
7 a9 0.491535

â2∗
8 a2 0.112413

â2∗
9 a1 0.112161

So, the final ranking is obtained:

a6 � a3 � a5 � a8 � a4 � a7 � a9 � a2 � a1 (45)
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5.3. Third Iteration

Similarly, we can obtain the results in the third period. They are shown in Tables 10 and 11.

Table 10. Total score and best ranking for the third period.

κ = 3

a3∗
− A(3) S3

a3∗
1 a7 0.598936

a3∗
2 a8 0.594738

a3∗
3 a2 0.594109

a3∗
4 a9 0.593653

a3∗
5 a6 0.592304

Table 11. Total score and best ranking until the end of the third period.

κ = 3

â3∗
− A(1) ∪ A(2) ∪ A(3) Ŝ3

â3∗
1 a7 0.748636

â3∗
2 a8 0.745416

â3∗
3 a6 0.745164

â3∗
4 a9 0.716537

â3∗
5 a2 0.622212

â3∗
6 a3 0.152014

â3∗
7 a5 0.150978

â3∗
8 a4 0.150292

â3∗
9 a1 0.028040

Take a6 as an example:

Ŝ3(a6) = S3(a6) + θ Ŝ2(a6)

= S3(a6) + θ S2(a6) + θ2 S1(a6)

= 0.592304 + 0.25× 0.611443 + 0.252 × 0.450521

= 0.745164

So, the final ranking at the end of third period is obtained:

a7 � a8 � a6 � a9 � a2 � a3 � a5 � a4 � a1 (46)

5.4. General Analysis of the Three Periods

We summarize the results corresponding to the three periods as follows (Table 12),
and it is easy to see the following conclusions:

• Since the weight of DMs and the weight of attributes may change from period to
period, the same alternative has different rankings, e.g., a7 is ranked fifth in the first
period, seventh in the second period, and first in the third period;

• Since each evaluation score can be transferred to subsequent periods, an alternative’s
ranking in the current period may be different from its overall ranking until current
period. For example, the a6 was ranked fifth in the third period, while it was ranked
third overall at end of third period.
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Table 12. Ranking of evaluation scores for this period compared with the ranking of total evaluation
scores up to this period.

A
κ = 1 κ = 2 κ = 3

S1-Ranking Ŝ1-Ranking S2-Ranking Ŝ2-Ranking S3-Ranking Ŝ3-Ranking

a1 3 3 × 9 × 9
a2 2 2 × 8 3 5
a3 8 8 2 2 × 6
a4 6 6 6 5 × 8
a5 7 7 3 3 × 7
a6 1 1 1 1 5 3
a7 5 5 7 6 1 1
a8 4 4 5 4 2 2
a9 × × 4 7 4 4
× indicates that alternative ai was not available in this corresponding period.

Information from the change from the 2nd period (κ = 2) to the new 3rd period
(κ′ = 3) can be found in Table A4. The difference between the new 3rd period (κ′ = 3)
and the previous 3rd period (κ = 3) is that the familiarity has changed while no other
parameters have changed. We can also obtain the sorting results in the new third period, as
shown in Tables 13 and 14.

Table 13. Total score and best ranking for the new third period under new familiarity.

κ′ = 3

a3∗
− A(3) S3

a3∗
1 a2 0.596897

a3∗
2 a9 0.591764

a3∗
3 a6 0.591054

a3∗
4 a7 0.590738

a3∗
5 a8 0.585572

Table 14. Total score and best ranking until the end of the new third period under new familiarity.

κ′ = 3

â3∗
− A(1) ∪ A(2) ∪ A(3) Ŝ3

â3∗
1 a6 0.743915

â3∗
2 a7 0.740438

â3∗
3 a8 0.736250

â3∗
4 a9 0.714648

â3∗
5 a2 0.625000

â3∗
6 a3 0.152014

â3∗
7 a5 0.150978

â3∗
8 a4 0.150292

â3∗
9 a1 0.028040

We show the results of the new third period (κ′ = 3) compared with the results of the
previous third period (κ = 3) in Table 15. Obviously, we can obtain the following result:

• For familiarity, even a slight change will have a very significant impact on the sorting.
This is exactly why we propose familiarity in the DMAGDM problem to give dynamic
chaotic multi-attribute group decisions (DCMAGDM).
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Table 15. Different familiarity produces different rankings.

A
κ = 3 κ′ = 3

S3-Ranking Ŝ3-Ranking S′3-Ranking Ŝ′3-Ranking

a1 × 9 × 6
a2 3 5 1 7
a3 × 6 × 8
a4 × 8 × 9
a5 × 7 × 2
a6 5 3 3 3
a7 1 1 4 5
a8 2 2 5 4
a9 4 4 2 1

6. Conclusions

In this paper, we introduce a general model for decision making in a dynamic envi-
ronment, in which we consider not only the dynamic changes of alternatives, attributes,
and DMs but also the dynamic changes of their corresponding weights during the decision-
making process; in addition, the familiarity between DMs and attributes should also be
considered—the “dynamic chaotic multi-attribute group decision” that we first proposed.
In order to better solve this problem, we proposed the concept of the familiarity of DMs
with attributes in the dynamic multi-attribute group decision problem, which not only can
efficiently avoid the information loss caused by grouping experts but also largely avoid
the irrationality caused by grouping. Based on this, we apply T-SFSRS to our proposed
dynamic chaotic multi-attribute group decision model and give an algorithm for dynamic
chaotic multi-attribute group decision making under fuzzy scenarios. The algorithm not
only yields the optimal ranking of the alternatives for each period but also the cumula-
tive total ranking of the alternatives for all historical periods, which makes our proposed
algorithm flexible enough to be applied in different contexts.

Compared with the models [1,2,4,5,14–16] and algorithm [6–11,13,17–20] in the exist-
ing literature, our proposed model is more general or closer to the real decision-making
process. The algorithm we give takes into account not only the current optimal decision
but also the need for the cumulative analysis of prior evaluations in decision making (e.g.,
in the evaluation ranking of personnel title promotion, all evaluation results of recent years
are often needed instead of just considering only one year’s evaluation scores).

Although we try our best to try to solve more realistic decision problems, there are
still many problems for which we do not give reasonable solutions. For example, the
problem of how to determine the weight of each expert, which is also originally a dynamic
multi-attribute decision-making problem. Although a lot of research results have been
given in the literature, there is little research on considering the weight of experts in a
dynamic context, which is a very challenging and meaningful direction for future research.
From another point of view, in our paper, the fuzzy sets we consider are T-spherical
fuzzy sets (TSFSs), which means that the evaluation scores must satisfy the condition:
µt

A
(x) + ηt

A
(x) + νt

A
(x) ≤ 1. What would be the result if the scoring is performed in a

broader definition domain, such as under a neutrosophic set (NS) (which requires the
condition: µt

A
(x) + ηt

A
(x) + νt

A
(x) ≤ 3 to be satisfied)? This is also a direction for future

research.
In addition, applying our provided models and algorithms to particular practices in

various settings, such as decision making in emergency management, personnel manage-
ment, company administration, etc., is also a very good future study direction.
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Abbreviations
The following abbreviations are used in this manuscript:

DM Decision Maker
MAGDM Multi-attribute Group Decision Making
CMAGDM Chaoti multi-attribute Group Decision Making
DMAGDM Dynamic multi-attribute Group Decision Making
DCMAGDM Dynamic chaoti multi-attribute Group Decision Making
FS Fuzzy set
SFS Spherical Fuzzy Set
T-SFS T-spherical Fuzzy Set
T-SFN T-spherical Fuzzy Number
RS Rough Set
SS Soft Set
FSS Fuzzy Soft Set
FSRS Fuzzy Soft Rough Set
SFSRS Spherical Fuzzy Soft Rough Set
T-SFSRS T-spherical Fuzzy Soft Rough Set

Appendix A. DCMAGDM Information Form

Table A1. DCMAGDM information form for the first period (κ = 1).

κ = 1
c1 c2 c3 c4 c5

0.25 0.25 0.25 0.15 0.10

e1| 0.46 (0.97, 0.05, 0.00) (0.94, 0.07, 0.01) (0.88, 0.05, 0.09) (0.80, 0.16, 0.07) (0.69, 0.12, 0.15)

a1 (0.99, 0.01, 0.03) (0.90, 0.04, 0.10) (0.86, 0.11, 0.00) (0.71, 0.18, 0.12) (0.65, 0.15, 0.15)
a2 (0.98, 0.04, 0.03) (0.90, 0.04, 0.02) (0.89, 0.09, 0.02) (0.75, 0.16, 0.05) (0.65, 0.32, 0.14)
a3 (0.95, 0.01, 0.03) (0.90, 0.07, 0.00) (0.89, 0.09, 0.05) (0.80, 0.17, 0.02) (0.63, 0.10, 0.18)
a4 (0.96, 0.00, 0.03) (0.94, 0.04, 0.00) (0.88, 0.11, 0.07) (0.79, 0.16, 0.04) (0.67, 0.40, 0.21)
a5 (0.95, 0.00, 0.03) (0.90, 0.07, 0.08) (0.89, 0.14, 0.04) (0.80, 0.20, 0.01) (0.63, 0.36, 0.06)
a6 (0.99, 0.02, 0.00) (0.91, 0.10, 0.01) (0.88, 0.08, 0.10) (0.78, 0.17, 0.02) (0.60, 0.26, 0.34)
a7 (0.97, 0.00, 0.02) (0.95, 0.05, 0.04) (0.88, 0.12, 0.05) (0.79, 0.17, 0.10) (0.64, 0.35, 0.34)
a8 (0.98, 0.01, 0.01) (0.95, 0.08, 0.02) (0.87, 0.08, 0.02) (0.77, 0.19, 0.15) (0.67, 0.10, 0.27)

e2| 0.33 (0.87, 0.05, 0.09) (0.73, 0.18, 0.19) (0.68, 0.33, 0.27) (0.96, 0.01, 0.04) (0.94, 0.01, 0.07)

a1 (0.88, 0.09, 0.03) (0.74, 0.19, 0.11) (0.68, 0.17, 0.02) (0.99, 0.04, 0.03) (0.93, 0.08, 0.03)
a2 (0.88, 0.07, 0.02) (0.80, 0.19, 0.07) (0.65, 0.30, 0.16) (0.98, 0.02, 0.02) (0.91, 0.06, 0.09)
a3 (0.85, 0.06, 0.09) (0.70, 0.15, 0.18) (0.60, 0.13, 0.03) (0.97, 0.04, 0.04) (0.90, 0.05, 0.03)
a4 (0.87, 0.15, 0.08) (0.77, 0.16, 0.07) (0.64, 0.20, 0.13) (0.98, 0.01, 0.05) (0.95, 0.07, 0.03)
a5 (0.86, 0.12, 0.05) (0.80, 0.17, 0.08) (0.69, 0.17, 0.16) (0.99, 0.01, 0.00) (0.94, 0.01, 0.07)
a6 (0.87, 0.14, 0.02) (0.76, 0.19, 0.07) (0.63, 0.23, 0.26) (0.95, 0.01, 0.03) (0.94, 0.02, 0.01)
a7 (0.90, 0.08, 0.05) (0.71, 0.15, 0.03) (0.66, 0.12, 0.39) (0.99, 0.00, 0.02) (0.93, 0.04, 0.03)
a8 (0.87, 0.13, 0.10) (0.79, 0.20, 0.03) (0.70, 0.13, 0.11) (0.97, 0.02, 0.05) (0.95, 0.01, 0.03)
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Table A1. Cont.

κ = 1
c1 c2 c3 c4 c5

0.25 0.25 0.25 0.15 0.10

e3| 0.21 (0.78, 0.19, 0.02) (0.68, 0.36, 0.29) (0.99, 0.01, 0.04) (0.90, 0.10, 0.05) (0.90, 0.05, 0.09)

a1 (0.72, 0.15, 0.12) (0.69, 0.39, 0.07) (0.95, 0.02, 0.05) (0.95, 0.10, 0.05) (0.89, 0.10, 0.05)
a2 (0.74, 0.16, 0.20) (0.60, 0.20, 0.15) (0.99, 0.02, 0.01) (0.92, 0.02, 0.05) (0.86, 0.13, 0.04)
a3 (0.74, 0.17, 0.04) (0.69, 0.10, 0.08) (0.97, 0.05, 0.03) (0.91, 0.03, 0.04) (0.88, 0.09, 0.01)
a4 (0.80, 0.18, 0.00) (0.68, 0.35, 0.22) (0.97, 0.05, 0.01) (0.92, 0.09, 0.04) (0.90, 0.08, 0.02)
a5 (0.77, 0.18, 0.05) (0.66, 0.34, 0.35) (0.97, 0.01, 0.01) (0.91, 0.03, 0.07) (0.85, 0.12, 0.06)
a6 (0.72, 0.15, 0.11) (0.61, 0.26, 0.14) (0.99, 0.00, 0.02) (0.92, 0.10, 0.04) (0.85, 0.06, 0.05)
a7 (0.74, 0.16, 0.02) (0.60, 0.25, 0.38) (0.95, 0.03, 0.00) (0.94, 0.09, 0.09) (0.89, 0.09, 0.06)
a8 (0.76, 0.20, 0.12) (0.65, 0.10, 0.26) (0.98, 0.01, 0.01) (0.93, 0.05, 0.02) (0.87, 0.13, 0.03)

Note: In the first iteration we consider a set with seven alternatives A = {a1, a2, a3, a4, a5, a6, a7, a8}.

Table A2. DCMAGDM information form for the second period (κ = 2).

κ = 2
c1 c2 c3 c4 c5

0.32 0.10 0.15 0.25 0.18

e1| 0.40 (0.97, 0.03, 0.03) (0.91, 0.03, 0.07) (0.90, 0.08, 0.05) (0.76, 0.18, 0.17) (0.61, 0.38, 0.00)

a3 (0.99, 0.02, 0.02) (0.93, 0.02, 0.02) (0.87, 0.10, 0.08) (0.80, 0.15, 0.03) (0.67, 0.24, 0.26)
a4 (0.96, 0.01, 0.00) (0.94, 0.00, 0.09) (0.85, 0.07, 0.02) (0.77, 0.16, 0.11) (0.67, 0.27, 0.00)
a5 (0.97, 0.01, 0.02) (0.92, 0.03, 0.00) (0.85, 0.10, 0.06) (0.73, 0.20, 0.14) (0.63, 0.30, 0.30)
a6 (0.97, 0.03, 0.03) (0.91, 0.02, 0.04) (0.85, 0.10, 0.06) (0.72, 0.15, 0.10) (0.63, 0.35, 0.28)
a7 (0.96, 0.00, 0.05) (0.90, 0.03, 0.02) (0.89, 0.09, 0.07) (0.77, 0.18, 0.03) (0.67, 0.31, 0.22)
a8 (0.95, 0.04, 0.04) (0.95, 0.08, 0.04) (0.85, 0.11, 0.02) (0.72, 0.19, 0.02) (0.62, 0.21, 0.17)
a9 (0.97, 0.00, 0.03) (0.90, 0.05, 0.03) (0.88, 0.09, 0.02) (0.78, 0.19, 0.01) (0.67, 0.10, 0.30)

e2| 0.30 (0.90, 0.09, 0.01) (0.72, 0.18, 0.19) (0.61, 0.32, 0.00) (0.98, 0.05, 0.00) (0.95, 0.08, 0.01)

a3 (0.85, 0.08, 0.05) (0.72, 0.15, 0.12) (0.62, 0.13, 0.39) (0.97, 0.00, 0.00) (0.95, 0.05, 0.10)
a4 (0.87, 0.06, 0.04) (0.80, 0.20, 0.10) (0.69, 0.26, 0.15) (0.96, 0.03, 0.05) (0.92, 0.00, 0.01)
a5 (0.89, 0.11, 0.03) (0.77, 0.20, 0.09) (0.63, 0.35, 0.05) (0.97, 0.05, 0.00) (0.91, 0.00, 0.04)
a6 (0.90, 0.07, 0.00) (0.76, 0.18, 0.03) (0.66, 0.28, 0.35) (0.95, 0.01, 0.03) (0.91, 0.04, 0.10)
a7 (0.87, 0.13, 0.01) (0.79, 0.19, 0.02) (0.67, 0.18, 0.38) (0.97, 0.00, 0.05) (0.91, 0.09, 0.10)
a8 (0.87, 0.08, 0.09) (0.78, 0.17, 0.16) (0.60, 0.32, 0.37) (0.99, 0.02, 0.05) (0.93, 0.01, 0.03)
a9 (0.89, 0.12, 0.09) (0.77, 0.16, 0.09) (0.67, 0.29, 0.27) (0.95, 0.01, 0.02) (0.90, 0.06, 0.08)

e3| 0.30 (0.70, 0.16, 0.04) (0.63, 0.11, 0.04) (0.99, 0.04, 0.04) (0.93, 0.08, 0.00) (0.86, 0.13, 0.03)

a3 (0.80, 0.20, 0.05) (0.66, 0.26, 0.36) (0.96, 0.05, 0.05) (0.90, 0.08, 0.08) (0.90, 0.08, 0.00)
a4 (0.74, 0.16, 0.16) (0.67, 0.32, 0.38) (0.96, 0.01, 0.00) (0.93, 0.07, 0.07) (0.90, 0.11, 0.10)
a5 (0.74, 0.16, 0.02) (0.68, 0.34, 0.39) (0.97, 0.00, 0.03) (0.95, 0.00, 0.01) (0.86, 0.13, 0.05)
a6 (0.79, 0.16, 0.03) (0.69, 0.25, 0.11) (0.97, 0.00, 0.01) (0.95, 0.07, 0.03) (0.88, 0.05, 0.02)
a7 (0.70, 0.17, 0.20) (0.60, 0.20, 0.04) (0.95, 0.03, 0.03) (0.91, 0.04, 0.01) (0.86, 0.15, 0.09)
a8 (0.76, 0.15, 0.09) (0.64, 0.30, 0.22) (0.95, 0.03, 0.03) (0.90, 0.06, 0.05) (0.87, 0.06, 0.10)
a9 (0.70, 0.15, 0.18) (0.63, 0.26, 0.01) (0.98, 0.05, 0.01) (0.93, 0.03, 0.04) (0.85, 0.14, 0.02)

Note: In the second iteration we consider a set with seven alternatives A = {a3, a4, a5, a6, a7, a8, a9}.

Table A3. DCMAGDM information form for the third period (κ = 3).

κ = 3
c1 c2 c3 c4 c5

0.45 0.15 0.15 0.15 0.10

e1 | 0.30 (0.99, 0.03, 0.00) (0.93, 0.03, 0.04) (0.89, 0.11, 0.08) (0.71, 0.17, 0.20) (0.68, 0.24, 0.25)

a2 (0.97, 0.05, 0.02) (0.92, 0.04, 0.03) (0.87, 0.13, 0.01) (0.71, 0.18, 0.06) (0.61, 0.30, 0.25)
a6 (0.96, 0.05, 0.01) (0.91, 0.08, 0.04) (0.88, 0.12, 0.00) (0.71, 0.16, 0.13) (0.65, 0.11, 0.26)
a7 (0.96, 0.00, 0.05) (0.90, 0.04, 0.02) (0.85, 0.08, 0.01) (0.80, 0.16, 0.04) (0.60, 0.15, 0.02)
a8 (0.96, 0.03, 0.03) (0.93, 0.02, 0.04) (0.87, 0.10, 0.01) (0.80, 0.16, 0.19) (0.67, 0.40, 0.25)
a9 (0.97, 0.03, 0.04) (0.91, 0.09, 0.04) (0.89, 0.07, 0.05) (0.74, 0.15, 0.19) (0.63, 0.16, 0.05)
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Table A3. Cont.

κ = 3
c1 c2 c3 c4 c5

0.45 0.15 0.15 0.15 0.10

e2 | 0.40 (0.88, 0.11, 0.09) (0.80, 0.18, 0.20) (0.63, 0.16, 0.34) (0.97, 0.00, 0.01) (0.91, 0.08, 0.03)

a2 (0.87, 0.05, 0.08) (0.75, 0.16, 0.00) (0.66, 0.35, 0.33) (0.99, 0.01, 0.05) (0.93, 0.05, 0.06)
a6 (0.87, 0.11, 0.10) (0.80, 0.16, 0.00) (0.69, 0.33, 0.19) (0.99, 0.03, 0.01) (0.90, 0.09, 0.09)
a7 (0.86, 0.13, 0.05) (0.72, 0.17, 0.08) (0.68, 0.29, 0.08) (0.99, 0.01, 0.04) (0.91, 0.07, 0.09)
a8 (0.85, 0.14, 0.04) (0.78, 0.20, 0.06) (0.70, 0.13, 0.15) (0.96, 0.05, 0.05) (0.93, 0.06, 0.08)
a9 (0.90, 0.10, 0.10) (0.80, 0.16, 0.04) (0.63, 0.31, 0.25) (0.98, 0.00, 0.04) (0.94, 0.00, 0.05)

e3 | 0.30 (0.80, 0.16, 0.01) (0.66, 0.21, 0.03) (0.98, 0.02, 0.04) (0.91, 0.02, 0.02) (0.90, 0.13, 0.00)

a2 (0.80, 0.20, 0.20) (0.63, 0.32, 0.31) (0.97, 0.00, 0.03) (0.90, 0.03, 0.05) (0.87, 0.12, 0.04)
a6 (0.76, 0.17, 0.05) (0.60, 0.30, 0.03) (0.96, 0.03, 0.05) (0.94, 0.05, 0.04) (0.88, 0.13, 0.07)
a7 (0.77, 0.15, 0.16) (0.66, 0.30, 0.12) (0.95, 0.02, 0.02) (0.90, 0.02, 0.08) (0.85, 0.12, 0.10)
a8 (0.74, 0.18, 0.05) (0.67, 0.25, 0.24) (0.95, 0.02, 0.04) (0.91, 0.00, 0.05) (0.86, 0.15, 0.02)
a9 (0.72, 0.17, 0.02) (0.63, 0.23, 0.31) (0.97, 0.00, 0.02) (0.92, 0.03, 0.08) (0.87, 0.06, 0.04)

Note: In the third iteration we consider a set with seven alternatives A = {a2, a6, a7, a8, a9}.

Table A4. DCMAGDM information form for the third period with different familiarity (κ′ = 3).

κ′ = 3
c1 c2 c3 c4 c5

0.45 0.15 0.15 0.15 0.10

e1 | 0.30 (0.95, 0.02, 0.03) (0.91, 0.04, 0.00) (0.90, 0.15, 0.04) (0.74, 0.15, 0.08) (0.61, 0.14, 0.38)

a2 (0.97, 0.05, 0.02) (0.92, 0.04, 0.03) (0.87, 0.13, 0.01) (0.71, 0.18, 0.06) (0.61, 0.30, 0.25)
a6 (0.96, 0.05, 0.01) (0.91, 0.08, 0.04) (0.88, 0.12, 0.00) (0.71, 0.16, 0.13) (0.65, 0.11, 0.26)
a7 (0.96, 0.00, 0.05) (0.90, 0.04, 0.02) (0.85, 0.08, 0.01) (0.80, 0.16, 0.04) (0.60, 0.15, 0.02)
a8 (0.96, 0.03, 0.03) (0.93, 0.02, 0.04) (0.87, 0.10, 0.01) (0.80, 0.16, 0.19) (0.67, 0.40, 0.25)
a9 (0.97, 0.03, 0.04) (0.91, 0.09, 0.04) (0.89, 0.07, 0.05) (0.74, 0.15, 0.19) (0.63, 0.16, 0.05)

e2 | 0.40 (0.85, 0.10, 0.08) (0.77, 0.19, 0.02) (0.62, 0.35, 0.17) (0.96, 0.04, 0.03) (0.95, 0.06, 0.06)

a2 (0.87, 0.05, 0.08) (0.75, 0.16, 0.00) (0.66, 0.35, 0.33) (0.99, 0.01, 0.05) (0.93, 0.05, 0.06)
a6 (0.87, 0.11, 0.10) (0.80, 0.16, 0.00) (0.69, 0.33, 0.19) (0.99, 0.03, 0.01) (0.90, 0.09, 0.09)
a7 (0.86, 0.13, 0.05) (0.72, 0.17, 0.08) (0.68, 0.29, 0.08) (0.99, 0.01, 0.04) (0.91, 0.07, 0.09)
a8 (0.85, 0.14, 0.04) (0.78, 0.20, 0.06) (0.70, 0.13, 0.15) (0.96, 0.05, 0.05) (0.93, 0.06, 0.08)
a9 (0.90, 0.10, 0.10) (0.80, 0.16, 0.04) (0.63, 0.31, 0.25) (0.98, 0.00, 0.04) (0.94, 0.00, 0.05)

e3 | 0.30 (0.74, 0.17, 0.14) (0.65, 0.19, 0.23) (0.99, 0.03, 0.01) (0.92, 0.05, 0.00) (0.85, 0.06, 0.00)

a2 (0.80, 0.20, 0.20) (0.63, 0.32, 0.31) (0.97, 0.00, 0.03) (0.90, 0.03, 0.05) (0.87, 0.12, 0.04)
a6 (0.76, 0.17, 0.05) (0.60, 0.30, 0.03) (0.96, 0.03, 0.05) (0.94, 0.05, 0.04) (0.88, 0.13, 0.07)
a7 (0.77, 0.15, 0.16) (0.66, 0.30, 0.12) (0.95, 0.02, 0.02) (0.90, 0.02, 0.08) (0.85, 0.12, 0.10)
a8 (0.74, 0.18, 0.05) (0.67, 0.25, 0.24) (0.95, 0.02, 0.04) (0.91, 0.00, 0.05) (0.86, 0.15, 0.02)
a9 (0.72, 0.17, 0.02) (0.63, 0.23, 0.31) (0.97, 0.00, 0.02) (0.92, 0.03, 0.08) (0.87, 0.06, 0.04)

Note: Only the familiarity differs compared to the κ = 3 period. All other parameters are unchanged.
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