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Abstract: The aim of this paper is to provide new upper bounds of ω(T), which denotes the numerical
radius of a bounded operator T on a Hilbert space (H, 〈·, ·〉). We show the Aczél inequality in terms
of the operator |T|. Next, we give certain inequalities about the A-numerical radius ωA(T) and
the A-operator seminorm ‖T‖A of an operator T. We also present several results related to the
A-numerical radius of 2× 2 block matrices of semi-Hilbert space operators, by using symmetric 2× 2
block matrices.
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1. Introduction and Preliminaries

LetH be a complex Hilbert space, endowed with the inner product 〈·, ·〉 and associated
norm ‖ · ‖. We denote by B(H) the C∗-algebra of all bounded linear operators onH with
identity I. For T ∈ B(H), the nullspace and the range of T are, respectively, denoted by
N (T) andR(T). If S is any closed linear subspace ofH, then PS stands for the orthogonal
projection onto S . If we have T = T∗, then a bounded linear operator T on H is called
selfadjoint . We denote by Bh(H) the semi-space of all selfadjoint operators in B(H). We
remark that T ∈ Bh(H) if and only if 〈Tx, x〉 ∈ R, for any vector x ∈ H. We define by
B(H)+ the cone of positive (semi-definite) operators of B(H), namely,

B(H)+ = {T ∈ B(H) ; 〈Tx, x〉 ≥ 0, ∀ x ∈ H } ⊆ Bh(H).

In [1], for any unit vector x ∈ H and T ∈ B(H)+ we have the McCarthy inequality

〈Tx, x〉r ≤ 〈Trx, x〉, r ≥ 1. (1)

If T ∈ B(H)+, then we can say that there exists a unique positive bounded linear
operator T1/2 such that T = (T1/2)2.

For T ∈ B(H), the absolute value |T| is defined by |T| = (T∗T)1/2. Notice that |T| is a
positive operator.

For T ∈ B(H), we recall the following values: ‖T‖ := sup
{
‖Tx‖ ; x ∈ H, ‖x‖ = 1

}
(the operator norm of T) and ω(T) := sup

{∣∣〈Tx, x〉
∣∣ ; x ∈ H, ‖x‖ = 1

}
(the numerical
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radius of the operator T). It is easy to see that ω(T) ≤ ‖T‖. If T is a normal operator
(T∗T = TT∗), then we deduce ω(T) = ‖T‖. In [2], Kittaneh showed that

ω(T) ≤ 1
2

∥∥|T|+ |T∗|∥∥
and in [3] the same author proved that:

1
4

∥∥|T|2 + |T∗|2∥∥ ≤ ω2(T) ≤ 1
2

∥∥|T|2 + |T∗|2∥∥. (2)

For T, S ∈ B(H),

ωr(S∗T) ≤ 1
2

∥∥|T|2r + |S|2r∥∥, (r ≥ 2). (3)

This represents an inequality given by Dragomir in [4].
Next, we present an improvement of the above inequality for r = 2, given by Kittaneh

and Moradi in [5]:

ω2(S∗T) ≤ 1
6

∥∥|T|4 + |S|4∥∥+ 1
3

ω(S∗T)
∥∥|T|2 + |S|2∥∥ ≤ 1

2

∥∥|T|4 + |S|4∥∥. (4)

Some results related to the numerical radius are given in [6,7].
The Moore-Penrose inverse of T denoted by T† has the properties studied in several

papers (see [8]).
In [8], it is given that T† ∈ B(H) if and only if T has closed range in H, that is,

R(T) = R(T), whereR(T) means the closure ofR(T) in the norm topology ofH.
From now on, we assume that A ∈ B(H)+ is a nonzero operator which defines the

following positive semidefinite sesquilinear form

〈·, ·〉A : H×H −→ C, (x, y) 7−→ 〈x, y〉A := 〈Ax, y〉.

Notice that the seminorm induced by 〈·, ·〉A is given by ‖x‖A =
√
〈x, x〉A = ‖A1/2x‖

for every x ∈ H. We remark that ‖ · ‖A is a norm on H if and only if A is an injective
operator, and that the semi-Hilbert space (H, ‖ · ‖A) is complete if and only if R(A) is a
closed subspace inH. It is easy to see that if A = I, then 〈x, y〉A = 〈x, y〉 and ‖x‖A = ‖x‖.

The numerical radius plays an important role in various fields of operator theory and
matrix analysis (cf. [9,10]). We remark that |〈x, y〉A| ≤ ‖A‖ and ‖x‖A ≤

√
‖A‖, for x ∈ H

with ‖x‖ = ‖y‖ = 1.
Certain generalizations for the notion of the numerical radius have recently been

introduced (cf. [11–13]). Among these generalizations is the A-numerical radius of an
operator T ∈ B(H), which was firstly defined by Saddi in [13] as

ωA(T) = sup
{∣∣〈Tx, x〉A

∣∣ ; x ∈ H, ‖x‖A = 1
}

.

There are many other results, in numerous recent papers, related to the A-numerical
radius (cf. [14–19]) and the references therein.

An operator S ∈ B(H) is called an A-adjoint operator of T, where T ∈ B(H), if
the identity 〈Tx, y〉A = 〈x, Sy〉A holds for every x, y ∈ H, therefore, S is the solution
of the following operator equation AX = T∗A. This equation can be investigated by
using a theorem due to Douglas [20]. We denote by BA(H) and BA1/2(H) the sets of all
operators that admit A–adjoints and A1/2–adjoints, respectively. From Douglas’s theorem
we deduce that

BA(H) =
{

T ∈ B(H) ; R(T∗A) ⊆ R(A)
}

,
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and

BA1/2(H) =
{

T ∈ B(H) ; ∃ c > 0 ; ‖Tx‖A ≤ c‖x‖A, ∀x ∈ H
}

.

We observed that BA(H) and BA1/2(H) are two subalgebras of B(H) which are neither
closed nor dense in B(H). Moreover, the following proper inclusion BA(H) ⊆ BA1/2(H)
holds (see [18]).

An operator T ∈ B(H) is called A–bounded if T ∈ BA1/2(H). On the set BA1/2(H),
the following semi-norm is defined

‖T‖A := sup
x∈R(A),

x 6=0

‖Tx‖A
‖x‖A

= sup
{
‖Tx‖A ; x ∈ H, ‖x‖A = 1

}
< +∞,

(see [18] and the references therein). It is easy to see that for T ∈ BA1/2(H), ‖T‖A = 0 if
and only if AT = 0. We also observe that for T ∈ BA1/2(H), ‖Tx‖A ≤ ‖T‖A‖x‖A, for all
x ∈ H. This immediately yields ‖TS‖A ≤ ‖T‖A‖S‖A, for all T, S ∈ BA1/2(H).

If T ∈ BA(H), then the Douglas solution of the equation AX = T∗A (see [20]) will be
denoted by T]A . Note that T]A = A†T∗A. Furthermore, if T ∈ BA(H), then T]A ∈ BA(H),
(T]A)]A = PR(A)

TPR(A)
and

(
(T]A)]A

)]A = T]A . Let T ∈ B(H). The operator T is called
A–selfadjoint if AT ∈ Bh(H), that is, AT = T∗A. Further, T is called A–positive if AT ≥ 0
and we write T ≥A 0. Clearly, A–positive operators are always A–selfadjoint. It is obvious
that if T is A–selfadjoint, then T ∈ BA(H). However, in general, the equality T = T]A may
not hold. We also note that if T ∈ BA(H), then T = T]A if and only if T is A–selfadjoint
andR(T) ⊆ R(A). Furthermore, it was shown in [21] that if T is an A–selfadjoint operator,
then T]A is A–selfadjoint and

(T]A)]A = T]A . (5)

Moreover, it was proven in [18] that if T is A–selfadjoint, then

‖T‖A = ωA(T). (6)

For proofs and other related results, the reader is referred to [8,21–23] and the refer-
ences therein.

Before we move on, it must be emphasized that ωA(T) may be equal to +∞ for
some T ∈ B(H) (see [21]). Furthermore, it can be checked that for all T ∈ BA1/2(H),∣∣〈Tx, x〉A

∣∣ ≤ ωA(T)‖x‖2
A, for every x ∈ H, holds. It is known that ωA(·) defines a semi-

norm on BA1/2(H) such that for all T ∈ BA1/2(H) the following inequality holds,

1
2
‖T‖A ≤ ωA(T) ≤ ‖T‖A. (7)

Some improvements of the inequalities (7) have been recently established by many
authors (e.g., see [15,21], and their references). In particular, it has been shown in [24,25]
that

1
4
‖T]A T + TT]A‖A ≤ ω2

A(T) ≤
1
2
‖T]A T + TT]A‖A (8)

for all T ∈ BA(H).
When A = I, we deduce the well-known inequalities proved by Kittaneh in [3,

Theorem 1], given in (2). Notice that the second author showed that ωA(·) satisfies the
power property, that is, for every T ∈ BA1/2(H) and all positive integers n,

ωA(Tn) ≤ ωn
A(T). (9)
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In [5], a new improvement of the Cauchy–Schwarz inequality (in short (C-S)) is
given by:

|〈x, y〉| ≤
√

1
2
(‖x‖2‖y‖2 − |〈x, y〉|2) + |〈x, y〉|‖x‖‖y‖ ≤ ‖x‖‖y‖, (10)

for any x, y ∈ H. This inequality provides refinements of some numerical radius in-
equalities for Hilbert space operators. Another inequality of the type above is given by
Alomari [26] ∣∣〈x, y〉

∣∣2 ≤ λ‖x‖2‖y‖2 + (1− λ)
∣∣〈x, y〉

∣∣‖x‖‖y‖ ≤ ‖x‖2‖y‖2, (11)

for any x, y ∈ H and λ ∈ [0, 1].
The main objective of the present paper is to study some new improvements of the

upper bounds of ω(T), ‖T‖ and ω(S∗T), of the type given in (2)–(4). Next, we give
certain inequalities about the A-numerical radius ωA(T) and the A-operator seminorm
‖T‖A of an operator T defined on the semi-Hilbert space (H, 〈·, ·〉A), respectively, where
〈x, y〉A := 〈Ax, y〉 for all x, y ∈ H. One of the main purposes of this paper is to prove some
refinements of the inequalities (8). We also present several results related to the A-numerical

radius for 2 × 2 block matrices of semi-Hilbert space operators, where A =

(
A 0
0 A

)
denotes the 2× 2 diagonal operator matrix whose each diagonal entry is the operator A.

2. Inequalities about ω(S∗T)

In this section, our first results are given. To begin with, a result which generalizes
inequality (10) is presented:

Lemma 1. Let λ ∈ [0, 1]. Then

|〈x, y〉|2 ≤ λ(‖x‖2‖y‖2 − |〈x, y〉|2) + |〈x, y〉|2λ‖x‖2−2λ‖y‖2−2λ ≤ ‖x‖2‖y‖2 (12)

for any x, y ∈ H.

Proof. For λ = 0 and λ = 1 in the inequality (12) we obtain the inequality (C-S), |〈x, y〉| ≤
‖x‖‖y‖. Therefore the inequality of the statement is true. However, we have

λ(‖x‖2‖y‖2 − |〈x, y〉|2) ≥ 0,

for all x, y ∈ H and λ ∈ (0, 1), which means that

λ(‖x‖2‖y‖2 − |〈x, y〉|2) + |〈x, y〉|2λ‖x‖2−2λ‖y‖2−2λ ≥ |〈x, y〉|2λ|〈x, y〉|2−2λ.

This yields that

|〈x, y〉|2 ≤ λ(‖x‖2‖y‖2 − |〈x, y〉|2) + |〈x, y〉|2λ‖x‖2−2λ‖y‖2−2λ, (13)

for every x, y ∈ H and λ ∈ (0, 1). Using Young’s inequality,

aλb1−λ ≤ λa + (1− λ)b,

for every a, b > 0 and λ ∈ (0, 1), we obtain

|〈x, y〉|2λ‖x‖2−2λ‖y‖2−2λ ≤ λ|〈x, y〉|2 + (1− λ)‖x‖2‖y‖2,
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which is equivalent to

λ(‖x‖2‖y‖2 − |〈x, y〉|2) + |〈x, y〉|2λ‖x‖2−2λ‖y‖2−2λ

≤ λ(‖x‖2‖y‖2 − |〈x, y〉|2) + λ|〈x, y〉|2 + (1− λ)‖x‖2‖y‖2,

whence

λ(‖x‖2‖y‖2 − |〈x, y〉|2) + |〈x, y〉|2λ‖x‖2−2λ‖y‖2−2λ ≤ ‖x‖2‖y‖2, (14)

for all x, y ∈ H and λ ∈ (0, 1). Consequently, we obtain the desired inequality by taking (13)
and (14) into consideration.

Remark 1. Another form of inequality (12) can be given as:

|〈x, y〉| ≤
√

λ(‖x‖2‖y‖2 − |〈x, y〉|2) + |〈x, y〉|2λ‖x‖2−2λ‖y‖2−2λ ≤ ‖x‖‖y‖ (15)

for any x, y ∈ H and λ ∈ [0, 1], being an improvement on the inequality (C-S). For λ = 1
2 in

inequality (15), we obtain inequality (10).

Theorem 1. Let T, S ∈ B(H), r ≥ 1 and λ ∈ [0, 1]. Then the inequality

ω2r(S∗T) ≤ 1
2

∥∥|T|4r + |S|4r∥∥− λ(1− λ)

1 + λ− λ2

(∥∥|T|4r + |S|4r∥∥−ω(S∗T)
∥∥|T|2r + |S|2r∥∥) (16)

holds.

Proof. Taking the first inequality from Lemma 1, we have

|
〈

x, y
〉
|2 ≤ λ

1 + λ
‖x‖2‖y‖2 +

1
1 + λ

|
〈

x, y
〉
|2λ‖x‖2−2λ‖y‖2−2λ

for every x, y ∈ H and λ ∈ [0, 1]. From the power-mean inequality [27] given by

λa + (1− λ)b ≤ (λar + (1− λ)br)
1
r

for all λ ∈ [0, 1], a, b ≥ 0 and r ≥ 1, we show that

|
〈

x, y
〉
|2r ≤ λ

1 + λ
‖x‖2r‖y‖2r +

1
1 + λ

|
〈

x, y
〉
|2λr‖x‖(2−2λ)r‖y‖(2−2λ)r (17)

for every x, y ∈ H, r ≥ 1 and λ ∈ [0, 1]. If we replace x and y by Tx and Sx, respectively,
in (17), and we assume that ‖x‖ = 1, we then have

|
〈
S∗Tx, x

〉
|2r ≤ λ

1 + λ
‖Tx‖2r‖Sx‖2r +

1
1 + λ

|
〈
S∗Tx, x

〉
|2λr‖Tx‖(2−2λ)r‖Sx‖(2−2λ)r.

Using the same idea as in [5] or [26], for the above inequality, we deduce

|
〈
S∗Tx, x

〉
|2r ≤ 1

1 + λ
|
〈
S∗Tx, x

〉
|2λr
(〈
|T|2x, x

〉〈
|S|2x, x

〉)(1−λ)r

+
λ

1 + λ

〈
|T|2x, x

〉r〈|S|2x, x
〉r

=
1

1 + λ

∣∣〈S∗Tx, x
〉∣∣λr〈|T|2x, x

〉(1−λ)r∣∣〈S∗Tx, x
〉∣∣λr〈|S|2x, x

〉(1−λ)r

+
λ

1 + λ

〈
|T|2x, x

〉r〈|S|2x, x
〉r.
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Applying Young’s inequality in the above relation, we find the following inequality:∣∣〈S∗Tx, x
〉∣∣2r

≤ 1
1 + λ

(
λ
∣∣〈S∗Tx, x

〉∣∣+ (1− λ)
〈
|T|2x, x

〉)r(
λ
∣∣〈S∗Tx, x

〉∣∣+ (1− λ)
〈
|S|2x, x

〉)r

+
λ

1 + λ

〈
|T|2x, x

〉r〈|S|2x, x
〉r

≤ 1
1 + λ

(
λ
∣∣〈S∗Tx, x

〉∣∣r + (1− λ)
〈
|T|2x, x

〉r
)(

λ
∣∣〈S∗Tx, x

〉∣∣r + (1− λ)
〈
|S|2x, x

〉r
)

+
λ

1 + λ

〈
|T|2x, x

〉r〈|S|2x, x
〉r

≤ 1
1 + λ

(
λ
∣∣〈S∗Tx, x

〉∣∣r + (1− λ)
〈
|T|2rx, x

〉)(
λ
∣∣〈S∗Tx, x

〉∣∣r + (1− λ)
〈
|S|2rx, x

〉)
+

λ

1 + λ

〈
|T|2rx, x

〉〈
|S|2rx, x

〉
=

λ(1− λ)

1 + λ

∣∣〈S∗Tx, x
〉∣∣r〈(|T|2r + |S|2r)x, x

〉
+

(1− λ)2

1 + λ

〈
|T|2rx, x

〉〈
|S|2rx, x

〉
+

λ

1 + λ

〈
|T|2rx, x

〉〈
|S|2rx, x

〉
+

λ2

1 + λ

∣∣〈S∗Tx, x
〉∣∣2r,

which is equivalent to

(1 + λ− λ2)
∣∣〈S∗Tx, x

〉∣∣2r

≤ (1− λ + λ2)
〈
|T|2rx, x

〉〈
|S|2rx, x

〉
+ λ(1− λ)|

〈
S∗Tx, x

〉
|r
〈
(|T|2r + |S|2r)x, x

〉
≤ 1− λ + λ2

2
〈
(|T|4r + |S|4r)x, x

〉
+ λ(1− λ)|

〈
S∗Tx, x

〉
|r
〈
(|T|2r + |S|2r)x, x

〉
.

Thus, we have

2(1 + λ− λ2)
∣∣〈S∗Tx, x

〉∣∣2r

≤ (1− λ + λ2)
〈
(|T|4r + |S|4r)x, x

〉
+ 2λ(1− λ)

∣∣〈S∗Tx, x
〉∣∣r〈(|T|2r + |S|2r)x, x

〉
.

If we take the supremum over x ∈ H with ‖x‖ = 1 in the above inequality, then we
obtain the inequality

ω2r(S∗T) ≤ 1− λ + λ2

2(1 + λ− λ2)

∥∥|T|4r + |S|4r∥∥+ λ(1− λ)

1 + λ− λ2 ωr(S∗T)
∥∥|T|2r + |S|2r∥∥. (18)

Inequality (18), can be rewritten, rearranging the terms, as the inequality of the state-
ment.

Remark 2. For λ = 0 or λ = 1 in (16), we deduce the following inequality:

ω2r(S∗T) ≤ 1
2

∥∥|T|4r + |S|4r∥∥, (19)

when r ≥ 1. This represents inequality (3) given by Dragomir in [4].
Because λ ∈ [0, 1] and the following inequality:

∥∥|T|4r + |S|4r∥∥ ≥ 1
2

∥∥|T|2r + |S|2r∥∥2 ≥ ω(S∗T)
∥∥|T|2r + |S|2r∥∥

holds when r ≥ 1, then (16) is an improvement of inequality (19).
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In [28], Buzano proved an interesting inequality:

|〈x, u〉〈u, y〉| ≤ 1
2
(∥∥x

∥∥∥∥y
∥∥+ |〈x, y〉|

)
, (20)

where x, y, u ∈ H and
∥∥u
∥∥ = 1. We apply this result in order to give another inequality

related to the numerical radius.

Theorem 2. Let T ∈ B(H) and λ ∈ [0, 1]. Then the inequalities

ω4(T) ≤ λ

8

∥∥|T|4 + |T∗|4∥∥+ [λ

4
ω(T2) +

1− λ

4
ω2(T)

]∥∥|T|2 + |T∗|2∥∥
+

λ

4
ω2(T2) +

1− λ

2
ω(T2)ω2(T)

≤ 1
2

∥∥|T|4 + |T∗|4∥∥
hold.

Proof. Let x, y, u ∈ H with
∥∥u
∥∥ = 1 and λ ∈ [0, 1]. Using inequality (20), we have

∣∣〈x, u〉〈u, y〉
∣∣2 ≤ ∣∣〈x, u〉〈u, y〉

∣∣1
2
(∥∥x

∥∥∥∥y
∥∥+ ∣∣〈x, y〉

∣∣)
≤ λ

4
(∥∥x

∥∥∥∥y
∥∥+ ∣∣〈x, y〉

∣∣)2
+

1− λ

2

∣∣〈x, u〉〈u, y〉
∣∣(∥∥x

∥∥∥∥y
∥∥+ ∣∣〈x, y〉

∣∣).
Thus, we deduce∣∣〈x, u〉〈u, y〉

∣∣2 ≤ λ

4

∣∣〈x, y〉
∣∣2 + 1− λ

2

∣∣〈x, u〉〈u, y〉
∣∣(∥∥x

∥∥∥∥y
∥∥+ ∣∣〈x, y〉

∣∣)
+

λ

4

∥∥x
∥∥2∥∥y

∥∥2
+

λ

2

∥∥x
∥∥∥∥y

∥∥∣∣〈x, y〉
∣∣. (21)

If we replace u by x where
∥∥x
∥∥ = 1, x by Tx and y by T∗x in the above inequality (21),

we obtain

|〈Tx, x〉|4 = |〈Tx, x〉〈x, T∗x〉|2

≤ λ

4
|〈Tx, T∗x〉|2 + 1− λ

2
|〈Tx, x〉〈x, T∗x〉|

(∥∥Tx
∥∥∥∥T∗x

∥∥+ |〈Tx, T∗x〉|
)

+
λ

4

∥∥Tx
∥∥2∥∥T∗x

∥∥2
+

λ

2

∥∥Tx
∥∥∥∥T∗x

∥∥|〈Tx, T∗x〉| (22)

≤ λ

8

∥∥|T|4 + |T∗|4∥∥+ [λ

4
ω(T2) +

1− λ

4
ω2(T)

]∥∥|T|2 + |T∗|2∥∥
+

λ

4
ω2(T2) +

1− λ

2
ω(T2)ω2(T).

We take into account the following sequence of inequalities:∥∥Tx
∥∥2∥∥T∗x

∥∥2
= 〈Tx, Tx〉〈T∗x, T∗x〉
= 〈|T|2x, x〉〈|T∗|2x, x〉

≤ 1
4

(
〈|T|2x, x〉+ 〈|T∗|2x, x〉

)2

≤ 1
2

(
〈|T|2x, x〉2 + 〈|T∗|2x, x〉2

)
≤ 1

2
〈(|T|4 + |T∗|4)x, x〉 ≤ 1

2

∥∥|T|4 + |T∗|4∥∥.
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Consequently, taking the supremum for
∥∥x
∥∥ = 1 in inequality (22), we find the first

inequality of the statement.
Now, we have

λ

8

∥∥|T|4 + |T∗|4∥∥+ [λ

4
ω(T2) +

1− λ

4
ω2(T)

]∥∥|T|2 + |T∗|2∥∥
+

λ

4
ω2(T2) +

1− λ

2
ω(T2)ω2(T)

≤ λ

8

∥∥|T|4 + |T∗|4∥∥+ [λ

4
ω2(T) +

1− λ

4
ω2(T)

]∥∥|T|2 + |T∗|2∥∥
+

λ

4
ω4(T) +

1− λ

2
ω4(T)

≤ λ

8

∥∥|T|4 + |T∗|4∥∥+ 1
4

ω2(T)
∥∥|T|2 + |T∗|2∥∥+ 2− λ

4
ω4(T) ≤ 1

2

∥∥|T|4 + |T∗|4∥∥.

In the above sequence of inequalities, we used inequality (2) and inequality (9) for
A = I and n = 2, hence

ω(T2) ≤ ω2(T) ≤ 1
2

∥∥|T|2 + |T∗|2∥∥,

and the results hold.

Remark 3. For λ = 1
3 in Theorem 2, we find an inequality given in [5], namely:

ω4(T) ≤ 1
24

∥∥|T|4 + |T∗|4∥∥+ [ 1
12

ω(T2) +
1
6

ω2(T)
]∥∥|T|2 + |T∗|2∥∥

+
1
12

ω2(T2) +
1
3

ω(T2)ω2(T).

If we take λ = 1
2 in Theorem 2, we also obtain:

ω4(T) ≤ 1
16

∥∥|T|4 + |T∗|4∥∥+ 1
8

[
ω(T2) + ω2(T)

]∥∥|T|2 + |T∗|2∥∥
+

1
8

ω2(T2) +
1
4

ω(T2)ω2(T).

3. Some Inequalities About to the A–Numerical Radius

Next, we give several results related to the seminorm ‖ · ‖A induced by A.

Theorem 3. If a, b ∈ R, x, y ∈ H and |a| ≥ ‖x‖A > 0 and |b| ≥ ‖y‖A > 0, then

‖bx− ay‖2
A + |〈x, y〉A|2 ≥ ‖x‖2

A‖y‖2
A. (23)

Proof. Let <z denote the real part of any complex number z. Clearly, the inequality (23)
can be written as

a2‖y‖2
A − 2ab<〈x, y〉A + b2‖x‖2

A + |〈x, y〉A|2 − ‖x‖2
A‖y‖2

A ≥ 0.

Assume that b ≥ ‖y‖A > 0. We consider the function f : R→ R defined by

f (a) = a2‖y‖2
A − 2ab<〈x, y〉A + b2‖x‖2

A + |〈x, y〉A|2 − ‖x‖2
A‖y‖2

A.

This means that

∆a = 4b2(<〈x, y〉A)2 − 4b2‖x‖2
A‖y‖2

A − 4‖y‖2
A(|〈x, y〉A|2 − ‖x‖2

A‖y‖2
A)

≤ 4(b2 − ‖y‖2
A)(|〈x, y〉A|2 − ‖x‖2

A‖y‖2
A),
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where, we used the inequality (<〈x, y〉A)2 = (<〈Ax, y〉)2 ≤ |〈Ax, y〉|2 = |〈x, y〉A|2.
Therefore, because we have b2 ≥ ‖y‖2

A > 0 and using the well-known inequality (C-S),
|〈x, y〉A|2 ≤ ‖x‖2

A‖y‖2
A, we find that the discriminant ∆a is negative, and hence f (a) ≥ 0,

for all a ∈ R. Consequently, the inequality from the statement is valid.

Corollary 1. If a, b ∈ R, x, y ∈ H and |a| ≥ ‖x‖A > 0 and |b| ≥ ‖y‖A > 0, then the inequality

‖bx− ay‖A ≥ ‖x‖A‖y‖A − |〈x, y〉A| (24)

holds.

Proof. By using inequality (23) and the following algebraic inequality
√

α2 − β2 ≥ α− β,
where α ≥ β ≥ 0, for α = ‖x‖A‖y‖A and β = |〈x, y〉A|, we find the inequality of the
statement.

Theorem 4. If T ∈ BA1/2(H) and a, b ∈ R, |b| ≥ 1, then we have

‖bT − aI‖A + ωA(T) ≥ ‖T‖A. (25)

Proof. In inequality (24), replace x by Tx and y by x. Thus,

‖bTx− ax‖A + |〈Tx, x〉A| ≥ ‖Tx‖A‖x‖A,

for |b| ≥ ‖x‖A. If we take the supremum over ‖x‖A = 1, then we get the inequality of the
statement, when |b| ≥ 1.

Theorem 5. Let x, y ∈ H and a, b ∈ R. Then, the equality

(a2 − ‖x‖2
A)(b

2 − ‖y‖2
A) = |ab− 〈x, y〉A|2 + ‖x‖2

A‖y‖2
A − |〈x, y〉A|2 − ‖bx− ay‖2

A (26)

holds.

Proof. We remark that 〈Ax, y〉 = 〈y, Ax〉 = 〈Ay, x〉. Next, we have the following calcula-
tions: ∣∣ab− 〈x, y〉A

∣∣2 =
(
ab− 〈Ax, y〉

)(
ab− 〈Ax, y〉

)
= (ab)2 − ab

(
〈Ax, y〉+ 〈Ay, x〉

)
+
∣∣〈Ax, y〉

∣∣2,

and

‖bx− ay‖2
A = 〈bAx− aAy, bx− ay〉
= b2‖y‖2

A − ab
(
〈Ax, y〉+ 〈Ay, x〉

)
+ a2‖x‖2

A,

which means that∣∣ab− 〈x, y〉A
∣∣2 − ‖bx− ay‖2

A =
(
a2 − ‖x‖2

A
)(

b2 − ‖y‖2
A
)
+
∣∣〈x, y〉A

∣∣2 − ‖x‖2
A‖y‖2

A.

Therefore, the equality of the statement is true.

Corollary 2. If a, b ∈ R, x, y ∈ H and |a| ≥ ‖x‖A > 0 and |b| ≥ ‖y‖A > 0, then the inequality

(a2 − ‖x‖2
A)(b

2 − ‖y‖2
A) ≤ |ab− 〈x, y〉A|2 (27)

holds.

Proof. Using inequality (23) and equality (26) we deduce the inequality of the state-
ment.
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Remark 4. This inequality is the Aczél inequality in vectorial form (see, e.g., [29]).

Theorem 6. Let x, y ∈ H with ‖x‖ = 1. Then we have(
‖A‖ − ‖x‖2

A
)(
‖A‖ − ‖y‖2

A
)
≤
∣∣‖A‖ − 〈x, y〉A

∣∣2.

Proof. Using inequality (27) for a = b =
√
‖A‖ and taking into account the fact that

‖x‖A ≤
√
‖A‖, for x ∈ H with ‖x‖ = 1, we deduce the inequality of the statement.

To establish our next result which covers and extends a well-known theorem by
Kittaneh et al. in [5], we need the following two lemmas.

Lemma 2. Let T, S ∈ B(H) be A-positive operators. Then∥∥∥∥T + S
2

∥∥∥∥n

A
≤
∥∥∥∥Tn + Sn

2

∥∥∥∥
A

, ∀ n ∈ N∗,

where N∗ denotes the set of all positive integers.

To prove Lemma 2, we require the following lemma which was recently proven in [16]:

Lemma 3. Let T ∈ B(H) be such that T ≥A 0. Then, we have〈
Tx, x

〉n
A ≤

〈
Tnx, x

〉
A, ∀ n ∈ N∗. (28)

for every x ∈ H with ‖x‖A = 1.

Proof of Lemma 2. We consider x ∈ H with ‖x‖A = 1. From the convexity of h(t) = tn

with t ≥ 0, we get(〈T + S
2

x, x
〉

A

)n
=

(
〈Tx, x〉A + 〈Sx, x〉A

2

)n

≤ 〈Tx, x〉nA + 〈Sx, x〉nA
2

≤ 〈T
nx, x〉A + 〈Snx, x〉A

2
(by Lemma 3)

=
〈Tn + Sn

2
x, x
〉

A

≤
∥∥∥∥Tn + Sn

2

∥∥∥∥
A

.

Therefore, we obtain (〈T + S
2

x, x
〉

A

)n
≤
∥∥∥∥Tn + Sn

2

∥∥∥∥
A

.

Hence, by taking the supremum over all x ∈ H with ‖x‖A = 1 in the above inequality
we get

ωn
A

(T + S
2

)
≤
∥∥∥∥Tn + Sn

2

∥∥∥∥
A

.

Therefore, the proof is complete by using (6) since
T + S

2
≥A 0.
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Lemma 4. Let x, y, u ∈ H be such that ‖u‖A = 1. Then

12
∣∣〈x, u〉A〈u, y〉A

∣∣2 ≤ ‖x‖2
A‖y‖2

A +
∣∣〈x, y〉A

∣∣2 + 2‖x‖A‖y‖A
∣∣〈x, y〉A

∣∣
+ 4
∣∣〈x, u〉A〈u, y〉A

∣∣(‖x‖A‖y‖A + |〈x, y〉A|
)
.

Proof. Let x, y, u ∈ H be such that ‖u‖A = 1. It follows from [13] that

2|〈x, u〉A〈u, y〉A| ≤ |〈x, y〉A|+ ‖x‖A‖y‖A. (29)

By using (29), we see that∣∣〈x, u〉A〈u, y〉A
∣∣2

=
1
3

∣∣〈x, u〉A〈u, y〉A
∣∣2 + 2

3

∣∣〈x, u〉A〈u, y〉A
∣∣2

≤ 1
12
(
‖x‖A‖y‖A + |〈x, y〉A|

)2
+

2
6

∣∣〈x, u〉A〈u, y〉A
∣∣(‖x‖A‖y‖A + |〈x, y〉A|

)
.

This immediately proves the desired result.

Now, we will give an inequality concerning ω4
A(T).

Theorem 7. Let T ∈ BA(H). Then the following inequality

ω4
A(T) ≤

1
24

∥∥(T]A T)2 + (TT]A)2∥∥
A +

1
12

ω2
A(T

2) +
1
3

ω2
A(T)ωA(T2)

+
1
12

∥∥T]A T + TT]A
∥∥

A

(
ωA(T2) + 2ω2

A(T)
)

≤ 1
2

∥∥∥(T]A T)2 + (TT]A)2
∥∥∥

A

holds.

Proof. Let x ∈ H be such that ‖x‖A = 1. By putting u = x and then replacing x and y by
Tx and T]A x, respectively, in Lemma 4 we see that

12
∣∣〈Tx, x〉A

∣∣4
≤ ‖Tx‖2

A‖T]A x‖2
A +

∣∣〈Tx, T]A x〉A
∣∣2 + 2‖Tx‖A‖T]A x‖A

∣∣〈Tx, T]A x〉A
∣∣

+ 4
∣∣〈Tx, x〉A

∣∣2(‖Tx‖A‖T]A x‖A + |〈Tx, T]A x〉A|
)

= 〈T]A Tx, x〉A〈TT]A x, x〉A + 2
√
〈T]A Tx, x〉A〈TT]A x, x〉A

∣∣〈T2x, x〉A
∣∣

+ 4
∣∣〈Tx, x〉A

∣∣2(√〈T]A Tx, x〉A〈TT]A x, x〉A + |〈T2x, x〉A|
)
+
∣∣〈T2x, x〉A

∣∣2.

Further, by applying the arithmetic–geometric mean inequality, we have

12
∣∣〈Tx, x〉A

∣∣4
≤ 1

2

(
〈T]A Tx, x〉2A + 〈TT]A x, x〉2A

)
+
∣∣〈T2x, x〉A

∣∣(〈T]A Tx, x〉A + 〈TT]A x, x〉A
)

+ 2
∣∣〈Tx, x〉A

∣∣2(〈T]A Tx, x〉2A + 〈TT]A x, x〉2A + 2|〈T2x, x〉A|
)
+
∣∣〈T2x, x〉A

∣∣2
≤ 1

2

(
〈
[
(T]A T)2 + (TT]A)2]x, x〉A

)
+ ωA(T2)

(
〈
[
T]A T + TT]A

]
x, x〉A

)
+ 2ω2

A(T)
(
〈
(
T]A T + TT]A

)
, x〉A + 2ωA(T2)

)
+ ω2

A(T
2),
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where the last inequality follows by applying Lemma 3 since the operators T]A T and TT]A

are A-positive. In addition, by using the inequality (C-S), we see that

12
∣∣〈Tx, x〉A

∣∣4 ≤ 1
2

∥∥(T]A T)2 + (TT]A)2∥∥
A + ωA(T2)

∥∥T]A T + TT]A
∥∥

A

+ 2ω2
A(T)

(∥∥T]A T + TT]A
∥∥

A + 2ωA(T2)
)
+ ω2

A(T
2)

=
1
2

∥∥(T]A T)2 + (TT]A)2∥∥
A + ω2

A(T
2) + 4ω2

A(T)ωA(T2)

+
∥∥T]A T + TT]A

∥∥
A

(
ωA(T2) + 2ω2

A(T)
)

.

This gives the following:

∣∣〈Tx, x〉A
∣∣4 ≤ 1

24

∥∥(T]A T)2 + (TT]A)2∥∥
A +

1
12

ω2
A(T

2) +
1
3

ω2
A(T)ωA(T2)

+
1

12

∥∥T]A T + TT]A
∥∥

A

(
ωA(T2) + 2ω2

A(T)
)

.

This proves the first inequality in Theorem 7 by taking the supremum over x ∈ H
with ‖x‖A = 1 in the last inequality. On the other hand, by applying (9) together with (8),
we see that

1
24

∥∥(T]A T)2 + (TT]A)2∥∥
A +

1
12

ω2
A(T

2) +
1
3

ω2
A(T)ωA(T2)

+
1

12

∥∥T]A T + TT]A
∥∥

A

(
ωA(T2) + 2ω2

A(T)
)

≤ 1
24

∥∥(T]A T)2 + (TT]A)2∥∥
A +

5
12

ω4
A(T)

+
1
4

∥∥T]A T + TT]A
∥∥

Aω2
A(T)

≤ 1
24

∥∥(T]A T)2 + (TT]A)2∥∥
A +

11
48

∥∥T]A T + TT]A
∥∥2

A

=
1
24

∥∥(T]A T)2 + (TT]A)2∥∥
A +

11
48

∥∥∥2T]A T + 2TT]A

2

∥∥∥2

A
.

Thus, by applying Lemma 2 for n = 2, we get

1
24

∥∥(T]A T)2 + (TT]A)2∥∥
A +

1
12

ω2
A(T

2) +
1
3

ω2
A(T)ωA(T2)

+
1

12

∥∥T]A T + TT]A
∥∥

A

(
ωA(T2) + 2ω2

A(T)
)

≤ 1
24

∥∥(T]A T)2 + (TT]A)2∥∥
A +

11
24

∥∥∥(T]A T)2 + (TT]A)2
∥∥∥

A

=
1
2

∥∥∥(T]A T)2 + (TT]A)2
∥∥∥

A
.

Remark 5. (i) Note that the inequalities in Theorem 7 are sharp. Indeed, it suffices to con-
sider any A-normal operator T, i.e., T]A T = TT]A , then by using the following properties:
ωA(T2) = ω2

A(T) = ‖T‖2
A and∥∥(T]A T)2∥∥

A =
∥∥(TT]A)2∥∥

A =
∥∥T]A T

∥∥2
A =

∥∥T
∥∥4

A,

from [18], it is clear that no superior values exist.
(ii) Note that Theorem 3 in [5] follows from Theorem 7 by letting A = I.
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4. On Inequalities about the A–Numerical Radius of 2 × 2 Block Matrices

We consider A, the 2× 2 diagonal operator matrix given as A =

(
A 0
0 A

)
. It is obvious

that A ∈ B(H⊕H)+ and A induces the semi-inner product

〈x, y〉A = 〈Ax, y〉 = 〈x1, y1〉A + 〈x2, y2〉A,

for every x = (x1, x2), y = (y1, y2) ∈ H⊕H. In recent literature, some bounds concerning
the A-numerical radius of 2× 2 block matrices are given (see for example [30] and the
reference therein). In the present section, we continue working in this direction and we
prove new inequalities involving ωA(T), where T is a 2× 2-operator matrix.

To prepare the framework in which we will work, we need the following lemmas, the
first of which was proven in [19,31].

Lemma 5 ([19,31]). Let T, S, X, Y ∈ BA(H). Then

(i)
(

T X
Y S

)]A

=

(
T]A Y]A

X]A S]A

)
.

(ii)
∥∥∥∥(X 0

0 Y

)∥∥∥∥
A
=

∥∥∥∥(0 X
Y 0

)∥∥∥∥
A
= max

{
‖X‖A, ‖Y‖A

}
.

(iii) ωA

[(
X 0
0 Y

)]
= max

{
ωA(X), ωA(Y)

}
.

(iv) ωA

[(
X Y
Y X

)]
= max

{
ωA(X + Y), ωA(X−Y)

}
. In particular, we have

ωA

[(
0 Y
Y 0

)]
= ωA(Y). (30)

The second lemma is a straightforward application of (29) and is stated as follows.

Lemma 6 ([32]). Let A =

(
A 0
0 A

)
and x, y, z ∈ H⊕H with ‖z‖A = 1. Then

∣∣〈x, z〉A〈z, y〉A
∣∣ ≤ 1

2
(
‖x‖A‖y‖A + |〈x, y〉A|

)
.

Now, we state the following results related to the A-numerical radius of 2× 2 block
matrices of semi-Hilbert space operators.

Theorem 8. Let X, Y ∈ BA(H) and λ ∈ [0, 1]. Then the inequality

ω4
A

[(
0 X
Y 0

)]
≤ λ

8
max

{∥∥(XX]A)2 + (Y]AY)2∥∥
A,
∥∥(YY]A)2 + (X]A X)2∥∥

A

}
+

λ

4
max

{∥∥XX]A + Y]A Y
∥∥

A,
∥∥YY]A + X]A X

∥∥
A

}
max

{
ωA(XY), ωA(YX)

}
+

1− λ

4
max2

{
ωA(X), ωA(Y)

}
max

{∥∥XX]A + Y]AY
∥∥

A,
∥∥YY]A + X]A X

∥∥}
+

1− λ

2
max2

{
ωA(X), ωA(Y)

}
max

{
ωA(XY), ωA(YX)

}
+

λ

4
max2

{
ωA(XY), ωA(YX)

}
holds.



Symmetry 2023, 15, 304 14 of 20

Proof. Using the inequality from Lemma 6, we have∣∣〈x, z〉A〈z, y〉A
∣∣2

≤
∣∣〈x, z〉A〈z, y〉A

∣∣1
2
(
‖x‖A‖y‖A + |〈x, y〉A|

)
≤ λ

4
(
‖x‖A‖y‖A + |〈x, y〉A|

)2
+

1− λ

2

∣∣〈x, z〉A〈z, y〉A
∣∣(‖x‖A‖y‖A + |〈x, y〉A|

)
=

λ

4
‖x‖2

A‖y‖2
A +

λ

2
|〈x, y〉A|‖x‖A‖y‖A

+
λ

4

∣∣〈x, y〉A
∣∣2 + 1− λ

2

∣∣〈x, z〉A〈z, y〉A
∣∣(|〈x, y〉A|+ ‖x‖A‖y‖A),

where x, y, z ∈ H⊕H with
∥∥z
∥∥
A = 1 and λ ∈ [0, 1].

Let us consider M =

(
0 X
Y 0

)
. By using Lemma 6, it follows that M]A =

(
0 Y]A

X]A 0

)
,

MM]A =

(
XX]A 0

0 YY]A

)
, M]AM =

(
Y]AY 0

0 X]A X

)
and M2 =

(
XY 0
0 YX

)
.

If we replace z by x with
∥∥x
∥∥
A = 1, x by Mx and y by M]Ax, then the above inequality

becomes

|〈Mx, x〉A|4 = |〈Mx, x〉A〈x,M]Ax〉A|2

≤ λ

4

∥∥Mx
∥∥2
A
∥∥M]Ax

∥∥2
A +

λ

2

∥∥Mx
∥∥
A
∥∥M]Ax

∥∥
A|〈Mx,M]Ax〉A|

+
λ

4
|〈Mx,M]Ax〉A|2 +

1− λ

2
|〈Mx, x〉A〈x,M]Ax〉A|

(∥∥Mx
∥∥
A
∥∥M]Ax

∥∥
A + |〈Mx,M]Ax〉A|

)
.

This implies that

|〈Mx, x〉A|4 ≤ λ
8

∥∥(M]AM
)2

+
(
MM]A

)2∥∥
A + λ

4 ω2
A(M

2) + 1−λ
2 ωA(M2)ω2(M)

+
(

λ
4 ωA(M2) + 1−λ

4 ω2
A(M)

)∥∥M]AM+MM]A
∥∥
A. (31)

We take into account the following sequence of the inequalities, taking into account
that M]AM and MM]A are A–positive:∥∥Mx

∥∥2
A
∥∥M]Ax

∥∥2
A = 〈Mx,Mx〉A〈M]Ax,M]Ax〉A
= 〈M]AMx, x〉A〈MM]Ax, x〉A

≤ 1
4

(
〈M]AMx, x〉A + 〈MM]Ax, x〉A

)2

≤ 1
2

(
〈M]AMx, x〉2A + 〈MM]Ax, x〉2A

)
≤ 1

2
〈
(
(M]AM)2 + (MM]A)2

)
x, x〉A

≤ 1
2

∥∥∥(M]AM)2 + (MM]A)2
∥∥∥
A

.

Consequently, taking the supremum over
∥∥x
∥∥
A = 1 in inequality (31), we obtain the

inequality of the statement.

Remark 6. For λ = 0 in inequality (31), we deduce

ω2
A(M) ≤ 1

4

∥∥M]AM+MM]A
∥∥
A +

1
2

ωA(M2).
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So, by taking Lemma 6 into account, we get the inequality recently established by Xu et al. in [32]:

ω2
A

[(
0 X
Y 0

)]
≤ 1

4
max{

∥∥XX]A + Y]AY
∥∥

A,
∥∥YY]A + X]A X

∥∥
A}

+
1
2

max{ωA(XY), ωA(YX)},

for all X, Y ∈ BA(H).

Corollary 3. Let X, Y ∈ BA(H) and λ ∈ [0, 1]. Then inequalities

ω4
A

[(
0 X
Y 0

)]
≤ λ

8
max

{∥∥(XX]A)2 + (Y]AY)2∥∥
A,
∥∥(YY]A)2 + (X]A X)2∥∥

A

}
+

λ

4
max

{∥∥XX]A + Y]A Y
∥∥

A,
∥∥YY]A + X]A X

∥∥
A}max{ωA(XY), ωA(YX)

}
+

λ

4
max2{ωA(XY), ωA(YX)

}
+

1− λ

2
max2{ωA(X), ωA(Y)

}
max

{
ωA(XY), ωA(YX)

}
+

1− λ

4
max2{ωA(X), ωA(Y)}max

{∥∥XX]A + Y]A Y
∥∥

A,
∥∥YY]A + X]A X

∥∥}
≤ 1

2
max

{∥∥(XX]A)2 + (Y]AY)2∥∥
A,
∥∥(YY]A)2 + (X]A X)2∥∥

A

}
hold.

Proof. From inequality (31), we have

ω4
A(M)

≤ λ

8

∥∥(M]AM)2 + (MM]A)2∥∥
A +

[
λ

4
ωA(M2) +

1− λ

4
ω2
A(M)

]∥∥M]AM+MM]A
∥∥
A

+
λ

4
ω2
A(M

2) +
1− λ

2
ωA(M2)ω2

A(M)

≤ λ

8

∥∥(M]AM)2 + (MM]A)2∥∥
A +

[
λ

4
ω2
A(M) +

1− λ

4
ω2
A(M)

]∥∥M]AM+MM]A
∥∥
A

+
λ

4
ω4
A(M) +

1− λ

2
ω4
A(M)

≤ λ

8

∥∥(M]AM)2 + (MM]A)2∥∥
A +

1
4

ω2
A(M)

∥∥M]AM+MM]A
∥∥
A +

2− λ

4
ω4
A(M)

≤ 1
2

∥∥(M]AM)2 + (MM]A)2∥∥
A.

In the above sequence of inequalities, we used the fact that ωA(M2) ≤ ω2
A(M) and

the inequality:

ω2
A(M) ≤ 1

2

∥∥M]AM+MM]A
∥∥
A.

Therefore, by applying Lemma 6, it is clear that the inequalities of the statement
are true.
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Remark 7. By taking X = Y in Corollary 3 and then using (30), we obtain:

ω4
A(X) ≤ λ

8

∥∥(X]A X)2 + (XX]A)2∥∥
A +

λ

4

∥∥X]A X + XX]A
∥∥

AωA(X2)

+
λ

4
ω2

A(X2) +
1− λ

4
ω2

A(X)
∥∥X]A X + XX]A

∥∥
A +

1− λ

2
ω2

A(X)ωA(X2)

≤ 1
2

∥∥(X]A X)2 + (XX]A)2∥∥2
A.

If we take A = I in the last inequalities, then since X]I = X∗, the inequality in Theorem 2
is true.

Our next theorem provides an extension of a recent result by Bani-Domi et al. in [33].

Theorem 9. Let X, Y, T, S ∈ BA(H). Then

ω2
A

[(
T X
Y S

)]
≤ 1

2
max

{∥∥X]A X + YY]A
∥∥

A,
∥∥XX]A + Y]AY

∥∥
A

}
+ 2 max

{
ω2

A(T), ω2
A(S)

}
+ max

{
ωA(XY), ωA(YX)

}
.

Proof. Consider the matrices M =

(
T 0
0 S

)
and N =

(
0 X
Y 0

)
. Let x ∈ H ⊕H be such

that ‖x‖A = 1. By using the convexity of the function t 7→ t2, we deduce that∣∣∣∣〈(T X
Y S

)
x, x
〉
A

∣∣∣∣2 =
∣∣〈Mx, x

〉
A +

〈
Nx, x

〉
A
∣∣2

≤ 2
(∣∣〈Mx, x

〉
A
∣∣2 + ∣∣〈Nx, x

〉
A
∣∣2)

= 2
(∣∣〈Mx, x

〉
A
∣∣2 + ∣∣∣〈Nx, x

〉
A
〈
x,N]Ax

〉
A

∣∣∣).

Further, by applying Lemma 6 we get∣∣∣∣〈(T X
Y S

)
x, x
〉
A

∣∣∣∣2
≤ 2

∣∣〈Mx, x
〉
A
∣∣2 + ∣∣∣〈Nx,N]Ax

〉
A

∣∣∣+ ‖Nx‖A‖N]Ax‖A

= 2
∣∣〈Mx, x

〉
A
∣∣2 + ∣∣∣〈N2x, x

〉
A

∣∣∣+√〈N]ANx, x
〉
A

√〈
NN]Ax, x

〉
A

≤ 2
∣∣〈Mx, x

〉
A
∣∣2 + ∣∣∣〈N2x, x

〉
A

∣∣∣+ 1
2
〈(

N]AN+NN]A
)

x, x
〉
A

≤ 2ω2
A(M) + ωA

(
N2)+ 1

2

∥∥∥N]AN+NN]A
∥∥∥
A

,

where the last inequality is deduced from (6) since N]AN+NN]A is an A–selfadjoint operator.
We take the supremum over all x ∈ H ⊕ H with ‖x‖A = 1 in the above inequality,
implies that

ω2
A

[(
T X
Y S

)]
≤ 2ω2

A(M) + ωA
(
N2)+ 1

2

∥∥∥N]AN+NN]A
∥∥∥
A

. (32)

On the other hand, it can be seen that

N2 =

(
XY 0
0 YX

)
and N]AN+NN]A =

(
XX]A + Y]AY 0

0 X]A X + YY]A

)
.
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Therefore, the desired result is obtained by taking (32) into consideration and then
applying Lemma 6.

We remark that the following corollary considerably improves the second inequality
in (8) and was already proven by the second author in [25]. This corollary was also
approached by Bhunia et al. in [34], when the operator A is assumed to be injective.

Corollary 4. Let T ∈ BA(H). Then, the inequality

ωA(T) ≤
1
2

√∥∥TT]A + T]A T
∥∥

A + 2ωA(T2) (33)

holds.

Proof. By letting T = S = X = Y in Theorem 9 and then using Lemma 5 (iv), we obtain
the desired result.

As an application of (33), we derive the following result which extends a recent
theorem stated by Kittaneh et al. in [35].

Theorem 10. Let T, S ∈ BA(H). Then, the following inequality

‖T + S]A‖A

≤
√

max
{∥∥T]A T + SS]A

∥∥
A,
∥∥T]A T + SS]A

∥∥
A

}
+ 2 max

{
ωA(TS), ωA(ST)

}
≤ ‖T‖A + ‖S‖A

holds.

To prove Theorem 10, we need the following Lemma.

Lemma 7. Let T, S ∈ BA(H). Then

ωA

[(
0 T
S 0

)]
=

1
2

sup
θ∈R

∥∥∥eiθT + e−iθS]A
∥∥∥

A
.

We are now able to prove Theorem 10.

Proof of Theorem 10. Let T =

(
0 T
S 0

)
and A =

(
A 0
0 A

)
. Clearly, T2 =

(
TS 0
0 ST

)
.

Further, by using Lemma 5 (i), we see that

TT]A +T]AT =

(
TT]A + S]A S 0

0 SS]A + T]A T

)
.

Hence, an application of (33) together with Lemma 7 gives

‖T + S]A‖A

≤ 2ωA

[(
0 T
S 0

)]
≤
√∥∥TT]A +T]AT

∥∥
A + 2ωA(T2)

=

√
max

{∥∥T]A T + SS]A
∥∥

A,
∥∥T]A T + SS]A

∥∥
A

}
+ 2 max

{
ωA(TS), ωA(ST)

}
,
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where the last equality follows by applying Lemma 5 (ii) and (iii). Furthermore, we can
see that√

max
{∥∥T]A T + SS]A

∥∥
A,
∥∥T]A T + SS]A

∥∥
A

}
+ 2 max

{
ωA(TS), ωA(ST)

}
≤
√
‖T‖2

A + ‖S‖2
A + 2‖T‖A‖S‖A = ‖T‖A + ‖S‖A.

This completes the proof.

Corollary 5. If T, S ∈ B(H) are A–selfadjoint operators, then we have

‖T + S‖A ≤
√
‖T2 + S2‖A + 2ωA(TS) ≤ ‖T‖A + ‖S‖A. (34)

Proof. Notice that since T and S are A–selfadjoint operators, then so are T]A and S]A . Thus,
by (5) we get

(T]A)]A = T]A and (S]A)]A = S]A .

Therefore, by replacing T and S by T]A and S]A in Theorem 10, respectively, and then
using the fact that ‖X]A‖A = ‖X‖A for all X ∈ BA(H), we obtain (34) as required.

5. Conclusions

The main objective of the present paper is to present new upper bounds of ω(T),
which denotes the numerical radius of a bounded operator T on a Hilbert space (H, 〈·, ·〉).
The study’s motivation is given by the multitude of recent papers that refer to the numerical
radius, see [11,17,24,26,31,34]. The large number of papers published in this area demon-
strates the relevance of this field of research. The main objective is focused on the study of
some new improvements of the upper bounds of ω(T), ‖T‖ and ω(S∗T), of the type given
in (2)–(4). We show the Aczél inequality in terms of the operator |T|.

Next, we give certain inequalities about the A-numerical radius ωA(T) and the A-
operator seminorm ‖T‖A of an operator T from the semi-Hilbert space (H, 〈·, ·〉A), where
〈x, y〉A := 〈Ax, y〉 for all x, y ∈ H.

Furthermore, we present several results related to the A-numerical radius of 2× 2
block matrices of semi-Hilbert space operators, by using symmetric 2× 2 block matrices.
The symmetric 2× 2 block matrices are very important in our study because they are easy
to use.

As a future approach, we will study better estimates of the A-numerical radius for
the symmetric 2× 2 operator matrix and we will investigate new inequalities involving a
d-tuple of operators T = (T1, . . . , Td) ∈ BA(H)d.
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