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Abstract: We consider scalar-torsion gravity theories based on the exact solutions of a physical
type of potential for cosmological inflationary models based on the non-minimal coupling of a
scalar field and torsion. We analyzed the inflationary models with different types of inflationary
dynamics and corresponding scalar field parameters. Such an approach allows us to consider different
physical potentials and types of scalar-torsion gravity theories in the context of the realization
of both stages of accelerated expansion of the universe. We also considered the correspondence
surrounding the proposed inflationary models and the observational constraints on the parameters
of cosmological perturbations.
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1. Introduction

Scalar field cosmology has been actively exploited in inflation (since the beginning
of its introduction) [1]. Single scalar fields with various types of potentials have been
considered in studies concerning early and later inflation [1,2].

Understanding the physical processes at the early stages of the evolution of the uni-
verse involves an approximate analysis of cosmological dynamics in the slow-roll regime [3].
Moreover, exact solutions have been used to construct and analyze the inflationary models;
see [2,4].

To explain the early inflationary and late time-accelerated expansion of the universe,
various modified theories of gravity are being considered [5–8]. One such approach
is the teleparallel equivalent of general relativity (TEGR), in which the torsion is used
instead of the scalar curvature to describe the gravitational interaction [9–11] and its
various modifications, such as f (T)-gravity [12–16]. Cosmological models based on non-
minimal coupling between the scalar field and torsion [17–22] and other modifications of
TEGR [23–26], including non-canonical kinetic terms [27], are also considered to construct
and analyze cosmological models.

Torsion can be considered a dynamic degree of freedom in the framework of quan-
tum gravity [28,29], i.e., non-zero torsion must be taken into account when analyzing
cosmological models based on quantum cosmology [30–34].

Although the effects of the non-zero torsion of space–time have not been detected,
various methods for detecting such effects have been proposed, for example, by the spectra
of gravitational waves from astrophysical sources [35,36] or by possible small deviations of
the motion of the Moon and Mercury from GR predictions for non-zero torsion [37,38].

In the framework of teleparallel gravity, gravitational interaction is described in terms
of torsion; the tetrad field instead of the metric tensor is a dynamic variable and the
usual Levi–Civita connection (without torsion in the framework of GR) is replaced with
the Weizenbeck connection, which implies non-zero torsion rather than curvature [9–11].
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Although the equations of the gravitational field are the same in both cases (TEGR and GR),
in contrast to Einstein’s gravity, teleparallel gravity is a gauge theory of gravity [9–11].

Differences between these two approaches to the description of the gravitational
interaction also appear when considering their expansion, taking into account the non-
minimal coupling between the scalar field and curvature [39,40] or torsion [17–22].

In the case of the scalar-tensor theories of gravity, the initial action can be reduced to
the Einstein–Hilbert action through conformal transformations of the space–time metric and
material components [39,40]. In the case of teleparallel gravity, the non-minimal coupling
of the field with torsion cannot be eliminated through conformal transformations, i.e., the
models based on scalar-torsion gravity theories have no analogs in the framework of the
teleparallel gravity with minimal coupling [41–43].

In the absence of such conformal transformations, an approach based on the deter-
mination of parametric and functional relationships (the PFR approach) between model
parameters with non-minimal coupling and minimal coupling of the scalar field and
torsion seems to be productive for the analysis of cosmological models based on the
scalar-torsion gravity.

This approach was previously considered in references [44–48] for the analysis of
cosmological models with non-minimal coupling between the scalar field and the Gauss–
Bonnet scalar; this PFR approach was also applied to the case of cosmological models based
on scalar-tensor gravity theories [49–53].

Within the framework of this PFR approach, the influence of the non-minimal coupling
of the scalar field and curvature (and the Gauss–Bonnet term) was considered based on cer-
tain relationships between the parameters of cosmological models with the on-minimal and
minimal coupling of the Friedman–Robertson–Walker space–time background concerning
background cosmological dynamics and the parameters of cosmological perturbations. In
this case, the problem with the correspondence of cosmological models to the observa-
tional constraints on the parameters of cosmological perturbations [54,55] is reduced to
determining the values of the model’s constants for arbitrary models [48,53].

In this paper, we consider the application of this PFR approach to the problems of
constructing and analyzing the models of cosmological inflation based on scalar-torsion
gravity theories with non-minimal coupling between the scalar field and torsion. The work
is organized as follows. Section 2 deals with the equations of cosmological dynamics and
their properties for inflationary models based on the scalar-torsion theory of gravity. Only
two of the three equations are independent, and any two of them can be used to fully
describe the cosmological dynamics. Section 3 proposes the description of cosmological
models based on the teleparallel equivalent of the general theory of relativity (TEGR).
In Section 4, we consider the cosmological models based on scalar-torsion gravity with the
power–law parametric connection between the Hubble parameter and coupling function
F ∼ Hn and formulate the conditions to construct phenomenological correct cosmological
models, which satisfy the modern observational data. Moreover, we consider two classes
of exact solutions (generalized and special ones) of cosmological dynamic equations for
these models. In Section 5, we consider the parameters of cosmological perturbations for
inflationary models based on scalar-torsion gravity with the power–law connection F ∼ Hn

and compare them with the ones in the models based on TEGR. In Section 6, we reconstruct
scalar-torsion gravity theories based on the physical potential of a scalar field. The basis
of this approach is the verification of a cosmological inflationary model with physical
potential that does not meet the observational constraints for the TEGR case. Modification
of the gravity theory makes it possible to verify inflationary models in accordance with
observational data. Scalar-torsion gravity obtained by this method corresponds to a non-
minimal coupling for a small field. Finally, Section 7 presents our summary.
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2. Cosmological Models Based on the Scalar-Torsion Gravity

The action for cosmological models based on scalar-torsion gravity can be written as
follows [20–22]

S =
∫

d4x e
[
−1

2
F(φ)T − 1

2
ω(φ)∂µφ∂µφ−V(φ)

]
, (1)

where e = det (eA
µ) =

√−g, eA
µ is the tetrad field, F(φ) is a coupling function between the

scalar field φ and torsion scalar T, ω(φ) is a kinetic function and V(φ) is the potential of a
scalar field.

The diagonal tetrad field

eA
µ = diag(1, a, a, a), (2)

corresponds to the flat Friedmann–Robertson–Walker (FRW) metric

ds2 = −dt2 + a2 δijdxidxj, (3)

where a = a(t) is the scale factor and t is the cosmic time.
The background equations corresponding to the action (1) for the flat FRW metric (3)

are [20–22]

E1 ≡ 3H2F− 1
2

ωφ̇2 −V(φ) = 0, (4)

E2 ≡ 3H2F +
1
2

ωφ̇2 −V(φ) + 2HḞ + 2FḢ = 0, (5)

E3 ≡ ωφ̈ + 3ωHφ̇ +
1
2

φ̇2ω′ + 3H2F′ + V′ = 0, (6)

where an overdot represents a derivative with respect to the cosmic time t, H ≡ ȧ/a denotes
the Hubble parameter and the torsion scalar is connected with the Hubble parameter as
T = 6H2 and F′ ≡ ∂F/∂φ.

First, by direct substitution, one can check that Equations (4)–(6) are connected by
the relation

φ̇E3 + Ė1 + 3H(E1 − E3) = 0, (7)

similar to the case of the scalar-tensor gravity [49–53].
However, we note that the equations of cosmological dynamics (4)–(6) themselves

differ from the equations of dynamics for the scalar-tensor gravity case, which contains
additional terms [49–53].

Thus, there are only two independent equations in this system, and one can consider
any two equations that completely describe the cosmological dynamics.

3. Cosmological Models with Minimal Coupling F = 1

For the case of minimal coupling F = 1, scalar-torsion gravity is reduced to the
teleparallel equivalent of general relativity (TEGR).

For TEGR, under conditions F = 1 and ω = 1, dynamic Equations (4)–(6) are
reduced to

3H2 =
1
2

φ̇2 + V(φ), (8)

−3H2 − 2Ḣ =
1
2

φ̇2 −V(φ), (9)

φ̈ + 3Hφ̇ + V′ = 0, (10)

which also correspond to the case of inflationary models based on general relativity [1,2].
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In this system of equations, the two equations are independent; moreover, we can
represent the equations, which define the dynamics of the early universe as [2]

V(φ) = 3H2 + Ḣ, (11)

X =
1
2

φ̇2 = −Ḣ. (12)

One can also use the condition of minimal coupling F = 1 only and redefine the scalar
field in Equations (4)–(6) as ϕ =

∫ √
ω(φ)dφ, which leads to the same Equations (8)–(10) in

terms of a new scalar field ϕ.
For analyses of such models, including the exact solutions, construction, and analysis

of the cosmological perturbations, see, for example, [2].
We also consider compliance with the conditions for the scalar field to slowly roll

down to the minimum of the potential, which implies the predominance of the potential
over the kinetic energy X � V for the accelerated expansion of the early universe at the
inflationary stage.

Now, we define the reduced potential Ṽ and reduced kinetic energy X̃ as follows

Ṽ =
V
H2 = 3− ε, (13)

X̃ =
X
H2 = ε, (14)

where ε = − Ḣ
H2 is the slow-roll parameter.

Under conditions of the quasi-de Sitter-accelerated expansion of the early universe
ε � 1, from (13) and (14), we obtain X̃ � Ṽ and X � V. Thus, slow-roll conditions are
satisfied for inflationary models based on TEGR (similar to the case of GR) when ε� 1.

Thus, the analysis of the equations of cosmological dynamics based on TEGR corre-
sponds to the case of general relativity.

4. Cosmological Models with Non-Minimal Coupling F 6= const

To analyze the cosmological models under consideration, we represent the first two
equations of systems (4)–(6) in the following form

V(φ) = 3H2F +
d
dt
(FH), (15)

X =
1
2

ω(φ)φ̇2 = − d
dt
(FH). (16)

For minimal coupling, F = 1 and ω = 1 expressions (15) and (16) are reduced to
dynamic Equations (11) and (12) for TEGR.

Now, we rewrite Equations (15) and (16) in terms of the generating function

G(t) ≡ H(t)F(t), (17)

as follows

V(φ) = 3HG + Ġ, (18)

X =
1
2

ω(φ)φ̇2 = −Ġ. (19)

Thus, to analyze cosmological models based on scalar-torsion gravity, it is necessary
to consider a special form of the generating function G.

For the case F = 1 from (17), we obtain G = H, and dynamic Equations (18) and (19)
are reduced to (11) and (12) for TEGR.
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4.1. The Special Kind of the Generating Function

In the general case, one can analyze models of cosmological inflation based on scalar-
torsion gravity for an arbitrary function G = G(t).

Nevertheless, we are interested in the parametrization of the influence of the non-
minimal coupling between torsion and the scalar field, which must also imply the fulfill-
ment of the slow-roll conditions on the inflationary stage and the reduction of the model
to the de Sitter one for the case of the minimal coupling F = 1 (the cosmological models
based on this approach for the scalar-tensor gravity theories with non-minimal coupling
between the scalar field and curvature were considered earlier in [49–53]).

To satisfy these requirements, we consider the following generating function

G(H) =
1

λn Hn+1, (20)

with the corresponding power–law connection between the coupling function and the
Hubble parameter

F(φ(t)) =
(

H(t)
λ

)n
, (21)

where λ and n are some constants.
After the substitution of the connection (21) into Equations (15) and (16), we obtain

V(φ) =
Hn

λn

[
3H2 + (n + 1)Ḣ

]
, (22)

X(φ, φ̇) ≡ 1
2

ω(φ)φ̇2 = −Hn

λn (n + 1)Ḣ. (23)

Let us analyze the system (21)–(23) for different values of the parameter n, namely:

• For n = 0, one has F = 1, and Equations (22) and (23) are reduced to (11) and (12) for
the minimal coupling (TEGR).

• For n 6= 0 and F = 1, one has H = λ = const, a(t) ∼ exp(λt), V = 3λ2, and X = 0.
These solutions correspond to the de Sitter stage for TEGR, where the pure exponential
expansion of the universe is induced by the cosmological constant Λ = V = 3λ2.

• For n 6= 0 and F = F(t) 6= const, one has cosmological models based on scalar-torsion
gravity, which is reduced to the de Sitter solutions coinciding with the case of TERG
for H = λ = const.

Thus, for the models based on the power–law connection between the coupling
function and the Hubble parameter (21) with n 6= 0, the non-minimal coupling between
the torsion and scalar field induces the deviations of cosmological dynamics from the pure
exponential expansion, the deviations of the potential from the flat one, and the evolution
of the scalar field itself.

Now, we define the reduced potential Ṽ and reduced kinetic energy X̃ as follows

Ṽ =
λn

Hn+2 V = 3− (n + 1)ε, (24)

X̃ =
λn

Hn+2 X = (n + 1)ε. (25)

Under the quasi-de Sitter accelerated expansion of the early universe ε� 1, from (24)
and (25) we obtain X̃ � Ṽ, and X � V for |n + 1|ε� 1.

Thus, the slow-roll conditions for the inflationary models based on scalar-torsion
gravity with the power–law connection (21) between the coupling function and the Hubble
parameter are similar to TEGR under condition |n + 1| ∼ 1.
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4.2. The Conditions of the Non-Minimal Coupling Function

We also consider the following condition on the coupling function

F(t→ ∞) = 1, (26)

i.e., we will consider inflationary models, which are reduced to the TEGR models with
cosmological constants at large times.

This condition first allows one to explain the second accelerated expansion of the
universe at large times within the framework of the ΛCDM model [56], since under
condition (26) the models under consideration are reduced to the ΛCDM model with
a cosmological constant

Λ = V = 3λ2 = const., (27)

and taking into account the other material fields at large times, namely baryonic and
dark matter, we obtain the ΛCDM model, which has good correspondence with modern
observational data [57,58].

Secondly, we can consider a wide class of generalized models of scalar-torsion gravity
with arbitrary coupling F = F(φ) and kinetic ω = ω(φ) functions at the inflationary stage,
taking into account condition (26), since at large times, such models will be reduced to
TEGR, satisfying the modern observational tests, similar to GR [59].

4.3. General Exact Solutions of the Dynamic Equations

Since the accelerated expansion of the early universe and conditions (21) and (26)
restrict the possible types of inflationary dynamics, we will determine the Hubble parameter
H = H(t) to construct and analyze the cosmological models.

Using the following expression,

φ̇ =
dφ

dH
dH
dt

=

(
dH
dφ

)−1
Ḣ, (28)

from (21)–(23) we obtain the parameters of inflationary models

V(φ) =
Hn

λn

[
3H2 + (n + 1)Ḣ

]
, (29)

ω(φ) = −2
(

H
λ

)n(dH
dφ

)2(n + 1
Ḣ

)
, (30)

F(φ) =
(

H(φ)

λ

)n
, (31)

with two additional equations

Ḣ = Ḣ(H), (32)

H(φ) = H(t). (33)

Thus, for the chosen Hubble parameter as a function of cosmic time H = H(t), one can
define dependence (32) in explicit form, and for the chosen Hubble parameter as a function
of the scalar field H = H(φ), one can obtain the evolution of the scalar field φ = φ(t) from
Equation (33) and reconstruct the potential of a scalar field V(φ) and the parameters of
scalar-torsion gravity from expressions (29)–(31) as well.
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4.4. Special Class of Exact Solutions of Dynamic Equations

We also consider the special class of exact cosmological solutions implying the same
scalar field evolution φ = φ(t) and the Hubble parameter H = H(t) for TERG and scalar-
torsion gravity under consideration

φ = φTEGR, H = HTEGR, V 6= VTEGR. (34)

In this case, the non-minimal coupling scalar field with torsion changes its potential
only, i.e., it affects the character of realization of the inflationary stage for the models of the
early universe under consideration.

With this aim, we consider the following kinetic function

ω(φ) =
Hn

λn (n + 1) = (n + 1)F(φ). (35)

In this case, Equations (22) and (23) are reduced to

V(φ) =
Hn

λn

[
3H2 + (n + 1)Ḣ

]
, (36)

1
2

φ̇2 = −Ḣ, (37)

where the second equation is the same as the one for TERG (12), however, the potential is
different from one for TERG (11).

5. The Parameters of Cosmological Perturbations

In accordance with the theory of cosmological perturbations, quantum fluctuations of
the scalar field induce the corresponding perturbations of the space–time metric during the
inflationary stage. In the linear order of the cosmological perturbation theory, the observed
anisotropy and polarization of the cosmic microwave background radiation (CMB) [1,2]
are explained by the influences of two types of perturbations—scalar and tensor.

Observational constraints on the parameters of cosmological perturbations due to the
modern observations of the anisotropy and polarization of CMB are [54,55]

PS = 2.1× 10−9, (38)

nS = 0.9663± 0.0041, (39)

r < 0.032. (40)

The cosmological perturbation parameters for inflationary models (based on scalar-
torsion gravity for an arbitrary type of coupling between the scalar field and torsion) were
considered early; see [21].

When the slow-roll conditions are satisfied, the expressions for the parameters of cos-
mological perturbations on the crossing of the Hubble radius (k = aH) for the models with
the power–law connection (21), due to results obtained in [21], can be written as follows

PS =
H2

8π2QS
= − H4

8π2Ġ
, (41)

PT =
H2

2π2QT
=

2H2

π2F
, (42)

nS − 1 = −2ε− Q̇S
HQS

= −4ε− G̈
HĠ

= −4ε + 2δST , (43)

r =
PT
PS

= 4
QS
QT

= 16
(

ε− Ḟ
HF

)
= −16

(
Ġ

HG

)
= 16εST , (44)
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where

QS =
ωX
H2 = − 1

H2
d
dt
(FH) = − Ġ

H2 , QT =
1
4

F, (45)

εST = − Ġ
HG

, δST = − G̈
2HĠ

, (46)

and we define the new slow-roll parameters (εST and δST) for inflationary models based on
scalar-torsion gravity, reduced to the usual ones, i.e., εST → ε and δST → δ for the cases
involving minimal coupling (F = 1 and G = H).

Thus, the slow-roll conditions for inflationary models based on action (1) can be
formulated as follows

ε� 1, εST � 1, δST � 1, (47)

which restrict possible types of the Hubble parameter H = H(t) and generate function
G = FH.

Moreover, the values of the parameters of cosmological perturbations do not depend
on the type of the kinetic function ω = ω(φ).

To compare the predictions of the inflationary model with the observational data
of CMB anisotropy, two parameters of cosmological perturbations should be considered,
namely, the spectral index of scalar perturbations nS and the tensor–scalar ratio r if one can
obtain the dependence r = r(nS) in explicit form (since the condition (38) can always be
met by choosing the model’s constant parameters).

5.1. The Case of Inflationary Models Based on TEGR

For the case of minimal coupling F = 1, one has G = H, εST = ε, δST = δ and
expressions (41)–(44) for parameters of cosmological perturbations are reduced to well-
known ones

PS = − H4

8π2Ḣ
=

1
2ε

(
H
2π

)2
, (48)

nS − 1 = −4ε + 2δ, (49)

r =
PT
PS

= 16ε, (50)

where

δ = − Ḧ
2HḢ

� 1, (51)

is the second slow-roll parameter.
Thus, parameters of cosmological perturbations for inflationary models based on

TEGR are the same as ones for the case of general relativity [1,2].

5.2. Inflationary Models Based on Scalar-Torsion Gravity with Connection F ∼ Hn

From the definition of the slow-roll parameters (46) for the generating function (20),
one has

εST = −(n + 1)
Ḣ
H2 = (n + 1)ε, (52)

δST = −n
2

Ḣ
H2 −

Ḧ
2HḢ

=
n
2

ε + δ. (53)

Thus, slow-roll conditions are satisfied for the models with a power–law connection
between the Hubble parameter and the coupling function (21), when |n|ε� 1 and δ� 1.
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After substituting (52) and (53) into (41)–(44), we obtain

PS =
λn

2(n + 1)ε

(
H
2π

)2
, (54)

nS − 1 = (n− 4)ε + 2δ, (55)

r =
PT
PS

= 16(n + 1)ε, (56)

where from Equation (56) one has the following restriction on the constant parameter
n > −1 when taking into account the condition ε ≥ 0.

Since the parameters of cosmological perturbations are determined based on the
Hubble parameter H = H(t) only, the parameters of cosmological perturbations for the
case of general (28)–(33) and special (35)–(37) exact solutions of cosmological dynamics
equations will be the same for the same Hubble parameter.

For case n = 0, expressions (54)–(56) for the parameters of cosmological perturbations
for non-minimal coupling are reduced to (48)–(50) for minimal coupling.

This result allows us to estimate the value of the parameter n for different inflationary mod-
els, using observational constraints on the values of parameters of cosmological perturbations.

6. Cosmological Models Based on Scalar-Torsion Gravity with Connection F ∼ Hn

Now, we consider the inflationary models based on scalar-torsion gravity with the
power–law connection between the coupling function and the Hubble parameter (21).
In this case, we are more interested in a special class of exact cosmological solutions to
illustrate the influence of the non-minimal coupling of the scalar field and torsion on the
potential of the scalar field and the parameters of cosmological perturbations. For these
purposes, we consider models of cosmological inflation that do not comply with the
observational constraints on the values of the parameters of cosmological perturbations.
In this case, the observational constraints will be interpreted as conditions on the parameters
of reconstructed scalar-torsion gravity models.

Nevertheless, we note that similar constraints can be used in the analysis of scalar-
torsion gravity models obtained based on generalized solutions of the equations of cosmo-
logical dynamics.

6.1. The Hyperbolic Inflationary Model

First, we consider the inflationary models with the Hubble parameter [2,4]

H(t) = λ coth(λβt), (57)

Ḣ = −β(H2 − λ2), (58)

where the constant β > 0.
The corresponding scale factor is

a(t) = a0 sinh1/β(λβt), (59)

where a0 is the initial value of the scale factor.
Note that the scale factor (59) reduces to that of the flat ΛCDM-model for β = 3/2 and

Λ =
√

λ/3 (see, for example, in [60]).
Moreover, inflationary models with the Hubble parameter (57) were also considered

in the context of constant-roll inflation [61].
Moreover, we define the e-folds number for this model as follows

N(t) = ln
(

a(t)
a0

)
=

1
β

ln[sinh(λβt)], (60)
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where its value at the beginning of inflation is N(t = tbeg) = 0, and at the end of the
inflationary stage is N(t = tend) ' 60.

From expressions (52)–(53) and (57), we obtain the following slow-roll parameters for
this inflationary model

ε =
β

cosh2(λβt)
, δ = β = const. (61)

Thus, to satisfy slow-roll conditions ε� 1 and δ� 1, we will consider the following
values of the constant parameter β� 1.

The coupling function (21) corresponding to the Hubble parameter (57) is

F(t) =
(

H(t)
λ

)n
= cothn(λβt), (62)

thus, condition (26) is satisfied for any value of the constant n.
Thus, at large times t → ∞, one has H = λ and F = 1 from (57) and (62), φ = 0,

V = 3λ2, and ω = 1 from (22) and (23), which correspond to the case of the cosmological
constant and TEGR.

Therefore, at large times, this cosmological model is reduced to the ΛCDM one for
any model’s parameters.

6.1.1. The Generalized Exact Solutions

Based on expressions (29)–(33), we can define the generalized exact solutions of
cosmological dynamic Equations (22) and (23), as well as the Hubble parameter (57)
as follows:

V(φ) =
Hn

λn

[
(3− β(n + 1))H2 + β(n + 1)λ2

]
, (63)

ω(φ) = 2
(

1 + n
β

)
Hn

λn(H2 − λ2)

(
dH
dφ

)2
, (64)

F(φ) =
(

H(φ)

λ

)n
, (65)

H(φ) = λ coth(λβt). (66)

Thus, in a general case, we can consider cosmological models with the Hubble pa-
rameter (57) for the scalar field evolution φ = φ(t), potential V = V(φ), coupling function
F = F(φ), and kinetic function ω = ω(φ), which are defined by the choice of the Hubble
parameter H = H(φ) as the generating function, which depends on the scalar field.

6.1.2. The Special Class of Exact Solutions

The exact solutions of Equations (36) and (37) for the Hubble parameter (57) can be
written as follows:

φ(t) =

√
2
β

[
± ln

(
eλβt + 1

)
∓ ln

(
eλβt − 1

)]
, (67)

H(φ) = λ cosh

(√
β

2
φ

)
, (68)

V(φ) = λ2

[
(3− β(n + 1)) coshn+2

(√
β

2
φ

)
+ β(n + 1) coshn

(√
β

2
φ

)]
, (69)
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and, taking into account expressions (21) and (35), we obtain

F(φ) = coshn

(√
β

2
φ

)
, (70)

ω(φ) = (n + 1) coshn

(√
β

2
φ

)
. (71)

Taking into account condition β� 1, from (69), we obtain the following expression
for the scalar field potential

V(φ) ' 3λ2 coshn+2

(√
β

2
φ

)
, (72)

in the slow-roll approximation.

Moreover, under conditions
√

β
2 φ � 1 and |n| ∼ 1 from (69), we obtain the non-

minimal coupling at the first order

F(φ) = 1 +
nβ

4
φ2 +O

(
φ4
)
' 1− ξφ2, (73)

where ξ = − nβ
4 is the coupling constant [39,40].

For the partial case of minimal coupling n = 0 from (67)–(71), we obtain

V(φ) = λ2

[
(3− β) cosh2

(√
β

2
φ

)
+ β

]
, (74)

with F = 1, ω = 1 and the same scalar field evolution φ = φ(t) and the Hubble parameter
H = H(φ).

Under the condition β� 1, from (74), we have

V(φ) ' 3λ2 cosh2

(√
β

2
φ

)
, (75)

and, thus, the main effect of the non-minimal coupling of the scalar field and torsion is the
“shift” in the power of the hyperbolic cosine.

To estimate the value of this shift, it is necessary to find the possible values of the constant
parameter n from observational constraints on the parameters of cosmological perturbations.

6.1.3. The Parameters of Cosmological Perturbations

To analyze the correspondence of this inflationary model to the observational con-
straints on the parameters of cosmological perturbations (38)–(40), we first consider the
dependence tensor-to-scalar ratio from the spectral index of scalar perturbations.

Using expressions (55)–(56) and (61), we obtain

r =
16(1 + n)(2β + 1− nS)

4− n
, (76)

and, taking into account condition β� 1, from (76), we obtain the expression

r ' 16
(

1 + n
4− n

)
(1− nS). (77)
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Thus, the model’s constant parameter n can be expressed in terms of the parameters
of cosmological perturbations as follows

n =
4r− 16(1− nS)

r + 16(1− nS)
. (78)

After substituting the observational constraints (39) and (40) into (78), we obtain the values
of the parameter n due to these constraints

−1 < n < −0.69, (79)

where the restriction n > −1 follows from the conditions of non-zero tensor perturbations
r 6= 0.

Therefore, the hyperbolic inflationary model based on TEGR (minimal coupling n = 0)
does not correspond to the observational constraints on the parameters of the cosmological
perturbations, and for scalar-torsion gravity, the non-minimal coupling constant in the
expression for the coupling function (73) is positive ξ > 0.

In Figure 1, the dependence (77) for the inflationary model with the Hubble param-
eter (57) is represented. As a criterion for verifying inflationary models according to
observational constraints on the values of the parameters of cosmological perturbations,
we will consider that the values of the tensor-to-scalar ratio r and the spectral index of
scalar perturbations nS fall into the inner region corresponding to a 95% confidence level.
Thus, Figure 1 demonstrates the previously obtained condition (79) for inflationary models
under consideration.

Figure 1. The dependencies r = r(nS) for different values of the parameter n = 0,−0.7,−0.9 with con-
straints on the tensor-to-scalar ratio r due to the Planck TT,TE,EE+lowE+lensing+BAO+BICEP2/Keck
Array observations [54,55].

Taking into account expression (60), we define the Hubble parameter and the first
slow-roll parameter in terms of the e-fold number

H(N) = λ
(

1 + e2βN
)1/2

e−βN , (80)

ε = β
(

1 + e2βN
)−1

. (81)

From Equations (56) and (81), we have

r =
16(1 + n)β

1 + e2βN . (82)

This function has a maximum for 2β0N = 1 + W(1/e), where W is the Lambert function
and W(1/e) ' 0.28. Thus, we have β0 ' 0.64/N, and for N ' 60, we obtain β0 ' 0.01.
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This gives the maximal value for the tensor-to-scalar ratio

rmax ' 0.038(1 + n), (83)

and for |n| � 1, this is in agreement with constraint (40).
Nevertheless, after substituting β ' 0.01 and expression (83) with the condition

|n| � 1 into (76), we obtain nS ' 1, which does not correspond with constraint (39). Thus,
conditions (79) on the constant parameter n are the correct ones for the verifiable hyperbolic
inflationary model based on scalar-torsion gravity.

Moreover, from Equation (54) and conditions N ' 60 and β ' 10−2, we obtain the
expression

PS(N ' 60) =
λn+2

32π2(n + 1)β
cosh2(βN) = 2.1× 10−9, (84)

which gives the following restriction on the parameter 10−12 < λ < 10−8 for δ = β ' 10−2,
and the non-minimal coupling constant ξ = − nβ

4 ≤ 0.0025 corresponding to weak coupling
with a positive coupling constant.

Therefore, one can use constraints (79) and (84) on the constant parameters to analyze
inflationary models with cosmological dynamics (59) for the other potential, the evolution of
a scalar field and the type of scalar-torsion gravity, which can be obtained from generalized
solutions (63)–(66) for the Hubble parameter H = H(φ), differing from (68).

Thus, the inflationary models with the hyperbolic expansion law of the early universe
can be verified by observational constraints on the values of the parameters of cosmological
perturbations by taking into account the non-minimal coupling between the scalar field
and torsion.

6.2. Inflation with Double-Well Potential

Now, we consider the inflationary model with the following Hubble parameter and
scale factor [2,4,46]

H(t) = λ + α exp(−βt), (85)

Ḣ = −β(H − λ), (86)

a(t) = a0 exp
(

λt− α

β
e−βt

)
. (87)

Moreover, we define the e-fold number for this model as follows

N(t) = ln
(

a(t)
a0

)
= λt− α

β
e−βt, (88)

where its value at the beginning of inflation is N(t = tbeg) = 0, and at the end of the
inflationary stage is N(t = tend) ' 60.

From expressions (52)–(53) and (85), we obtain the following slow-roll parameters for
this inflationary model:

ε =
αβe−βt

(λ + αe−βt)2 , δ =
β

2(λ + αe−βt)
, (89)

where slow-roll conditions ε� 1 and δ� 1 are satisfied when β ∼ λ and α� λ; moreover,
the slow-roll parameters are decreasing functions.

The coupling function is

F(t) =
(

1 +
α

λ
exp(−βt)

)n
, (90)
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thus, condition (26) is satisfied for any value of the constant n.
Thus, at large times t→ ∞, one has H = λ and F = 1 from (57) and (62), and φ = 0,

V = 3λ2 and ω = 1 from (22) and (23), which correspond to the cases of the cosmological
constant and TEGR.

Therefore, at large times, this cosmological model is reduced to the ΛCDM one for
any model’s parameters.

6.2.1. Generalized Exact Solutions

From expressions (28)–(33), taking into account (85) and (86), the general solutions of
dynamic equations for these models can be written as follows

V(φ) =
Hn

λn

[
3H2 − β(n + 1)(H − λ)

]
, (91)

ω(φ) =
2
β

(
H
λ

)n( n + 1
H − λ

)(
dH
dφ

)2
, (92)

F(φ) =
(

H(φ)

λ

)n
, (93)

H(φ) = λ + α exp(−βt), (94)

where H = H(φ) can be considered the generating function.

6.2.2. Special Class of Exact Solutions

For the Hubble parameter (85) from Equations (35)–(37), we obtain

φ(t) = ±2
√

2
α

β
exp

(
− β

2
t
)

, (95)

H(φ) = λ +
β

8
φ2, (96)

V(φ) = 3λ2
(

1 +
β

8λ
φ2
)n+2

− β2

8
(n + 1)

(
1 +

β

8λ
φ2
)n

φ2, (97)

F(φ) =
(

1 +
β

8λ
φ2
)n

, (98)

ω(φ) = (n + 1)
(

1 +
β

8λ
φ2
)n

. (99)

Under conditions β
8λ φ2 � 1 and β ∼ λ, corresponding to the small field φ � 1

from (98), we obtain the non-minimal coupling at the first order

F(φ) = 1 +
nβ

8λ
φ2 +O

(
φ4
)
' 1− ξφ2, (100)

where ξ = − nβ
8λ is the coupling constant [39,40].

Moreover, under condition φ� 1 from (97), we obtain double-well potential [62,63]

V(φ) ' Aφ4 + Bφ2 + 3λ2, (101)

where

A =
β2(n + 1)

64

[
3
2
(n + 2)− β

λ
n
]

, (102)

B =
β

8
[3λ(n + 2)− β(n + 1)]. (103)
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For the partial case of minimal coupling n = 0 from (95)–(99), we obtain the double-
well potential as well:

V(φ) =
3β2

64
φ4 +

β

8
(6λ− β)φ2 + 3λ2, (104)

with F = 1, ω = 1, the same scalar field evolution φ = φ(t), and the Hubble parameter
H = H(φ).

Both potentials, exact (97) and approximate (101), are reduced to (104) for n = 0.
Moreover, the difference between potentials (101) and (104) is defined by the values of the
constant parameters, i.e., by the constant n.

Moreover, the spontaneous symmetry breaking in these inflationary models depend
on the value of the constant n, namely, for the case n = 0 for potential (104), this condition
is β > 6λ, and for potential (101), this condition is modified as β > 3λ

( 2+n
1+n

)
.

As in the previous case, we will define the influence of the non-minimal coupling of
a scalar field and torsion from observational constraints on the parameters of cosmologi-
cal perturbations.

6.2.3. The Parameters of Cosmological Perturbations

To analyze the correspondence of this inflationary model to the observational con-
straints on the parameters of cosmological perturbations (38)–(40), we first consider the
dependence tensor-to-scalar ratio from the spectral index of scalar perturbations.

From expression (89), for the case β ∼ λ, we obtain

ε = −4
λ

β
δ2 + 2δ ' 2δ. (105)

Thus, from expressions (55)–(56) and (105), we have

r ' 16
(

1 + n
3− n

)
(1− nS). (106)

which restrict the possible values of the constant model’s parameter n due to the observa-
tional constraints.

The constant parameter n can be expressed in terms of the parameters of cosmological
perturbations, as follows

n =
3r− 16(1− nS)

r + 16(1− nS)
, (107)

and after substituting observational constraints (39) and (40) into this expression, we obtain

−1 < n < −0.75. (108)

Thus, the inflationary models with double-well potential can be verified by obser-
vational constraints on the values of the parameters of cosmological perturbations by
taking into account the non-minimal coupling between the scalar field and torsion with
a power–law connection between the coupling function and the Hubble parameter (21),
where constant parameter n is restricted by conditions (108).

In Figure 2, the dependence (77) of the inflationary model with the Hubble parame-
ter (85) demonstrates the previously obtained condition (108) for the inflationary model
under consideration.
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Figure 2. The dependencies r = r(nS) of different values of the parameters n = 0,−0.8,−0.9 with con-
straints on the tensor-to-scalar ratio r due to the Planck TT,TE,EE+lowE+lensing+BAO+BICEP2/Keck
Array observations [54,55].

From the definition of the slow-roll parameter ε = −Ḣ/H2 for the Hubble parameter
(85), we obtain

ε =
β(H − λ)

H2 . (109)

After substituting (109) into (54), and taking into account β ∼ λ and the quasi-de Sitter
expansion of the early universe at the first inflationary stage H ' λ + α ' α, we obtain
following condition on the constant parameters of the model

PS =
λn

8π2(n + 1)β

(
H4

H − λ

)
' α3λn−1

8π2(n + 1)
' 2.1× 10−9. (110)

Moreover, for β ∼ λ and (108), we obtain ξ ' 0.1 in expression (100), which corre-
sponds to a weak coupling with the positive coupling constant.

Finally, one can use constraints (108) and (110) on the constant parameters to analyze
inflationary models with cosmological dynamics (87) for the other scalar-torsion gravity
and parameters of cosmological models, which can be obtained from generalized solutions
(91)–(94) for the Hubble parameter H = H(φ), which differs from (96).

7. Conclusions

In this paper, we considered the influence of the non-minimal coupling of the scalar
field and torsion in the models of cosmological inflation based on scalar-torsion theories of
gravity compared to the teleparallel equivalent of general relativity.

To analyze the influence of non-minimal coupling, we considered a special case of
a power–law relationship between the non-minimal coupling function and the Hubble
parameter F = (H/λ)n, where the constant parameter n determines the specifics of this
relationship and influences, the non-minimal coupling between the scalar field and torsion
on the background parameters, and the parameters of cosmological perturbations.

As an example of this approach, we considered the models of cosmological inflation
with hyperbolic cosine and double-well potentials based on TEGR and scalar-torsion
gravity. The main motivation for considering these models was to fulfill condition (26),
i.e., the transition of these cosmological models to the ΛCDM-models at large times. Thus,
the effects of scalar-torsion modifications of the teleparallel equivalents of general relativity,
in this case, are reduced to corrections to the potential and the values of the cosmological
perturbation parameters.

Moreover, the generalized exact solutions (63)–(66) and (91)–(94) allow us to consider
other types of scalar field potentials for these models. The restrictions on parameter



Symmetry 2023, 15, 291 17 of 19

n, which follow from the observational restrictions on the values of the parameters of
cosmological perturbations, are also valid for generalized exact solutions.

For a special class of exact solutions, the influences of the non-minimal coupling
of the field and torsion on the potential and values of the parameters of cosmological
perturbations were estimated. Moreover, the reconstructed functions of non-minimal
coupling (that determine the type of scalar-torsion of gravity for a small field) are reduced
to non-minimal coupling.

Non-minimal coupling of the field and torsion affect the verification of these infla-
tionary models by observational constraints. The procedure for verifying cosmological
inflation models is reduced to estimating the constant parameters n and λ.

The estimates obtained for these parameters can be used in constructing other infla-
tionary models with the considered cosmological dynamics based on other potential and
types of scalar-torsion gravity following from the presented generalized solutions of the
cosmological dynamics equations.

The prospect of developing the proposed approach involves its generalization in
the case of f (T)-gravity with non-minimal coupling between the scalar field and torsion,
which implies other ways of parameterizing the influence of non-minimal coupling on the
nature of the implementation of the inflationary stage of the evolution of the early universe.
Moreover, the development of the proposed approach involves the reconstruction of the
spectra of relic gravitational waves in these inflationary models to assess the possibility of
their registrations.
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