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Abstract: We carried out a detailed group classification of the potential in Klein–Gordon equation
in anisotropic Riemannian manifolds. Specifically, we consider the Klein–Gordon equations for the
four-dimensional anisotropic and homogeneous spacetimes of Bianchi I, Bianchi III and Bianchi V. We
derive all the closed-form expressions for the potential function where the equation admits Lie and
Noether symmetries. We apply previous results which connect the Lie symmetries of the differential
equation with the collineations of the Riemannian space which defines the Laplace operator, and we
solve the classification problem in a systematic way.
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1. Introduction

A systematic approach for the study of nonlinear differential equations is the Lie
symmetry analysis [1–4]. The novelty of the Lie symmetry approach is that through a
systematic approach the existence of invariant transformations can be determined. The
latter can be used to simplify the given differential equation with the use of similarity
transformations. Under the application of similarity transformations in a given differential
equation, we derive a new differential equation with less independent variables. Further-
more, conservation laws can construct which are essential for the study of the properties
for the given differential equation [1]. Lie symmetries have been applied for the study of
nonlinear differential equations in all areas of applied mathematics [5–13].

A systematic approach for the construction and the determination of conservation
laws for differential equations was established by E. Noether. In Noether’s famous work
of 1918 [14], Noether showed that some of the Lie symmetries were related to symmetries
of the variational principle. For each symmetry of the variation integral, Noether derived
an exact formula for the derivation of the conservation law. That very simple method for
the construction of conservation laws is very important in physical science and in other
theories of applied mathematics.

In General Relativity the natural space is of four-dimensions described by a Rie-
mannian manifold. In this work we investigate the Lie and Noether symmetries for the
Klein–Gordon equation in anisotropic homogeneous geometries. Anisotropic homoge-
neous spacetimes are of special interest because they can describe the very early period of
the universe, that is, before the inflationary era where anisotropies played an important role
in the evolution of the physical variables. There is a plethora of studies in literature where
symmetry analysis has been applied for the classification of the geodesic equations [15–18],
the wave equation [19,20] in curved spaces and the gravitational field equations [21–24].

There has been investigated a relation between the symmetries of some differential
equations of special interest and the collineations of the background geometry which
provides the related differential operators. Indeed, the Lie symmetries of the geodesic
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equations in Riemannian manifolds are constructed by the elements of the projective group
of the background spacetime [25,26]. The latter relation is true if we consider the existence
of a force term in the field equations [27]. For the Noether symmetries of the geodesic
Lagrangian, these are derived by the elements of the homothetic group of the background
geometry [26]. That geometric results are extended and for higher-order symmetries, see
for instance the discussion in [28] and references therein. As far as the case of partial
differential equations is concerned, the symmetries of the Poisson equation are constructed
by the elements of the conformal algebra of the Riemann metric which defines the Laplace
operator [29]. Hence, it is clear that in order to solve the classification problem of our study
we should present in detail the classification of the conformal algebra for the homogeneous
and anisotropic spacetimes of our consideration. The structure of the paper is as follows.

In Section 2, we present in detail the theory of infinitesimal transformation and
the definitions of basic motions in Riemannian manifolds. Moreover, we present the
classification of the Killing symmetries, the Homothetic vector and the proper Conformal
Killing vector for the Bianchi I, Bianchi III and Bianchi V spacetimes. In Section 3, we
present the basic elements of the theory of differential equations. For the Poisson and the
Klein–Gordon equation we recover previous results which show how the Lie symmetries
are constructed directly from the Conformal Killing vectors of the background geometry.
Moreover, a similar result is also presented and for the Noether symmetries of the Klein–
Gordon equation. The classification problem of our study is solved in Section 4. We present
all the functional forms of the potential function for the Klein–Gordon equation where
nontrivial symmetry vectors exist for the Klein–Gordon equation. Finally, in Section 5, we
summarise our results.

2. Infinitesimal Transformations and Motions of Riemannian Spaces

Assume the Riemannian manifold Vn, dim Vn = n, with metric tensor gµν. Con-
sider now the one-parameter point transformation defined by the parametric equation
x̄µ = x̄µ(xν, ε)which defines a group orbit through the point P(xµ, 0). Thus, the tangent
vector at the point P is given by the following expression

X =
∂x̄µ

∂ε
|ε→0∂xµ |P. (1)

X is the generator vector of the infinitesimal transformation near the point P

x̄µ = xµ + εξµ(xν), (2)

in which ξµ = ∂x̄µ

∂ε |ε→0.
Let F(xµ) be a function in the Riemannian manifold defined at the point P. Hence,

under the action of the one-parameter point transformation (1) the function reads F̄(x̄µ).
By definition, function F is invariant under the action of the one parameter point

transformation (1) if and only if it has the same value/expression before and after the
transformation. That is, F̄(x̄µ) = F(xµ) or equivalently F̄(x̄µ) = 0 whenF(xµ) = 0 .
The latter definition is described by the mathematical expression with the use of the
infinitessimal generator

X(F) = 0. (3)

equivalently ξµ ∂F
∂xµ = 0.

Expression (3) is the Lie symmetry condition for a function F(xµ) to be invariant under
the action of an one-parameter point transformation in the base manifold. If condition (3)
is true for a specific vector field X, then X is a Lie symmetry vector for the function F(xµ).

Consider now Ωµ(xν) to be a geometric object with the generic transformation
rule [30] Ω̄µ′ = Φµ(Ων, xν, x̄ν). When Ωµ(xν) is a linear homogeneous geometric object
the transformation rule reads [30] Φµ(Ων, xν, x̄ν) = Jµ

λ(xν, x̄ν)Ωλ. Where Jµ
λ(xν, x̄ν) is the

Jacobian matrix for the one-parameter point transformation with generator (1), that is
Jµ
λ = ∂x̄µ

∂xν .
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Similar, with the definition of functions, the a geometric object Ωµ(xν)is invariant
under a one parameter point transformation (3) if and only if Ω̄µ(x̄ν) = Ωµ(xν) or

LXΩµ(xν) = 0, (4)

where LX is the Lie derivative with respect to the vector field X. In the case where Ωµ(xν) is
a function for the Lie derivative it holds LXΩ ≡ X(Ω).

A more generalized concept of the Lie symmetries for geometric objects are summa-
rized in the context of collineations. Consider now that for the geometric object Ω, the
following expression holds

LXΩ = Ψ (5)

where Ψ is a tensor field and it has the same components and symmetries of the indices
with Ω. If condition (5) is true, X is called a collineation for the geometric object Ω, then,
the type of collineations is being defined by tensor field Ψ.

The metric tensor gµν of the Riemannian manifold is a linear homogeneous geometric
object with definition for the Lie derivative

LX gµν = X(µ;ν) (6)

where ; denotes covariant derivative with respect to the Levi–Civita connection.
For the metric tensor, the concept of collineations is expressed as

LX gµν = 2ψgµν + 2Hµν (7)

where ψ is the conformal function and Hµν is a symmetric traceless tensor, i.e., Hµ
µ = 0. The

most important collineations for the metric tensor are the motions with Hµν = 0. These are
the Killing vectors, the Homothetic vectors and the Conformal killing vectors.

The generator (1) of the infinitesimal transformation (2) is called a Killing vector field
(KV) for the Riemann space Vn, if and only if the metric tensor is invariant under the action
of the transformation, that is,

LX gµν = 0. (8)

Moreover, the infinitesimal generator X is a Conformal Killing vector (CKV) for the
Riemann space Vn if there exists a function ψ(xµ) such that

LX gµν = 2ψgµν (9)

where ψ = 1
n Xµ

;µ.
An important class of collineations is when ψ is a constant, then the CKV becomes a

Homothetic Killing Vector (HV). Moreover, when ψ;µν = 0, the vector field X is a special
CKV (sp. CKV) for the Riemann manifold. Indeed, when ψ = 0, the CKV is also a KV. With
the term proper CKV we shall refer to CKVs which are not HVs or KVs.

The KVs, the HV and the CKVs form Lie algebras which are known as Killing algebra
(GKV), Homothetic algebra (GHV)and Conformal Killing algebra (GCV). When for the
dimensional of the Riemannian manifold Vn holds n ≥ 2, then GKV is a subalgebra of
GHV and the latter is a subalgebra of the Conformal Killing algebra, that is GKV ⊆ GHV ⊆
GCV . For any Riemannian manifold, there exists at most one proper Homothetic vector.
Moreover, the maximum dimensional Killing algebra is of 1

2 n(n + 1) and the maximum
Conformal Killing algebra is of 1

2 (n + 1)(n + 2) dimension.
Point transformations with a KV generator have the property to keep invariant the

length and the angles of autoparallels, unlike of the homothetic vector where the angles
remain invariant and the length is scaled with a constant parameter. However, in the case
where the point transformation is generated by a CKV only the angles of autoparallels
remain invariant.
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The existence of collineations for the metric tensor is essential for the nature of the
physical space which is described by Riemannian geometry. Indeed, our universe in large
scales is described by the Friedmann–Lemaître–Robertson–Walker line element which has a
maximal symmetric three-dimensional hypersurface. An important class of exact solutions
in General Relativity are the self-similar spacetimes. This family of solutions has the
main property to map to itself after an appropriate scale of the dependent or independent
variables, thus a proper HV exists. Self-similar solutions of exact spacetimes describe
the asymptotic behaviour of the most general solution of the gravitational theory [31,32].
Spacetimes with proper CKV are also of special interest; more details can be found in [33].

CKVs of Anisotropic Spacetimes

The Bianchi spacetimes describe anisotropic homogeneous cosmologies and they are of
special interest, because they can describe the very early stage of the evolution of universe.
In this family of spacetimes the line element of the metric tensor is foliated along the time
axis, with three dimensional homogeneous hypersurfaces. The classification problem of all
three dimensional real Lie algebras was solved by Bianchi and it has shown that there are
nine Lie algebras. Thus, there are nine Bianchi models according to the admitted Killing
algebra of the three-dimensional homogeneous hypersurface.

The generic line element for the Bianchi model is

ds2 = −N2(t)dt2 + A2(t)(ω1)
2 + B2(t)(ω2)

2 + C2(t)(ω3)
2 . (10)

where ωi, i = 1, 2, 3, are basic one-forms and N(t), A(t), B(t), C(t) are functions which
depend only on the time parameter, see [34]. In this study we are interested in the Bianchi
I, Bianchi III and Bianchi V spacetimes. These spacetimes in terms of the coordinate
expressions are diagonal.

Indeed, for these spacetimes the 1−forms are

Bianchi I : ω1 = dx, ω2 = dy, ω3 = dz,

Bianchi III : ω1 = dx, ω2 = dy, ω3 = e−xdz,

Bianchi V : ω1 = dx, ω2 = exdy, ω3 = exdz.

The Killing algebras of the Bianchi spacetimes are presented in [34]. However, the
proper CKVs for the Bianchi I, Bianchi III and Bianchi V spacetimes have been derived
before in [35,36].

The Bianchi I spacetime admits proper CKV when the metric tensor provides the
line element

ds2 = C2(t)
[
−dt2 + e−

2
c tdx2 + e−

2α1
c tdy2 + dz2

]
(11)

with proper CKV the vector field

X1 = c∂t + x∂x + α1y∂y (12)

and conformal factor ψ(X1) = c(ln|C|),t. When C(t) = eψ0t, X1 reduces to a proper HKV,
while for C(t) = C0, X1 is a KV.

Moreover, when the line element is of the form

ds2 = C2(t)
[
−dt2 + t2 α2−1

α2 dx2 + t2 α2−α1
α2 dy2 + dz2

]
(13)

the resulting CKV is

X2 = α2t∂t + x∂x + α1y∂y + α2z∂z (14)

with corresponding conformal factor ψ(X2) = α2[1 + t(ln|C|),t]. Indeed, when
C(t) = tψ0−1, X2 is a proper HKV, while when C(t) = t−1, X2 is reduced to a KV.
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The Bianchi III spacetime admits a proper CKV when

ds2 = A2(t)
[
emλt

(
−dt2 + dx2

)
+ em(λ−1)tdy2 + e−2xdz2

]
. (15)

where now the corresponding vector field is

X3 =
2
m

∂t + y∂y + λz∂z (16)

and ψ(I I I)(X3) =
2
m

A,t
A + λ. Indeed, when A(t) = eA0t, the vector field is reduced to a HV,

and for A(t) = e−
λ
2 mx, is reduced to a KV.

Finally, for the family of Bianchi V spacetimes it follows that the line element

ds2 = A2(t)
[
emλt

(
−dt2 + dx2

)
+ e2x

(
em(λ−1)tdy2 + dz2

)]
(17)

admits as proper CKV the vector field X3 with the same conformal factor as before.
Recall that in the following we shall not investigate the case where the spacetimes

reduce to locally rotational spaces or the scale factors are constant functions.

3. Symmetries of Differential Equations

In terms of geometry a differential equation can be considered as a function
H = H(xν, uA, uA

,µ, uA
,µν) in the space B = B

(
xν, uA, uA

,µ, uA
,µν

)
, uA = uA(xµ) denote the

dependent variables, xµ are the independent variables and uA
,µ = ∂uA

∂uµ .
Assume now the infinitesimal transformation in the base manifold of the differential

equation H,

x̄µ = xµ + εξµ(xν, uB), (18)

ūA = ūA + εηA(xν, uB), (19)

with vector generator
X = ξµ(xν, uB)∂xµ + ηA(xν, uB)∂uA . (20)

Similarly to the case of functions, the geometric vector field X is a Lie symmetry of
H = H(xν, uA, uA

,µ, uA
,µν) if and only if the following is true [2,3]

X[2](H) = 0, (21)

in which X[2] is the second extension of the vector field X in the space B = B
(

xν, uA, uA
,µ, uA

,µν

)
defined as

X[2] = X + ηA
µ ∂uA

µ
+ ηA

µν∂uA
µν

(22)

in which
ηA

µ = DµηA − DµξνuA
,ν , (23)

and
ηA

µν = DνηA
µ − DνDµξκuA

,κ ,

where Dµ is the total derivative.
A straightforward application of the Lie symmetries for a given differential equation

is the construction of invariant functions by deriving the characteristic functions. The char-
acteristic functions can be used to define similarity transformations which can be used to
reduce the number of the indepedent variables in the case of partial differential equations.
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The invariants are determined by the solution of the following Lagrangian system.

dxµ

ξµ =
duA

ηA =
duA

µ

ηA
µ

=
duA

µν

ηA
µν

. (24)

In the case where the differential equation H follows from a variational principle
with Lagrangian function L = L(xµ, uA, uA

,µ) such as H ≡ E(L) = 0, where E is the Euler
operator. The Lie point symmetry X of the DE H is a Noether point symmetry of H, if and
only if the following condition is satisfied

X[1]L + LDiξ
i = Di Ai

(
xk, uC

)
, (25)

where X[1] is the first prolongation of X, and Aµ is a vector field which should be determined.
Condition (25) is Noether’s second theorem. The second theorem of Noether states that for
any vector field X where condition (25) is true the following function is a conservation law

Iµ = ξν

(
uA

ν
∂L

∂uA
µ

− δ
µ
ν L

)
− ηA ∂L

∂uA
µ

+ Aµ, (26)

that is, Dµ Iµ = 0, [2,3].

Poisson Equation

Let ∆ be the Laplace operator in the Riemannian manifold Vn,

∆ =
1
√

g
∂

∂xµ

(
√

ggµν ∂

∂xν

)
,

then the Poisson equation reads
∆u = f (xµ, u), (27)

or equivalently
gµνuµν − Γµuµ = f (xν, u), (28)

where Γµ = Γµ
νκ gνκ and Γµ

νκ are the Christoffel symbols for the Levi–Civita connection of
the metric tensor gµν.

The Lie symmetry analysis for the Poisson equation when f = f (u) have been given
in [37], and for f = f

(
xi, u

)
are presented in [29]. Indeed, the Lie (point) symmetries for the

Poisson equation are related to the elements of the conformal algebra for the Riemannian
manifold as described in the following.

Theorem 1. The Lie symmetries for the Poisson equation are constructed by the generic CKV of
the background metric tensor gµν of the Riemannian manifold Vn:

(a) For n > 2, the Lie symmetry vector has the generic form

X = ξµ(xν)∂µ +

(
2− n

2
ψ(xν)u + a0u + b(xν)

)
∂u, (29)

where ξ i(xν) is a CKV of the Riemannian manifold with conformal factor ψ(xν) and the following
condition holds

2− n
2

∆ψu + gµνbµ;ν − ξν f,ν −
2− n

2
ψu f,u −

n + 2
2

ψ f − b f,u = 0, (30)

(b) For n = 2, the generic Lie symmetry vector is

X = ξµ(xν)∂µ + (a0u + b(xν))∂u, (31)
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where ξµ is a CKV and the following conditions are satisfied

gµνb;µν − ξν f,ν − a0u f,u + (a0 − 2ψ) f − b f,u = 0, (32)

that is, the function b is solution of the Laplace equation.

A special case of the Poisson equation is the Klein–Gordon equation with f (xν, u) =
V(xν)u, that is,

∆u−V(xν)u = 0, (33)

where V(xµ) is the potential function. For the Lie symmetries of the Klein–Gordon equation
it follows

Theorem 2. For the Klein–Gordon Equation (33) the Lie symmetries are constructed by the
elements of the conformal algebra of the Riemannian manifold:

(a) for n > 2, the generic symmetry vector is expressed as

X = ξµ(xν)∂µ +

(
2− n

2
ψ(xν)u + a0u + b(xν)

)
∂u, (34)

where now ξµ is a CKV with conformal factor ψ(xν), b(xν) solves Equation (33) with constraint
condition

ξνV,ν + 2ψV − 2− n
2

∆ψ = 0, (35)

(b) for n = 2, the generic symmetry vector is written

X = ξµ(xν)∂µ + (a0u + b(xν))∂u, (36)

where ξµ is a CKV with conformal factor ψ(xν), b(xν) solves Equation (33) with constrain

ξνV,ν + 2ψV = 0. (37)

The Klein–Gordon Equation (33) can be reproduced by the variation of the Lagrangian
function

L(xν, u, u,ν) =
1
2

√
|g|gµνu,µu,ν +

1
2

√
|g|V(xν)u2. (38)

Therefore, for the Noether symmetries of the Klein–Gordon Lagrangian (38) the
following Theorem holds.

Theorem 3. The Lie point symmetries of the Klein–Gordon Equation (33) are generated from the
elements of the conformal algebra of the Riemannian manifold, where the generic Noether symmetry
is of the form

XN = ξµ(xν)∂µ +

(
2− n

2
ψ(xν)u

)
∂u,

where the corresponding vector Aµ = 2−n
4

√
|g|ψ,µ(xν)u2, in which ξµ(xν) is a CKV with confor-

mal factor ψ(xν). The constraint equation is

ξνV,ν + 2ψV − 2− n
2

∆ψ = 0. (39)

We remark that for the Klein–Gordon equation all the non-trivial Lie symmetries are
also Noether symmetries. The resulting conservation law is of the form

Iµ =
√
|g|
((

1
2

gκνu,κu,ν −
1
2

V(xν)u2
)

ξµ − η
1
2

gµνu,ν +
2− n

4
ψ,µ(xν)u2

)
. (40)
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4. Klein–Gordon Equation in Anisotropic Geometries

We proceed with the solution of the classification problem for the potential function
V(xµ) for the Klein–Gordon Equation (33) in the case of anisotropic cosmologies where the
Klein–Gordon equation admits non-trivial Lie symmetries. The trivial symmetries are the
vector fields Xu = u∂u, Xb = b∂u which exist for any potential function V(xν).

4.1. Bianchi I

In a Bianchi I spacetime, the Klein–Gordon equation is written(
−u,tt

N2 +
u,xx

A2 +
u,yy

B2 +
u,zz

C2

)
+

1
N2

(
N.t

N
u,t −

A,t

A
u,x −

C,t

C
u,y −

C,t

C
u,z

)
− V(t, x, y, z)

A2B2C
u2 = 0. (41)

For arbitrary function forms of the scale factors the background space admits the three
KVs, ξ1

I = ∂x, ξ2
I = ∂y and ξ3

I = ∂z.
Hence, from Theorem 2 it follows that: (i) ξ1

I , is a Lie symmetry when V I
i (t, x, y, z) =

V(t, y, z); (ii) ξ2
I is a Lie symmetry when V(t, x, y, z) = V I

ii(t, x, z); (iii) ξ3
I is a Lie sym-

metry when V(t, x, y, z) = V I
iii(t, x, y); and (iv) αξ1

I + βξ2
I + γξ3

I is a Lie symmetry when

V I
iv(t, x, y, z) = V

(
t, y− β

α x, z− γ
α x
)

.
In the special case where the line element is that of (11) the CKV X1 produces the

Lie symmetry vector X = X1 +
(
−2c(ln|C|),tu

)
∂u for the Klein–Gordon equation, if and

only if

V I
v (t, x, y, z) =

cC,tt − (α1 + 1)C,t

cC3 +
1

C2 U
(

xe−
t
c , ye−

a1
c t, z

)
. (42)

Similarly, the vector field X = X1 + αξ1
I + βξ2

I + γξ3
I +

(
−2c(ln|C|),tu

)
∂u is a Lie

symmetry for the Klein–Gordon equation in a Bianchi I spacetime with line element (11) if
and only if

V I
vi(t, x, y, z) =

cC,tt − (α1 + 1)C,t

cC3 +
1

C2 U
(
(x + α)e−

t
c ,
(

y +
β

a1

)
e−

a1
c t, z− γ

c
τ

)
. (43)

On the other hand, for the Bianchi I line element (13) the CKV X2 is the generator of the
Lie symmetry vector X = X2 − α2[1 + t(ln|C|),t]u∂u for the Klein–Gordon Equation (41)
for the potential function

V I
vii(t, x, y, z) =

1
t2C2

(
U
(

xt−
1

a2 , yt−
a1
a2 ,

z
t

)
+ F(t)

)
(44)

where

F(t) = − 1
a2C2

(
a2t2CC,ttt + tC,tt(a2C,t + C(a1 − 4a2 + 1))

)
+

− 1
a2C2 (C,t(1 + a1 − 2a2)(C− tC,t)) . (45)

Moreover, the vector field X = X2 + αξ1
I + βξ2

I + γξ3
I − α2[1 + t(ln|C|),t]∂u is a Lie

symmetry for the Klein–Gordon equation when

V I
viii(t, x, y, z) =

1
t2C2

(
U
(
(x + α)t−

1
a2 ,
(

y +
β

a1

)
t−

a1
a2 ,
(

z +
γ

a2

)
t−1
)
+ F(t)

)
. (46)

4.1.1. Invariant Functions

Let us now determine the invariant functions which correspond to each admitted Lie
point symmetry. The invariant functions can be used to determine similarity transforma-
tions whenever they are applied the number of dependent variables of the Klein–Gordon
equation is reduced.
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For the vector field ξ1
I , the invariant functions are {t, y, z, u}. Similarly, for the

vector field ξ2
I we determine the Lie invariants {t, x, z, u}. Moreover, for ξ3

I the Lie in-
variants are {t, x, y, u}, while for the vector field αξ1

I + βξ2
I + γξ3

I , the Lie invariants are{
t, y− β

α x, z− γ
α x, u

}
.

Furthermore, for the potential function V I
v where X = X1 +

(
−2c(ln|C|),tu

)
∂u is a Lie

symmetry, the resulting Lie invariants are calculated
{

xe−
t
c , ye−

a1
c t, z, uC(t)2

}
. For the po-

tential V I
vi, the Lie invariants are

{
(x + α)e−

t
c ,
(

y + β
a1

)
e−

a1
c t, z− γ

c τ, uC(t)2
}

. In a similar

way, for the potential functions V I
vii(t, x, y, z) and V I

viii(t, x, y, z) the admitted Lie invariants

are
{

xt−
1

a2 , yt−
a1
a2 , z

t , ut2C(t)2
}

and
{
(x + α)t−

1
a2 ,
(

y + β
a1

)
t−

a1
a2 ,
(

z + γ
a2

)
t−1, ut2C(t)2

}
provided by the Lie symmetries X2 − α2[1 + t(ln|C|),t]u∂u and X2 + αξ1

I + βξ2
I + γξ3

I −
α2[1 + t(ln|C|),t]∂u respectively.

4.1.2. Conservation Laws

We apply Noether’s theorem and expression (40) hence the resulting conservation
laws related to the admitted Lie symmetries for the Klein–Gordon Equation (41) are

Ix
(

ξ1
I

)
=

NABC
2

(((
− 1

N2 u2
,t +

1
A2 u2

,x +
1

B2 u2
,y +

1
C2 u2

,z

)
−V I

i (t, x, y, z)u2
))

. (47)

It
(

ξ1
I

)
= 0, Iy

(
ξ1

I

)
= 0 and Iz

(
ξ1

I

)
= 0. (48)

For the vector field ξ2
I there exists the conservation law

Iy
(

ξ2
I

)
=

NABC
2

(((
− 1

N2 u2
,t +

1
A2 u2

,x +
1

B2 u2
,y +

1
C2 u2

,z

)
−V I

ii(t, x, y, z)u2
))

. (49)

It
(

ξ2
I

)
= 0, Ix

(
ξ2

I

)
= 0 and Iz

(
ξ2

I

)
= 0. (50)

While for the vector field ξ3
I the resulting Noetherian conservation law is

Iz
(

ξ3
I

)
=

NABC
2

(((
− 1

N2 u2
,t +

1
A2 u2

,x +
1

B2 u2
,y +

1
C2 u2

,z

)
−V I

iii(t, x, y, z)u2
))

. (51)

It
(

ξ3
I

)
= 0, Ix

(
ξ3

I

)
= 0 and Iy

(
ξ3

I

)
= 0. (52)

For the generic vector field αξ1
I + βξ2

I + γξ3
I we calculate the conservation law

Ix
(

αξ1
I + βξ2

I + γξ3
I

)
= α

NABC
2

(((
− 1

N2 u2
,t +

1
A2 u2

,x +
1

B2 u2
,y +

1
C2 u2

,z

)
−V I

iv(t, x, y, z)u2
))

, (53)

Iy
(

αξ1
I + βξ2

I + γξ3
I

)
= β

NABC
2

(((
− 1

N2 u2
,t +

1
A2 u2

,x +
1

B2 u2
,y +

1
C2 u2

,z

)
−V I

iv(t, x, y, z)u2
))

, (54)

Iz
(

αξ1
I + βξ2

I + γξ3
I

)
= γ

NABC
2

(((
− 1

N2 u2
,t +

1
A2 u2

,x +
1

B2 u2
,y +

1
C2 u2

,z

)
−V I

iv(t, x, y, z)u2
))

(55)

It
(

αξ1
I + βξ2

I + γξ3
I

)
= 0. (56)

For the potential V I
v (t, x, y, z) there exists the conservation law

It(X1) = c
e−

t(1+α1)
c C4

2

(
H I

v −
(
(ln|C|),tu

) 1
C

u,t − 1
2C

(ln|C|),ttu
2
)

. (57)
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Ix(X1) =
e−

t(1+α1)
c C4

2

(
xH I

v −
(

c(ln|C|),tu
) 1

C
u,x
)

. (58)

Iy(X1) =
e−

t(1+α1)
c C4

2

(
α1yH I

v −
(

c(ln|C|),tu
) 1

C
u,y
)

. (59)

Iz(X1) =
e−

t(1+α1)
c C4

2

(
−
(

c(ln|C|),tu
) 1

N
u,z
)

. (60)

where

H I
v =

((
− 1

C2 u2
,t +

e
2t
c

C2 u2
,x +

e
2α1

c t

C2 u2
,y +

1
C2 u2

,z

)
−V I

v (t, x, y, z)u2

)
(61)

For the potential function V I
vi(t, x, y, z) the resulting conservation law is derived

It = It(X1), (62)

Ix = Ix(X1) + αIx
(

ξ1
I

)
, (63)

Iy = Iy(X1) + βIy
(

ξ1
I

)
, (64)

Iz = Iz(X1) + γIz
(

ξ1
I

)
, (65)

for N(t) = C(t), A(t) = e−
t
c C(t)and B(t) = e−

α1
c tC(t) with potential function V I

vi(t, x, y, z)
For the potential functionV I

vii where X2 is the generator of the Lie symmetry vector
the resulting Noetherian conservation law is

It(X2) =
C4

2
t2− 1+α1

α2

(
α2tH I

vii − α2

(
(ln|C|),tu

) 1
C

u,t − 1
2C

α2[1 + t(ln|C|),t],tu
2
)

. (66)

Ix(X2) =
C4

2
t2− 1+α1

α2

(
xH I

vii − (α2[1 + t(ln|C|),t]u)
1
C

u,x
)

. (67)

Iy(X2) =
C4

2
t2− 1+α1

α2

(
α1yH I

vii − (α2[1 + t(ln|C|),t]u)
1
C

u,y
)

. (68)

Iz(X2) =
C4

2
t2− 1+α1

α2

(
α2zH I

vii − (α2[1 + t(ln|C|),t]u)
1
N

u,z
)

. (69)

where

H I
vii =

((
− 1

C2 u2
,t +

1

C2t2− 2
α2

u2
,x +

1

C2t2− 2α1
α2

u2
,y +

1
C2 u2

,z

)
−V I

vii(t, x, y, z)u2

)
. (70)

Finally, for the potential function V I
viii(t, x, y, z) the conservation law is

It = It(X2), (71)

Ix = Ix(X2) + αIx
(

ξ1
I

)
, (72)

Iy = Iy(X2) + βIy
(

ξ1
I

)
, (73)
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Iz = Iz(X2) + γIz
(

ξ1
I

)
, (74)

for N(t) = C(t), A(t) = t1− 1
α2 C(t) ,B(t) = t1− α1

α2 C(t) and potential function V I
viii(t, x, y, z)

4.2. Bianchi III

In the Bianchi III geometry, the Klein–Gordon equation reads(
−u,tt

N2 +
u,xx

A2 +
u,yy

B2 + e2x u,zz

C2

)
+

1
N2

(
N.t

N
u,t −

A,t

A
u,x −

C,t

C
u,y −

C,t

C
u,z

)
− 1

A4 u,x −
V(t, x, y, z)

A2B2C
u2 = 0. (75)

The three KVs of the Bianchi III spacetime are ξ1
I I I = ∂x + z∂z, ξ2

I I I = ∂y and
ξ3

I I I = ∂z. Hence, (i) ξ1
I I I is a Lie symmetry for Equation (75) when V I I I

i (t, x, y, z) =
V(t, y, ze−x); (ii) ξ2

I I I is a Lie symmetry for V I I I
ii (t, x, y, z) = V(t, x, z); (iii) ξ3

I I I is a Lie sym-
metry when V I I I

iii (t, x, y, z) = V(t, x, y); (iv) αξ1
I I I + βξ2

I I I + γξ3
I I I is a Lie symmetry when

V I I I
iv (t, x, y, z) = V

(
t, y− β

α x,
(
z + γ

α

)
e−x
)

.
For the line (15) where the Bianchi III spacetime admits the additional CKV X3, it

follows that the vector field X = X3 −
(

2
m

A,t
A + λ

)
u∂u is a Lie symmetry vector for the

Klein–Gordon Equation (75) when

V I I I
v (t, x, y, z) =

1
A2 e−mλtU

(
x, ye−

m
2 t, ze−

mλ
2 t
)
+

m(λ− 1)A,t + 2A,tt

2A3 . (76)

Hence, the vector field X = X3 + αξ1
I I I + βξ2

I I I + γξ3
I I I −

(
2
m

A,t
A + λ

)
u∂u is a Lie

symmetry of Equation (75) for the potential function

V I I I
vi (t, x, y, z) =

1
A2 e−mλtU

(
x− αm

2
t, (y + β)e−

m
2 t,
(

z +
γ

λ + α

)
e−

m(λ+α)
2 t

)
+

m(λ− 1)A,t + 2A,tt

2A3 . (77)

4.2.1. Invariant Functions

We proceed with the derivation of the invariant functions provided by each case for
the above potential functions. For V I I I

i (t, x, y, z) the Lie invariants are {t, y, ze−x, u}, for
V I I I

ii (t, x, y, z) and the Lie symmetry vector ξ2
I I I we determine the Lie invariants {t, x, z, u}

while from ξ3
I I I for the potential V I I I

iii (t, x, y, z) the Lie invariants are {t, x, y, u}. Similarly, for
the generic vector field αξ1

I I I + βξ2
I I I + γξ3

I I I and potential V I I I
iv (t, x, y, z) the corresponding

Lie invariants are
(

t, y− β
α x,
(
z + γ

α

)
e−x, u

)
.

In the case where the proper CKV produces a Lie symmetry, then for the Klein–
Gordon Equation (75) with potential function V I I I

v (t, x, y, z) the Lie invariants are{
x, ye−

m
2 t, ze−

mλ
2 t, emλtu

}
, while for the potential function V I I I

v (t, x, y, z) the resulting

Lie invariants are
{

x− αm
2 t, (y + β)e−

m
2 t,
(

z + γ
λ+α

)
e−

m(λ+α)
2 t, emλtu

}
.

4.2.2. Conservation Laws

For the Noetherian conservation laws for the Klein–Gordon Equation (75) it follows
that for V I I I

i (t, x, y, z) it follows

Ix
(

ξ1
I I I

)
=

NABC
2

e−x
(((

− 1
N2 u2

,t +
1

A2 u2
,x +

1
B2 u2

,y +
e2x

C2 u2
,z

)
−V I I I

i (t, x, y, z)u2
))

(78)

Iz
(

ξ1
I I I

)
=

NABC
2

e−x
(

z
((
− 1

N2 u2
,t +

1
A2 u2

,x +
1

B2 u2
,y +

e2x

C2 u2
,z

)
−V I I I

i (t, x, y, z)u2
))

(79)

It
(

ξ1
I I I

)
= 0 and Iy

(
ξ1

I I I

)
= 0. (80)
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For the potential function V I I I
ii (t, x, y, z) the Noetherian conservation law has the

following components

Iy
(

ξ2
I I I

)
=

NABC
2

e−x
(((

− 1
N2 u2

,t +
1

A2 u2
,x +

1
B2 u2

,y +
e2x

C2 u2
,z

)
−V I I I

ii (t, x, y, z)u2
))

(81)

It
(

ξ2
I I I

)
= 0 , Ix

(
ξ2

I I I

)
= 0and Iz

(
ξ2

I I I

)
= 0. (82)

Similarly, for V I I I
iii (t, x, y, z) we determine the conservation law

Iz
(

ξ3
I I I

)
=

NABC
2

e−x
(((

− 1
N2 u2

,t +
1

A2 u2
,x +

1
B2 u2

,y +
e2x

C2 u2
,z

)
−V I I I

ii (t, x, y, z)u2
))

(83)

It
(

ξ3
I I I

)
= 0 , Ix

(
ξ3

I I I

)
= 0 and Iy

(
ξ3

I I I

)
= 0. (84)

For the Klein–Gordon equation with potential V I I I
iv (t, x, y, z) the conservation law has

the components
Ix
(

αξ1
I I I + βξ2

I I I + γξ3
I I I

)
= αIx

(
ξ1

I I I

)
, (85)

Iy
(

αξ1
I I I + βξ2

I I I + γξ3
I I I

)
= βIy

(
ξ2

I I I

)
, (86)

Iz
(

αξ1
I I I + βξ2

I I I + γξ3
I I I

)
= αIz

(
ξ1

I I I

)
+ γIz

(
ξ3

I I I

)
, (87)

and
It
(

αξ1
I I I + βξ2

I I I + γξ3
I I I

)
= 0, (88)

with potential function V I I I
iv (t, x, y, z).

Moreover, for V I I I
v (t, x, y, z) the conservation law has the following components

It(X3) =
Ā4e

(3mλ−1)
2 te−x

2

(
2
m

H I I I
V −

((
2
m

Ā,t

Ā
+ λ

)
u
)

1
A

u,t − 1

2Āe
m
2 λt

(
2
m

Ā,t

Ā
+ λ

)
t
u2
)

. (89)

Ix(X3) =
Ā4e

(3mλ−1)
2 te−x

2

(
−
((

2
m

Ā,t

Ā
+ λ

)
u
)

1

Āe
1
2 λt

u,x
)

. (90)

Iy(X3) =
Ā4e

(3mλ−1)
2 te−x

2

(
yH I I I

V −
((

2
m

A,t

A
+ λ

)
u
)

1
Āem(λ−1)t

u,y
)

. (91)

Iz(X3) =
Ā4e

(3mλ−1)
2 te−x

2

(
λzH I I I

V −
((

2
m

Ā,t

Ā
+ λ

)
u
)

1
Āe−x u,z

)
. (92)

where now

H I I I
V =

((
− 1

Ā2emλt u2
,t +

1
Ā2 u2

,x +
1

Ā2em(λ−1)t
u2

,y +
e2x

C2 u2
,z

)
−V I I I

v (t, x, y, z)u2
)

Finally, for the potential V I I I
vi (t, x, y, z) the conservation law for the Klein–Gordon

Equation (75) related to the generic symmetry vector X3 + αξ1
I I I + βξ2

I I I +γξ3
I I I−

(
2
m

A,t
A + λ

)
u∂u

has the following components
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It = It(X3), (93)

Ix = Ix(X3) + αIx
(

ξ1
I I I

)
, (94)

Iy = Iy(X3) + βIy
(

ξ2
I I I

)
, (95)

Iz = Iz(X3) + αIz
(

ξ1
I I I

)
+ γIz

(
ξ3

I I I

)
, (96)

with N = Ā(t)e
m
2 λt, B = Ā(t)e

m
2 (λ−1)t , C(t) = Ā(t) and A(t) = emλt Ā(t) and potential

function V I I I
vii (t, x, y, z).

4.3. Bianchi V

For the Bianchi V spacetime the Klein–Gordon equation is

(
−u,tt

N2 +
u,xx

A2 + e−2x
(u,yy

B2 +
u,zz

C2

))
+

1
N2

(
N.t

N
u,t −

A,t

A
u,x −

C,t

C
u,y −

C,t

C
u,z

)
+

2
A4 u,x −

V(t, x, y, z)
A2B2C

u2 = 0. (97)

The KVs of the Bianchi V spacetime are ξ1
V = ∂x − y∂z − z∂z, ξ2

V = ∂y and ξ3
V = ∂z.

Therefore, from Theorem 2, we find that (i) ξ1
I I I is a Lie symmetry for the Klein–Gordon

Equation (97) when VV
i (t, x, y, z) = V(t, exy, exz); (ii) ξ2

V is a Lie symmetry for VV
ii (t, x, y, z) =

V(t, x, z); (iii) ξ3
V is a Lie symmetry when VV

iii (t, x, y, z) = V(t, x, y); (iv) αξ1
V + βξ2

V + γξ3
V is

a Lie symmetry when VV
iv (t, x, y, z) = V

(
t,
(

y− β
α

)
ex,
(

z− γ

α

)
ex
)

.

Finally, for the line element (17) the vector field X = X3 −
(

2
m

A,t
A + λ

)
u∂u is a Lie

symmetry for the Klein–Gordon equation when the potential is of the form of function (76),
while X = X3 + αξ1

V + βξ2
V + γξ3

V −
(

2
m

A,t
A + λ

)
u∂u is a Lie symmetry when

VV
v (t, x, y, z) =

1
A2 e−mλtU

(
x− αm

2
t,
(

y +
β

α− 1

)
e

m(α−1)
2 t,

(
z +

γ

α− λ

)
e−

m(α−λ)
2 t

)
+

m(λ− 1)A,t + 2A,tt

2A3 . (98)

4.3.1. Invariant Functions

As previously, we determine the Lie invariants related to the admitted symmetry
vectors for each potential functional. Indeed, for the potential VV

i (t, x, y, z) the invariant
functions related to the Lie symmetry ξ1

I I I are {t, exy, exz, u}. For the potential function
VV

ii (t, x, y, z) we determine the invariants {t, x, z, u} while for VV
iii (t, x, y, z) the invariants

are {t, x, y, u}. Moreover, for VV
iv (t, x, y, z) the corresponding invariant functions related to

the generic vector field αξ1
V + βξ2

V + γξ3
V are

{
t,
(

y− β
α

)
ex,
(

z− γ

α

)
ex, u

}
.

Finally, for the remaining cases where the proper CKV generates Lie symmetries, it fol-
lows that for potential V I I I

v (t, x, y, z) the Lie invariants are
{

x, ye−
m
2 t, ze−

mλ
2 t, emλtu

}
while

for the potential VV
v (t, x, y, z) and the Lie symmetry X3 + αξ1

V + βξ2
V +γξ3

V−
(

2
m

A,t
A + λ

)
u∂u

the corresponding Lie invariants are
{

x− αm
2 t,

(
y + β

α−1

)
e

m(α−1)
2 t,

(
z + γ

α−λ

)
e−

m(α−λ)
2 t, emλtu

}
.

We proceed with the derivation of the conservation laws.

4.3.2. Conservation Laws

The conservation law for the Klein–Gordon Equation (97) and potential function
VV

i (t, x, y, z) has the following components
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Ix
(

ξ1
V

)
=

NABC
2

ex
(((

− 1
N2 u2

,t +
1

A2 u2
,x +

e−x

B2 u2
,y +

e−x

C2 u2
,z

)
−VV

i (t, x, y, z)u2
))

, (99)

Iy
(

ξ1
V

)
=

NABC
2

ex
(
−y
((
− 1

N2 u2
,t +

1
A2 u2

,x +
e−x

B2 u2
,y +

e−x

C2 u2
,z

)
−VV

i (t, x, y, z)u2
))

, (100)

Iz
(

ξ1
V

)
=

NABC
2

ex
(
−z
((
− 1

N2 u2
,t +

1
A2 u2

,x +
e−x

B2 u2
,y +

e−x

C2 u2
,z

)
−VV

i (t, x, y, z)u2
))

, (101)

and
It
(

ξ1
V

)
= 0 . (102)

For VV
ii (t, x, y, z) it follows

Iy
(

ξ2
V

)
=

NABC
2

ex
(((

− 1
N2 u2

,t +
1

A2 u2
,x +

e−x

B2 u2
,y +

e−x

C2 u2
,z

)
−VV

ii (t, x, y, z)u2
))

, (103)

It
(

ξ2
V

)
= 0 , Ix

(
ξ2

V

)
= 0 and Iz

(
ξ2

V

)
= 0 . (104)

For VV
iii (t, x, y, z) we find

Iz
(

ξ3
V

)
=

NABC
2

ex
(((

− 1
N2 u2

,t +
1

A2 u2
,x +

e−x

B2 u2
,y +

e−x

C2 u2
,z

)
−VV

iii (t, x, y, z)u2
))

, (105)

It
(

ξ3
V

)
= 0 , Ix

(
ξ3

V

)
= 0 and Iy

(
ξ3

V

)
= 0 . (106)

For the generic vector field αξ1
V + βξ2

V + γξ3
V and potential VV

iv (t, x, y, z) it follows

Ix
(

αξ1
V + βξ2

V + γξ3
V

)
= αIx

(
ξ1

V

)
Iy
(

αξ1
V + βξ2

V + γξ3
V

)
= αIy

(
ξ1

V

)
+ βIy

(
ξ2

V

)
Iz
(

αξ1
V + βξ2

V + γξ3
V

)
= αIz

(
ξ1

V

)
+ γIz

(
ξ3

V

)
and

It
(

αξ1
V + βξ2

V + γξ3
V

)
= 0,

with potential function VV
iv (t, x, y, z).

From the Lie symmetry vector X = X3 −
(

2
m

A,t
A + λ

)
u∂u we determine the conserva-

tion law

It(X3) =
Ā4e

(3mλ−1)
2 tex

2

(
2
m

HV
V −

((
2
m

Ā,t

Ā
+ λ

)
u
)

1
A

u,t − 1

2Āe
m
2 λt

(
2
m

Ā,t

Ā
+ λ

)
t
u2
)

. (107)

Ix(X3) =
Ā4e

(3mλ−1)
2 tex

2

(
−
((

2
m

Ā,t

Ā
+ λ

)
u
)

1

Āe
1
2 λt

u,x
)

. (108)

Iy(X3) =
Ā4e

(3mλ−1)
2 tex

2

(
yHV

V −
((

2
m

A,t

A
+ λ

)
u
)

1
Āem(λ−1)tex

u,y
)

. (109)

Iz(X3) =
Ā4e

(3mλ−1)
2 tex

2

(
λzHV

V −
((

2
m

Ā,t

Ā
+ λ

)
u
)

1
Āex u,z

)
. (110)
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in which

HV
V =

((
− 1

Ā2emλt u2
,t +

1
Ā2 u2

,x +
e−x

Ā2em(λ−1)t
u2

,y +
e−x

C2 u2
,z

)
−V I I I

v (t, x, y, z)u2
)

.

Finally, the Klein–Gordon equation in the Bianchi V background space with potential
function VV

v (t, x, y, z) admits the conservation law with components

It = It(X3), (111)

Ix = Ix(X3) + αIx
(

ξ1
V

)
, (112)

Iy = Iy(X3) + αIy
(

ξ1
V

)
+ βIy

(
ξ2

V

)
, (113)

Iz = Iz(X3) + αIz
(

ξ1
V

)
+ γIz

(
ξ3

V

)
. (114)

5. Conclusions

We performed a detailed study for infinitesimal transformations which leave invariant
the Klein–Gordon equation with a non-constant potential function in curved spacetimes.
Specifically, we determined all the admitted Lie and Noether symmetries for the Klein–
Gordon equation. We considered four-dimensional Riemannian manifolds which describe
homogeneous and anisotropic cosmologies. We wrote the Klein–Gordon equation in the
case of Bianchi I, Bianchi III and Bianchi V spacetimes and we determined all the unknown
functional forms of the potential function where the Klein–Gordon equations admit non-
trivial Lie and Noether symmetries.

We made use of some previous results which relate the infinitesimal transformations,
i.e., the Lie and Noether symmetries, for the Klein–Gordon equation to the elements of the
conformal algebra for the metric tensor of the Riemannian manifold where the Laplace
operator is defined. Thus, we performed a detailed presentation of the CKVs for the
three spacetimes of our consideration. These spacetimes for arbitrary scale factors have a
three-dimensional conformal algebra which consists of these KVs. However, for special
functions of the scale factors the spacetimes admit a proper CKV. There are two forms
for the line-element of Bianchi I spacetime where a proper CKV exists, and there is one
specific form for the line element of Bianchi III and one specific line element for the Bianchi
V spacetime where one proper CKV exist.

Thus, for all the specific line elements we present in a systematic way all the functional
forms for the potential for the Klein–Gordon equation where Lie and Noether symmetries
exist. Such an analysis is important in order to understand the relation of symmetries of
differential equations with the background geometry, as it also shows how symmetries can
be derived in a simple and systematic approach by using tools from differential geometry.
Last but not least, the Noetherian conservation laws can be easily constructed with the
application of Noether’s second theorem.

Funding: This work was supported in part by the National Research Foundation of South Africa
(Grant Numbers 131604).

Data Availability Statement: The study did not report any data.

Acknowledgments: The author thanks for the support of Vicerrectoría de Investigación y Desarrollo
Tecnológico (Vridt) at Universidad Católica del Norte through Núcleo de Investigación Geometría
Diferencial y Aplicaciones, Resolución Vridt No-096/2022.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Ibragimov, N.H. CRC Handbook of Lie Group Analysis of Differential Equations, Volume I: Symmetries, Exact Solutions, and Conservation

Laws; CRS Press LLC.: Florida, FL, USA, 2000.
2. Bluman, G.W.; Kumei, S. Symmetries of Differential Equations; Springer: New York, NY, USA, 1989.



Symmetry 2023, 15, 306 16 of 17

3. Stephani, H. Differential Equations: Their Solutions Using Symmetry; Cambridge University Press: New York, NY, USA, 1989.
4. Olver, P.J. Applications of Lie Groups to Differential Equations; Springer, New York, NY, USA, 1993.
5. Chesnokov, A.A. Symmetries and exact solutions of the rotating shallow-water equations. Eur. J. Appl. Math. 2009, 20, 461.

[CrossRef]
6. Bira, B.; Sekhar, T.R.; Zeidan, D. Exact solutions for some time-fractional evolution equations using Lie group theory. Comput.

Math. Appl. 2016, 71, 46. [CrossRef]
7. Zhdanov, R.Z. Lie symmetry and integrability of ordinary differential equations. J. Math. Phys. 1998, 39, 6745. [CrossRef]
8. Leach, P.G.L.; Govinder, K.S.; Andriopoulos, K. Hidden and not so hidden symmetries. J. Appl. Math. 2012, 2012, 890171.

[CrossRef]
9. Nattermann, P.; Doebner, H.-D. Gauge classification, Lie symmetries and integrability of a family of nonlinear Schrödinger

equations. J. Nonlinear Math. Phys. 1996, 3, 302. [CrossRef]
10. Jamal, S.; Johnpillai, A.G. Fourth-order pattern forming PDEs: Partial and approximate symmetries. Math. Mod. Anal. 2020,

25, 198. [CrossRef]
11. Huang, D.; Ivanova, N.M. Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations. J.

Math. Phys. 2007, 48, 073507. [CrossRef]
12. Webb, G.M.; Zank, G.P. Fluid relabelling symmetries, Lie point symmetries and the Lagrangian map in magnetohydrodynamics

and gas dynamics. J. Math. Phys. A Math. Theor. 2007, 40, 545. [CrossRef]
13. Al-deiakeh, R.; Alquran, M.; Ali, M.; Yusuf, A.; Momani, S. On group of Lie symmetry analysis, explicit series solutions

and conservation laws for the time-fractional (2 + 1)-dimensional Zakharov-Kuznetsov (q,p,r) equation. J. Geom. Phys. 2022,
176, 104512. [CrossRef]

14. Noether, E. Invariante Variationsprobleme. K öniglich Ges. Wiss. Göttingen Nachrichten Mathematik-Phys. Kl. 1918, 2, 235–267.
15. Camci, U. Symmetries of geodesic motion in Gödel-type Spacetimes. J. Cosmol. Astropart. Phys. 2014, 7, 002. [CrossRef]
16. Camci, U.; Yildirim, A. Lie and Noether symmetries in some classes of pp-wave spacetimes. Phys. Scr. 2014, 89, 084003. [CrossRef]
17. Bokhari, A.H.; Kara, A.H.; Kashif, A.R.; Zaman, F.D. Noether Symmetries Versus Killing Vectors and Isometries of Spacetimes.

Int. J. Theor. Phys. 2006, 45, 1029. [CrossRef]
18. Feroze, T.; Mahomed, F.M.; Qadir, A. The Connection Between Isometries and Symmetries of Geodesic Equations of the

Underlying Spaces. Nonlinear Dyn. 2006, 45, 65. [CrossRef]
19. Paliathanasis, A.; Tsamparlis, M.; Mustafa, M.T. Classification of the Lie and Noether point symmetries for the Wave and the

Klein–Gordon equations in pp-wave spacetimes. Commun. Nonlinear Sci. Numer. Simul. 2018, 55, 68. [CrossRef]
20. Jamal, S.; Shabbir, G. Noether symmetries of vacuum classes of pp-waves and the wave equation. Int. J. Geom. Meth. Mod. Phys.

2016, 13, 1650109. [CrossRef]
21. Dialektopoulos, K.F.; Said, J.L.; Oikonomopoulou, Z. Classification of teleparallel Horndeski cosmology via Noether symmetries.

Eur. Phys. J. C 2022, 82, 259. [CrossRef]
22. Fazlollahi, H.R. Quantum cosmology (T) and full Noether Symmetries. Phys. Dark Energy 2020, 28, 100523. [CrossRef]
23. Bahamonte, S.; Camci, U.; Capozziello, S. Noether symmetries and boundary terms in extended Teleparallel gravity cosmology.

Class. Quantum Grav. 2019, 36, 065013. [CrossRef]
24. Zhang, Y.; Gong, Y.-G.; Zhu, Z.-H. Noether symmetry approach in multiple scalar fields scenario. Phys. Lett. B 2010, 688, 13.

[CrossRef]
25. Aminova, A.V. Projective transformations and symmetries of differential equation. Sb. Math. 1995, 186, 1711. [CrossRef]
26. Tsamparlis, M.; Paliathanasis, A. Lie and Noether symmetries of geodesic equations and collineations. Gen. Rel. Grav. 2010,

42, 2957. [CrossRef]
27. Mitsopoulos, A.; Tsamparlis, M. Quadratic First Integrals of Time-dependent Dynamical Systems of the Form. Mathematics 2021,

9, 1503. [CrossRef]
28. Mitsopoulos, A.; Tsamparlis, M. Higher order first integrals of autonomous dynamical systems. J. Geom. Phys. 2021, 170, 1043583.

[CrossRef]
29. Paliathanasis, A.; Tsamparlis, M. The geometric origin of Lie point symmetries of the Schrödinger and the Klein–Gordon

equations. Int. J. Geom. Meth. Mod. Phys. 2014, 11, 1450037. [CrossRef]
30. Yano, K. The Theory of Lie Derivatives and Its Applications; North-Holland Publishing CO.: Amsterdam, The Netherlands, 1955.
31. Hsu, L.; Wainwright, J. Self-similar spatially homogeneous cosmologies. Class. Quantum Grav. 1986, 3, 1105. [CrossRef]
32. Harada, T.; Maeda, H.; Carr, B.J. Self-similar cosmological solutions with dark energy. II. Black holes, naked singularities, and

wormholes. Phys. Rev. D 2008, 77, 024022. [CrossRef]
33. Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions to Einstein’s Field Equations, 2nd ed.; Cambridge

University Press: New York, NY, USA, 2003.
34. Ryan, M.P.; Shepley, L.C. Homogeneous Relativistic Cosmologies; Princeton University Press: Princeton, NJ, USA, 1975.
35. Tsamparlis, M.; Paliathanasis, A.; Karpathopoulos, L. Exact solutions of Bianchi I spacetimes which admit conformal Killing

vectors. Gen. Rel. Grav. 2015, 47, 1. [CrossRef]

http://doi.org/10.1017/S0956792509990064
http://dx.doi.org/10.1002/mma.5186
http://dx.doi.org/10.1063/1.532654
http://dx.doi.org/10.1155/2012/890171
http://dx.doi.org/10.2991/jnmp.1996.3.3-4.7
http://dx.doi.org/10.3846/mma.2020.10115
http://dx.doi.org/10.1063/1.2747724
http://dx.doi.org/10.1088/1751-8113/40/3/013
http://dx.doi.org/10.1016/j.geomphys.2022.104512
http://dx.doi.org/10.1088/1475-7516/2014/07/002
http://dx.doi.org/10.1088/0031-8949/89/8/084003
http://dx.doi.org/10.1007/s10773-006-9096-1
http://dx.doi.org/10.1007/s11071-006-0729-y
http://dx.doi.org/10.1016/j.cnsns.2017.06.001
http://dx.doi.org/10.1142/S0219887816501097
http://dx.doi.org/10.1140/epjc/s10052-022-10201-7
http://dx.doi.org/10.1016/j.dark.2020.100523
http://dx.doi.org/10.1088/1361-6382/ab0510
http://dx.doi.org/10.1016/j.physletb.2010.03.071
http://dx.doi.org/10.1070/SM1995v186n12ABEH000090
http://dx.doi.org/10.1007/s10714-010-1054-9
http://dx.doi.org/10.3390/math9131503
http://dx.doi.org/10.1016/j.geomphys.2021.104383
http://dx.doi.org/10.1142/S0219887814500376
http://dx.doi.org/10.1088/0264-9381/3/6/011
http://dx.doi.org/10.1103/PhysRevD.77.024022
http://dx.doi.org/10.1007/s10714-015-1856-x


Symmetry 2023, 15, 306 17 of 17

36. Mitsopoulos, A.; Tsamparlis, M.; Paliathanasis, A. Constructing the CKVs of Bianchi III and V spacetimes. Mod. Phys. Lett. A
2019, 34, 1950326. [CrossRef]

37. Bozhkov, Y.; Freire, I.L. Special conformal groups of a Riemannian manifold and Lie point symmetries of the nonlinear Poisson
Equation. J. Differ. Equ. 2010, 249, 872. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1142/S0217732319503267
http://dx.doi.org/10.1016/j.jde.2010.04.011

	Introduction
	Infinitesimal Transformations and Motions of Riemannian Spaces
	Symmetries of Differential Equations
	Klein–Gordon Equation in Anisotropic Geometries
	Bianchi I
	Invariant Functions
	Conservation Laws

	Bianchi III
	Invariant Functions
	Conservation Laws

	Bianchi V
	Invariant Functions
	Conservation Laws


	Conclusions
	References

