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Abstract: Symmetry widely exists in many complex and real-world networks, with flower networks
and sunflower networks being two richly symmetric networks and having many practical applications
due to their special structures. The number of subtrees (the subtree number index) is closely related to
the reliable network design. Using a generating function, structural analysis techniques, and auxiliary
structure introduction, this paper presents the subtree generating functions of flower networks
Fln,m(n ≥ 3, m ≥ 2) and sunflower networks S fn,m(n ≥ 3, m ≥ 2) and, thus, solves the computation
of subtree number indices of Fln,m(n ≥ 3, m ≥ 2) and S fn,m(n ≥ 3, m ≥ 2). The results provide a
fundamental and efficient method for exploring novel features of symmetric complex cyclic networks
from the structural subtree number index perspective. For instance, we conclude that under some
parameter constraints, the flower networks are more reliable than sunflower networks.

Keywords: flower networks; sunflower networks; generating function; subtree number index; struc-
ture analysis; auxiliary cyclic chain

1. Introduction

Local connections between the interacting system components and the dynamics of
the underlying physical process can be illustrated effectively in a graph. It can also be used
to illustrate the microscale channels in an aporous medium, with the vertices presenting as
pores and the edges presenting as channels which connect the pores. The analysis of certain
graph parameters is one of the central problems in theoretical computer science because
of their extensive implicit applications; see [1–4]. Over the past few decades, a family
of more than 400 topological indices (TIs) has substantially gained significance among
the graph parameters. Due to their applications, TIs such as Wiener index [5–7], Szeged
index [8,9], subtree index [10–13], and Zagreb index [14–16] received particular attention
among these parameters. Among these structural TIs, the subtree number index of a graph
(the number of all nonempty subtrees of a graph) plays a vital role in measuring the stability
of a network [17], especially in the case of both vertex and edge failure. Moreover, it also
presents applications in the multiple sequence parsimony alignment of pedigree trees
(evolutionary trees) [18], characterizing the physio-chemical and structural characteristics
of molecular graphs. According to earlier research, the well-known Wiener index, Randić
index, and Harary index [19–21] are strongly related to the subtree number index.

It is well known that the problem of enumerating the number of subtrees of a general
graph is NP complete. In fact, the problem of counting subtrees of most complex graphs
has not been solved yet, except trees [11–13], unicyclic and bicyclic graphs [22], and regular
chemical molecule [23]. In 2005, Székely et al. [10] comprehensively studied the subtree
problems for trees. In 2006, Yan et al. [11] proposed an efficient linear time algorithm
to enumerate subtrees of a tree using a generating function. Later, many researchers
investigated the extremal problems for subtrees [24,25]. Moreover, through a weight
contract and a generating function, Yang et al. [26–28] solved the subtree number of spiro-
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and polyphenyl hexagonal chains, hexagonal chain graphs, phenylene chain graphs, and
tricyclic graphs. In 2018, Chin et al. [29], via generating functions, obtained the number of
subtrees of complete (complete bipartite) graphs and theta graphs. More recently, in 2020,
Dong et al. [17] proposed algorithms for computing the subtrees of the three-cactus network
by assigning the two tuple weight to the vertices and using the technique of contracting the
circle weight. In 2021, by constructing a new generating function, Yang et al. [12] proposed
a new recursive (fast) algorithm to enumerate certain subtrees and BC-subtrees of the tree
graph. By introducing a five tuple weight, in 2022, Abolfazl et al. [30] proposed a more
efficient algorithm for computing subtrees and BC-subtrees of trees.

Symmetry is one of the core structural features of many complex and real-world
networks, and it is closely related to the reliable network design; the study of symmetric
complex network structures is attracting more and more attention worldwide [31–33]. On
the other hand, the wheel graphs, flower networks, and sunflower networks are typical
highly symmetric complex networks and have many practical applications due to their
special structures. In 2017, Daoud [34] obtained the number of spanning trees and studied
the asymptotic spanning tree properties of flower networks and sunflower networks. In
2018, Kaliraj et al. [35] obtained the star edge chromatic number of the corona product of a
path with a wheel graph. In 2019, Zahid et al. [36] explored the combinatorial aspects of
the spanning simplicial complex of a wheel graph. In 2020, Ali et al. [37] studied three-total
edge product cordial labeling of sunflower networks. In 2022, Sathiya et al. [38] solved
the equitable edge-coloring problem of wheel graphs. In the same year, Kaabar et al. [39]
investigated the upper bounds of the radio number and radial radio number of sunflower-
extended networks. However, there are few studies on the TIs of the sunflower networks
and flower networks; moreover, it is well known that the subtree number index is closely
related to the reliable network design. The key objective of this paper is to solve the subtree
enumeration problem for flower networks and sunflower networks.

This paper is structured as follows: Section 2 presents notations, definitions, and
lemmas. In Section 3, we started by solving the subtree generating function (SGF) of fan
flower networks FFln,m(n ≥ 1, m ≥ 2) and went on to solve the SGF problem of the flower
networks Fln,m(n ≥ 3, m ≥ 2). In Section 4, through an auxiliary cyclic chain and by
computing its corresponding SGF, we solved the SGF problem of sunflower networks
S fn,m(n ≥ 3, m ≥ 2). We also briefly discussed the behavior of the subtree numbers in
the flower graphs and sunflower graphs in Section 5. Lastly, we conclude our research in
Section 6 and identify certain deep problems for upcoming work.

2. Terminologies and Notations

We start the section by briefly recalling the necessary notions and lemmas which will
be utilized later. By G = (V(G), E(G); f , g), we denote a simple graph with a vertex set V
(with |V| = n) and an edge set E (with |E| = m), where f (g) is the vertex (edge) weight
function. For a tree T ∈ S(G), the weight of T is defined as ω(T) = ∏

v∈V(T),e∈E(T)
f (v)g(e).

Furthermore, the generating function of G (contain vertex v) is given by F(G; f , g) =

∏
T∈S(G)

ω(T) (F(G; f , g; v) = ∏
Ts∈S(G;v)

ω(Ts)). With the above notations, we denote η(G) =

F(G; 1, 1)(η(G; v) = F(G; 1, 1; v)) as all subtrees of G (containing v) in G. Some necessary
notions and notations are listed below:

• G\X denotes the graph produced after excluding X from G, where X may be a vertex
set or an edge set, or mixed set of vertices and edges).

• S(G) denotes the subtree set of G.
• S(G, X) denotes the subtree set containing X in G.



Symmetry 2023, 15, 284 3 of 17

Definition 1. Let Fn+1(n ≥ 1) be the fan graph that is constructed by connecting each vertex of
path Pn = c1c2 . . . cn with c0. Moreover, we call the graph constructed from Fn+1(n ≥ 1) the fan
flower graph FFln,m(n ≥ 1, m ≥ 2) (see Figure 1), by connecting each vertex pair ci and c0 with a
path of length m− 1.

Definition 2. Let Wn+1 be a wheel graph that is constructed by connecting each vertex ci(i =
1, 2, . . . , n) of the n vertex unicyclic graph with a vertex c0. Let Fln,m(n ≥ 3, m ≥ 2) (see Figure 2)
be a flower network constructed by connecting each vertex pair ci and center vertex c0 of Wn+1 with
a path Pcic0 = c0ui,1ui,2ui,3 . . . ui,m−2ci of length m− 1. It is easy to see that Fln,m(n ≥ 3, m ≥ 2)
has n(m + 1) edges and n(m− 1) + 1 vertices.

Definition 3. Let S fn,m(n ≥ 3, m ≥ 2) (see Figure 3) be a sunflower network that is constructed
by connecting each adjacent vertex pair ci and ci+1(1 ≤ i ≤ n)(cn+1 = c1) of wheel graph
Wn+1 with a path Pcici+1 = ciwi,1wi,2wi,3 . . . wi,m−1ci+1 of length m− 1 sequentially. Obviously,
S fn,m(n ≥ 3, m ≥ 2) has n(m + 1) edges and n(m− 1) + 1 vertices.

For the sake of brevity, we introduce some notations in the following Table 1.

Table 1. Some abbreviated symbols.

Symbol Explanation

Fc0
n SGF of fan flower FFln,m(n ≥ 1, m ≥ 2) containing c0,

for the case of n = 0, we let Fc0
0 (FFln,m) = f (c0)

Fc0
n,i the SGF that contain both c0 and path Pi, namely,

F(FFln,m; f , g; {c0, Pi})(n ≥ 2, m ≥ 2, 2 ≤ i ≤ n).

Lemma 1. Let T = (V(T), E(T); f , g) denote n(n > 1) a vertex-weighted tree, vi ∈ V(T);
meanwhile, let u 6= vi be a leaf and e = (u, v) be the corresponding edge of T. For the weighted tree
T′ = (V(T′), E(T′); f ′, g′) with vertex set V(T′) = V(T)\{u}, edge set E(T′) = E(T)\{e}
and

f ′(vs) =

{
f (v)(1 + f (u)g(e)) if vs = v,
f (vs) otherwise.

(1)

where vs ∈ V(T′), g′(e) = g(e)(e ∈ E(T′)). Then, we have F(T; f , g; vi) = F(T′; f ′g′; vi) [11].

Lemma 2. Let Pn = (V(Pn), E(Pn); f , g) = v1, v2, . . . , vn be the weighted path tree, with vertex
set V(Pn) = {v1, v2, . . . , vn}, edge set E(Pn) = {e1, e2, . . . en−1}, and f (v) = y(v ∈ V(Pn)),
g(e) = z(e ∈ E(Pn)) [11], with above notations; then, we have

F(Pn; f , g) =
n

∑
i=1

(n− i + 1)yizi−1

F(Pn; f , g; v1) =
n

∑
i=1

yizi−1
(2)

Let Un = (V(Un), E(Un); f , g) be the weighted unicyclic graph with n vertices and
n edges; its vertex and edge weights are f (v) = y(v ∈ V(Un)), g(e) = z(e ∈ E(Un)),
respectively, and the vertices on the cycle are labeled as vi(i = 1, 2, . . . , n) sequentially. With
the definition of SGF and structure analysis, it is easy to obtain the following Lemma.

Lemma 3. Let Un = (V(Un), E(Un); f , g) be the above weighted unicyclic graph, for any vertex

vi and any continuous k edges
k⋃

j=1
(vi+j−1, vi+j)(k = 1, 2, . . . )(vi = vn+i) [23]; then, we have
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F(Un; f , g) = n
n

∑
i=1

yizi−1

F(Un; f , g; vi) =
n

∑
i=1

iyizi−1

F(Un; f , g;
k⋃

j=1

(vi+j−1, vi+j)) =
n−k

∑
i=1

iyi+kzi+k−1

(3)

Lemma 4. Let G = (V(G), E(G); f , g) denote a weighted graph, (u, v) ∈ E(G); let G/e =
(V(G/e), E(G/e); fe, ge) be the graph that contract v along e to u, with V(G/e) = V(G)\v,
E(G/e) = E(G)\e [28]. Then, the vertex weight is

fe(w) =

{
f (u) f (v)g(e) if w = u,
f (w) otherwise.

(4)

and we have
F(G; f , g) = F(G\e; f , g) + F(G/e; fe, ge; u) (5)

Lemma 5. For a weighted graph G = (V(G), E(G); f , g) having vertex set V(G) = V(G1) ∪
V(G2) and edge set E(G) = E(G1) ∪ E(G2), where G1 ∩ G2 = (u, v), the vertex and edge
generating functions are f (v) = y(v ∈ V(G)), g(e) = z(e ∈ E(G)), respectively [27]; then,
we have

F(G; f , g) =
F(G1; f , g; (u, v))F(G2; f , g; (u, v))

y2z
+ F(G\(u, v); f , g) (6)

With Lemmas 3 and 5 and a structure analysis, we have the following Theorem
immediately.

Theorem 1. Let FFln,m = (V(FFln,m), E(FFln,m); f , g) be the weighted fan flower graph as in
Figure 1; Pn be the path connecting c1 and cn of FFln,m; and FFln,m/Pn be the graph contracting
cn along Pn to c1, with the notations given in Table 1; then, for n ≥ 2, we have

Fc0
n,n = F(FFln,m; f , g; {c0, Pn}) = F(FFln,m/Pn; f , g; {c0, c1})

= nyn−1zn−1


(ymzm−1

m−1
∑

i=1
iyi−1zi−1)n−1

(ymzm−1)n−2 +

(y2z
m−1
∑

i=1
iyi−1zi−1)n

(y2z)n−1


(7)

For n ≥ 1, denote by FFli+1,n
n,m the weighted component that contains ci+1 of FFln,m

\{
i⋃

j=1
(c0, cj)∪ (c0, uj,m−2)∪ (ci, ci+1)}(i = 1, 2, . . . , n− 1). It is easy to know that F(FFli+1,n

n,m

and f , g; c0) = F(FFln−i,m; f , g; c0); then, we have the following:

Theorem 2. Let FFln,m = (V(FFln,m), E(FFln,m); f , g) be the weighted fan flower graph, with
the notations given in Table 1; for n ≥ 1, we have

Fc0
n =


m
∑

i=1
iyizi−1 if n = 1,

F
c0
1 F

c0
n−1+

n−1
∑

i=2
F

c0
n−i F

c0
i,i

y + Fc0
n,n otherwise.

(8)

where Fc0
j,j (j = 2, . . . , n), as given in Theorem 2.
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Figure 1. Fan flower graph FFln,m(n ≥ 1, m ≥ 2).

Proof. When n = 1, FFl1,m is a unicyclic graph with m vertices, by Lemma 3, we have

Fc0
n =

m

∑
i=1

iyizi−1 (9)

When n > 1, we divide the subtree set S(FFln,m, c0) into three cases

S(FFln,m; c0) =
3⋃

i=1

τi

• τ1: not containing (c1, c2);

• τ2: contains
j⋃

i=1
(ci, ci+1) but not (cj+1, cj+2)(j = 1, . . . , n− 2);

• τ3: contains
n−1⋃
i=1

(ci, ci+1), namely, the path Pn connecting c1 and cn of FFln,m.

For τ1, by Lemma 5, we can obtain its SGF as

Fc0
1 Fc0

n−1
y

(10)

Similarly, the SGF of τ2 is
n−1

∑
i=2

Fc0
n−iF

c0
i,i

y
(11)

and SGF of τ3 is
Fc0

n,n (12)

Combining Equations (9)–(12), we can obtain Equation (8); the theorem is thus proved.

Lemma 6. Let FFln,m = (V(FFln,m), E(FFln,m); f , g) be the weighted fan flower graph and let
Pi(2 ≤ i ≤ n) be the path connecting c1 with ci of FFln,m, with notations given in Table 1; then,
we have

Fc0
n,i =

n
∑
j=i

Fc0
j,j Fc0

n−j

y
(13)

Proof. Firstly, we divide the subtree set of FFln,m containing Pi(2 ≤ i ≤ n) into three cases:
(i) Not containing (ci, ci+1);

(ii) Contains
k⋃

j=0
(ci+j, ci+j+1)(k = 0, 1, 2, . . . , n− i− 2) but not (ci+j+1, ci+j+2);
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(iii) Contains Pn.
For case (i), using a structure analysis, and Lemmas 1 and 2, we obtain the SGF of case

(i) as
Fc0

i,i Fc0
n−i

y
(14)

and the SGF of case (ii) as
n−i−2

∑
k=0

Fc0
i+k+1,i+k+1Fc0

n−(i+k+1)

y
(15)

For case (iii), by using Theorem 1, we obtain its SGF as

Fc0
n,nFc0

0
y

(16)

Combining Equations (14)–(16), we can obtain Equation (13); the theorem thus holds.

3. The Subtree Number of Flower Network

Theorem 3. Let Fln,m(n ≥ 3, m ≥ 2) be the weighted flower network (see Figure 2); with the
notations given in Table 1, we have the SGF of Fln,m(n ≥ 3) as

F(Fln,m; f , g) =n(
m−2

∑
i=1

(m− 1− i)yizi−1 +
n

∑
i=1

(
m−1

∑
i=1

yizi−1)izi−1)

+
n−1

∑
j=1

n
∑

s=j+1
Fc0

s,sFc0
n−s

y
+

Fc0
1 Fc0

n−1 +
n−1
∑

i=2
Fc0

n−iF
c0
i,i

y
+ Fc0

n,n

(17)

where Fc0
j,j (j = 2, . . . , n) and Fc0

i (i = 1, 2, . . . , n− 1) are as given in Theorems 1 and 2, respectively.

1
c

2
c

3
c

4
c

5
c

i
c

1i
c
+

n
c

,1n
u

0
c

, 2n m
u

-

1,1
u

1, 2m
u

-

2,1
u2, 2m

u
-

3,1
u

3, 2m
u

-

4,1
u

4, 2m
u

-

,1i
u

, 2i m
u

-

Figure 2. Flower network Fln,m(n ≥ 3, m ≥ 2).

Proof. We characterize the subtrees of Fln,m(n ≥ 3, m ≥ 2) into two cases:
(1) Not containing c0;
(2) Contains c0.
For case (1), it is easy to know that Fln,m\{c0} is a unicyclic graph; with Lemma 1 and

Lemma 3, we can obtain its SGF as

n(
m−2

∑
i=1

(m− 1− i)yizi−1 +
n

∑
i=1

(
m−1

∑
i=1

yizi−1)izi−1) (18)
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We further divide case (2) into two cases:

• τ2,1: not containing (c1, c2);

• τ2,2: contains
j⋃

k=1
(ck, ck+1) but not (cj+1, cj+2)(cn+1 = c1)(j = 1, 2, . . . , n− 1).

For τ2,1, with the structure analysis and Theorem 2, we have its SGF as

Fc0
n (19)

For τ2,2, using the structure analysis and Lemma 6, we can obtain its SGF as

F(Fln,m\(cj+1, cj+2); f , g; {c0,
j⋃

k=1

(ck, ck+1)})

=
n−1

∑
j=1

F(FFln,m; f , g; {c0, Pj+1})

=
n−1

∑
j=1

Fc0
n,j+1 =

n−1

∑
j=1

n
∑

s=j+1
Fc0

s,sFc0
n−s

y

(20)

Combining Equations (18)–(20), we can obtain Equation (17); the theorem thus holds.

4. The Subtree Number of Sunflower Network

Let S fn,m = (V(S fn,m), E(S fn,m); f , g)(n ≥ 3, m ≥ 2) denote the weighted sunflower
network; before solving the problem of enumerating subtrees of sunflower network, we
introduce some Lemmas.

Let Un = (V(Un), E(Un); f , g) be a weighted graph, and Pvivj = vi . . . vj be the path
connecting vi and vj of Un; we define Uc

n = (V(Uc
n), E(Uc

n).Let f c, gc) be the weighted
graph that contracts Pvivj = vi . . . vj to vi, V(Uc

n) = {vi} ∪ {V(Un)\V(Pvivj), E(Uc
n) =

E(Un)\E(Pvivj), where

f c(vi) = ∏
v∈V(Pvivj )

f (v) ∏
e∈E(Pvivj )

g(e)

f c(v) = f (v) for v ∈ V(Uc
n)\vi and gc(e) = g(e) for e ∈ E(Uc

n).

Lemma 7. Assume that Un and Uc
n, the weighted unicyclic graphs, are defined as above and

Pvivj = vi . . . vj is the path connecting vi and vj of Un [23]; then,

F(Un; f , g; Pvivj) = F(Uc
n; f c, gc; vi) (21)

Let
P1 = viv(i+1)(mod n) . . . v(j−1)(mod n)vj

and
P2 = viv(i−1)(mod n) . . . v(j+1)(mod n)vj

be the two paths connecting vi and vj of Un; moreover, define the weighted unicyclic
graph Uc1

n = (V(Uc1
n ), E(Uc1

n ); f c
1 , gc

1) as the graph contracting the path P1 of Un to vi and
Uc2

n = (V(Uc2
n ), E(Uc2

n ); f c
2 , gc

2) be the graph contracting the path P2 of Un to vi.
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1
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c
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c

i
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1i
c
+

n
c
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1,1
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w
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w
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4, 2m
w
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, 2i m
w
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, 2n m
w

-

3,1
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4,1
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,1i
w

,1n
w

0
c

Figure 3. Sunflower network S fn,m(n ≥ 3, m ≥ 2).

Lemma 8. Assume that Un, Uc1
n , Uc2

n are the unicyclic graphs defined as above and vi and vj are
two distinct vertices of Un [23]; then,

F(Un; f , g; vi, vj) = F(Uc1
n ; f c

1 , gc
1; vi) + F(Uc2

n ; f c
2 , gc

2; vi) (22)

Before proving the SGF of sunflower network, we first introduce and solve the subtree
number enumeration problems of an auxiliary cyclic chain network that is defined as
follows.

Definition 4. Let a, b be positive integers and a + b = n, the cyclic chain network Gt(a, b) =
(V(Gt(a, b)), E(Gt(a, b)); f , g)(t ≥ 1), be constructed as follows:

• For t = 1, G1 is an unicyclic graph with length n;
• For t ≥ 2, let Ut be an unicyclic graph with length t, the vertex set be V(Ut) = {v1, v2 . . . , vt},

and Gt be derived from Ut by replacing each existing edge (vi, vi+1) in Ut by two parallel
paths of length a and b (see Figure 4).

Lemma 9. Let Gt(t ≥ 1) = (V(Gt), E(Gt); f , g) (see Figure 4) be the weighted auxiliary cyclic
chain network defined above; then,

F(G1; f , g) = n
n

∑
i=1

yizi−1 (23)

and

F(Gt; f , g) =t
( a−1

∑
i=1

(a− i)yizi−1 +
b−1

∑
j=1

(b− j)yjzj−1 + αβ2λ + (αβ)2
t−1

∑
s=2

y−sγs−1+

y1−tγt−1
(

αβ + β
a−1

∑
p=1

a−p

∑
i=1

yp+izp+i−1 + λ
b−1

∑
q=1

b−q

∑
j=1

yq+jzq+j−1 +
a−1

∑
p=1

b−1

∑
q=1

a−p

∑
i=1

(1 + z
b−q−1

∑
j=1

yjzj−1)yp+q+izp+q+i−1
))

(24)

for t > 1, where α =
a
∑

i=1
yizi−1, β = 1 +

b−1
∑

j=1
yjzj, γ = ya+1za

b
∑

j=1
jyj−1zj−1 + yb+1zb

a
∑

i=1
iyizi−1,

λ = 1 + z
a−1
∑

i=1
yizi−1.
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Figure 4. Cyclic chain network Gt.

Proof. For the case of t = 1, with Lemma 3, we have

F(G1; f , g) = n
n

∑
i=1

yizi−1 (25)

When t > 1, we divide the subtrees of Gt into four cases:
(1) Not containing any vertex of {v1, v2 . . . , vt};
(2) Contains only one vertex of {v1, v2 . . . , vt};
(3) Contains only consecutive s(s = 2, 3, . . . , t− 1) vertices in {v1, v2 . . . , vt};
(4) Contains all vertices of {v1, v2 . . . , vt}.
For the sake of brevity, we claim that α, β, λ, γ are notations given in Lemma 9.
For case (1), by observing the structure pattern with Lemma 2, we can the SGF of case

(1) as

t
( a−1

∑
i=1

(a− i)yizi−1 +
b−1

∑
j=1

(b− j)yjzj−1
)

(26)

Moreover, by observing the structure patterns with Lemma 1, we can obtain the SGF
of case (2) as

t(αβ2λ) (27)

With Lemmas 1, 5, 7, and 8, we can obtain the SGF of case (3) as

t
(
(αβ)2

t−1

∑
s=2

y−sγs−1
)

(28)

For case (4), let P1 = (v1)u1u2 . . . uaua+1(vn), P2 = (v1)w1w2 . . . wbwb+1(vn) be the
two paths connecting v1 and vn of graph Gt\v2, where v1 = u1 = w1, vn = ua+1 = wb+1.

• τ1: not containing (u1, u2) and (w1, w2);

• τ2: contains
p⋃

i=1
(ui, ui+1) but not (w1, w2) and (up, up+1)(p = 1, 2, . . . , a− 1);

• τ3: contains
j⋃

i=1
(wi, wi+1) but not (u1, u2) and (wj, wj+1)(j = 1, 2, . . . , b− 1);

• τ4: contains
p⋃

i=1

j⋃
i=1

(ui, ui+1) ∪ (wi, wi+1) but not (up, up+1) ∪ (wj, wj+1)(p = 1, 2, . . . ,

a− 1)(j = 1, 2, . . . , b− 1).

For τ1, with Lemmas 1, 5, 7, and 8, we have the SGF of τ1 as

y1−tγt−1(αβ) (29)

Similarly, the SGF of τ2 is
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y1−tγt−1(β
a−1

∑
p=1

a−p

∑
i=1

yp+izp+i−1) (30)

Similarly, the SGF of τ3 is

y1−tγt−1(λ
b−1

∑
q=1

b−q

∑
j=1

yq+jzq+j−1) (31)

The SGF of τ4 is

y1−tγt−1
( a−1

∑
p=1

b−1

∑
q=1

a−p

∑
i=1

(1 + z
b−q−1

∑
j=1

yjzj−1)yp+q+izp+q+i−1
)

(32)

With structure analysis and Equations (29)–(32), we can obtain the SGF of case (4) as

tγt−1y1−t
(

αβ + β
a−1

∑
p=1

a−p

∑
i=1

yp+izp+i−1 + λ
b−1

∑
q=1

b−q

∑
j=1

yq+jzq+j−1 +
a−1

∑
p=1

b−1

∑
q=1

a−p

∑
i=1

(1 + z
b−q−1

∑
j=1

yjzj−1)yp+q+izp+q+i−1
) (33)

With Equations (26)–(28) and (33), we can obtain the SGF of Gt(t > 1) as

F(Gt; f , g) =t

(
a−1

∑
i=1

(a− i)yizi−1 +
b−1

∑
j=1

(b− j)yjzj−1 + αβ2λ + (αβ)2
t−1

∑
s=2

y−sγs−1+

y1−tγt−1
(

αβ + β
a−1

∑
p=1

a−p

∑
i=1

yp+izp+i−1 + λ
b−1

∑
q=1

b−q

∑
j=1

yq+jzq+j−1 +
a−1

∑
p=1

b−1

∑
q=1

a−p

∑
i=1

(1 + z
b−q−1

∑
j=1

yjzj−1)yp+q+izp+q+i−1
))

(34)

Lemma 10. Let Gt(t ≥ 1) = (V(Gt), E(Gt); f , g) (see Figure 4) be the weighted auxiliary cyclic
chain network defined above; then,

• for t = 1,

F(G1; f , g; vk) =
n

∑
i=1

iyizi−1 (35)

where vk ∈ {v1, v2};
• for t ≥ 2,

F(Gt; f , g; vk) =αβ2λ + (αβ)2
t−1

∑
s=2

sy−sγs−1 + ty1−tγt−1
(

αβ + β
a−1

∑
p=1

a−p

∑
i=1

yp+i

zp+i−1 + λ
b−1

∑
q=1

b−q

∑
j=1

yq+jzq+j−1 +
a−1

∑
p=1

b−1

∑
q=1

a−p

∑
i=1

(1 + z
b−q−1

∑
j=1

yjzj−1)

yp+q+izp+q+i−1
)

(36)

where vk ∈ {v1, v2, . . . , vt}, α =
a
∑

i=1
yizi−1, β = 1 +

b−1
∑

j=1
yjzj, γ = ya+1za

b
∑

j=1
jyj−1zj−1 +

yb+1zb
a
∑

i=1
iyizi−1, λ = 1 +

a−1
∑

i=1
yizi.

Proof. For t = 1, vk ∈ {v1, v2}, with Lemma 3, we can obtain the SGF of G1 containing
vk as
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F(G1; f , g; vk) =
n

∑
i=1

iyizi−1 (37)

For t > 1, we divide the subtrees of Gt containing vk ∈ {v1, v2, . . . , vt} into three cases:
(1) Containing only vk;
(2) Containing only consecutive i(= 2, 3, . . . , t− 1) vertices in {v1, v2, . . . , vt} includ-

ing vk;
(3) Containing all vertices in {v1, v2, . . . , vt}.
For the sake of brevity, we claim that α, β, λ, γ are the notations given in Lemma 10.
For case (1), with structure analysis and Lemma 1 , we can obtain its SGF as

αβ2λ (38)

With a structure analysis and Lemmas 1, 5, 7, and 8, we obtain the SGF of case (2) as

(αβ)2
t−1

∑
s=2

sy−sγs−1 (39)

For case (3), with a similar analysis of case (3) in Lemma 9, we have its SGF as

tγt−1y1−t
(

αβ + β
a−1

∑
p=1

a−p

∑
i=1

yp+izp+i−1 + λ
b−1

∑
q=1

b−q

∑
j=1

yq+jzq+j−1 +
a−1

∑
p=1

b−1

∑
q=1

a−p

∑
i=1

(1 + z
b−q−1

∑
j=1

yjzj−1)yp+q+izp+q+i−1
) (40)

Combining Equations (38)–(40), we can obtain the SGF of Gt containing
vk ∈ {v1, v2, . . . , vt} as

F(Gt; f , g; vk) =αβ2λ + (αβ)2
t−1

∑
s=2

sy−sγs−1 + ty1−tγt−1
(

αβ + β
a−1

∑
p=1

a−p

∑
i=1

yp+i

zp+i−1 + λ
b−1

∑
q=1

b−q

∑
j=1

yq+jzq+j−1 +
a−1

∑
p=1

b−1

∑
q=1

a−p

∑
i=1

(1 +
b−q−1

∑
j=1

yjzj)

yp+q+izp+q+i−1
)

(41)

The theorem thus follows.

Next, we solve the subtree enumeration problem of sunflower network.

Theorem 4. Let S fn,m = (V(S fn,m), E(S fn,m); f , g)(n ≥ 3, m ≥ 2) be the weighted sunflower
network; then, we have its SGF as

F(S fn,m; f , g) =n
( m−2

∑
j=1

(m− j− 1)yjzj−1 + yζ2
1 +

n−1

∑
s=2

(y1−sζ2
1ζs−1

2 ) + y1−nζn−1
2

(yζ1 +
m−2

∑
q=1

m−q−1

∑
j=1

yq+jzq+j−1)
)
+ y + nyz

(
yζ2

1 +
n−2

∑
s=1

(s + 1)(y−sζ2
1ζs

2)

+ ny1−nζn−1
2 (yζ1 +

m−2

∑
q=1

m−q−1

∑
j=1

yq+jzq+j−1)
)
+

(
m−1
∑

i=1
iyizi−1)n

(y3z2)n−1 +

n−2

∑
j=1

n−1
∑

d1=1

n−d1−1
∑

d2=1
· · ·

n−
j−1
∑

k=1
dk−1

∑
dj=1

(n−
j

∑
s=1

ds)
j

∏
s=1

φ(ds)φ(n−
j

∑
p=1

dp)

(y3z2)j

(42)
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where ζ1 = 1 +
m−2
∑

j=1
yjzj, ζ2 =

m−1
∑

j=1
jyj+1zj + ymzm−1,

φ(k) =



m−1
∑

i=1
iyizi−1 if k = 1,

yζ2
1 +

k−2
∑

s=1
(s + 1)(y−sζ2

1ζs
2) if 2 ≤ k ≤ n− 1.

+ky1−kζk−1
2

(
yζ1 +

m−2
∑

q=1

m−q−1
∑

j=1
yq+jzq+j−1

) (43)

Proof. We divide the subtrees of S fn,m(n ≥ 3, m ≥ 2) into two cases:
(a) Not containing c0;
(b) Containing c0.
For the sake of brevity, we declare that ζ1, ζ2, φ(k)(k = 1, 2, . . . , n− 1) are the notations

given in Theorem 4.
For case (a), with the structure analysis and Lemma 9 , we can obtain its SGF as

n
( m−2

∑
j=1

(m− j− 1)yjzj−1 + yζ2
1 +

n−1

∑
s=2

(y1−sζ2
1ζs−1

2 ) + y1−nζn−1
2

(yζ1 +
m−2

∑
q=1

m−q−1

∑
j=1

yq+jzq+j−1)
) (44)

For case (b), we further divide it into two cases:

(i) Not containing any edge of
n⋃

i=1
(c0, ci);

(ii) Contains at least one edge of
n⋃

i=1
(c0, ci).

It is easy to obtain that the SGf of case (i) is

y (45)

For case (ii), we first consider the case of containing only one edge in
n⋃

i=1
(c0, ci); with

the structure analysis and Lemmas 5, 7, 8, and 10, we can obtain the SGF of this case as

nyz
(

yζ2
1 +

n−2

∑
s=1

(s + 1)(y−sζ2
1ζs

2) + ny1−nζn−1
2 (yζ1 +

m−2

∑
q=1

m−q−1

∑
j=1

yq+jzq+j−1)
)

. (46)

With Lemmas 5 and 10, we can obtain the SGF of all n edges in
n⋃

i=1
(c0, ci) as

(
m−1
∑

i=1
iyizi−1)n

(y3z2)n−1 (47)

For the case containing only s(2 ≤ s ≤ n− 1) edges in
n⋃

i=1
(c0, ci), whether (c0, c1) is

in the s edges or not, we define (c0, c1) as the boundary; then, we label the s edges with
e1, e2, . . . , es(2 ≤ s ≤ n− 1) in a counterclockwise manner. Relabeling the vertex on the
cycle adjacent to ei as c̃i, we define di the counterclockwise distance between the vertices c̃i
and ˜ci+1 on the circle.

Let φ(k) = F(Gk(1, m− 1); f , g; vj)(2 ≤ k ≤ n− 1), where vj ∈ {v1, v2, . . . , vk}.
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Combining Lemmas 3, 5, 7, 8, 10, and the structure analysis, we can obtain the SGF of

S fn,m(n ≥ 3, m ≥ 2) containing s(2 ≤ s ≤ n− 1) edges in
n⋃

i=0
(c0, ci)

n−2

∑
j=1

n−1
∑

d1=1

n−d1−1
∑

d2=1
· · ·

n−
j−1
∑

k=1
dk−1

∑
dj=1

(n−
j

∑
s=1

ds)
j

∏
s=1

φ(ds)φ(n−
j

∑
p=1

dp)

(y3z2)j (48)

where

φ(k) =



m−1
∑

i=1
iyizi−1 if k = 1,

yζ2
1 +

k−2
∑

s=1
(s + 1)(y−sζ2

1ζs
2) if 2 ≤ k ≤ n− 1.

+ky1−kζk−1
2

(
yζ1 +

m−2
∑

q=1

m−q−1
∑

j=1
yq+jzq+j−1

)
.

(49)

With Equations (44)–(48), we can obtain the Equation (42); the theorem thus holds.

With the subtree generating functions of flower networks Fln,m(n ≥ 3, m ≥ 2) and
sunflower networks S fn,m(n ≥ 3, m ≥ 2), we can easily obtain their exact subtree number
indices by taking y = 1 and z = 1 into their subtree generating functions.

5. Results and Discussions

It is well known that the subtree number index is closely related to the reliable network
design [17,40], and it is an important parameter to measure the reliability of a network for
both vertex and edge failures. Namely, networks with more subtrees are more reliable. As
an application, in this section, we briefly study the behavior of the subtree number in the
flower networks and sunflower networks and discuss the difference of the subtree numbers
between flower networks and sunflower networks with some lower-order n and m. From
Equation (7) in Theorem 1, Equation (8) in Theorem 2, and Equation (17) in Theorem 3,
we can obtain the subtree numbers of flower networks, as shown in Tables 2–4; similarly,
with Equations (42) and (43) in Theorem 4, we can obtain the subtree numbers of sunflower
networks, as shown in Tables 2–4.

Table 2. The subtree numbers of flower and sunflower networks when n = 12, m = 3, 4, . . . , 18.

n m η(S fn,m) logη(S fn,m)
10 η(Fln,m) logη(Fln,m)

10

12 3 808,994,334,366 11.90794548 112,238,363,816,4 12.05014133
12 4 998,610,060,032,920 14.99939594 151,308,674,603,059,0 15.17986383
12 5 265,280,251,112,307,000 17.42370492 404,849,273,581,826,000 17.60729336
12 6 256,550,685,339,735,000,00 19.40917318 384,650,010,292,476,000,00 19.58506575
12 7 122,063,734,917,778,000,000,0 21.08658665 178,548,004,931,270,000,000,0 21.251755
12 8 344,273,389,923,669,000,000,00 22.53690346 490,934,797,202,023,000,000,00 22.69102382
12 9 650,645,762,570,061,000,000,000 23.81334461 905,809,267,379,347,000,000,000 23.95703676
12 10 896,628,634,179,120,000,000,000,0 24.9526126 122,119,065,856,034,000,000,000,00 25.08678347
12 11 957,232,024,063,896,000,000,000,00 25.98101722 127,822,905,177,000,000,000,000,000 26.10660868
12 12 827,993,950,521,421,000,000,000,000 26.91802716 108,623,009,982,456,000,000,000,000,0 27.03592183
12 13 600,392,405,365,584,000,000,000,000,0 27.77843519 775,222,331,646,122,000,000,000,000,0 27.88942627
12 14 374,744,209,248,582,000,000,000,000,00 28.57373493 477,004,278,516,100,000,000,000,000,00 28.67852227
12 15 205,602,572,796,967,000,000,000,000,000 29.31302854 258,359,754,119,165,000,000,000,000,000,0 30.41222486
12 16 100,842,557,399,484,000,000,000,000,000,0 30.00364385 125,251,904,753,382,000,000,000,000,000,0 30.09778434
12 17 448,296,476,198,180,000,000,000,000,000,0 30.65156533 550,957,046,116,700,000,000,000,000,000,0 30.74111774
12 18 182,701,553,239,954,000,000,000,000,000,00 31.26174224 222,390,527,574,997,000,000,000,000,000,00 31.34711629
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Table 3. The subtree numbers of flower and sunflower networks when m = 12, n = 3, 4, . . . , 12.

n m η(S fn,m) logη(S fn,m)
10 η(Fln,m) logη(Fln,m)

10

12 3 569,170,9 6.755,242,688 517,527,0 6.713933012
12 4 980,681,131 8.991527819 990,109,132 8.995683066
12 5 168,515,441,557 11.2266397 181,560,385,458 11.2590211
12 6 291,422,645,379,48 13.4645233 327,929,007,285,78 13.51577983
12 7 506,766,497,010,234,0 15.7048079 589,052,387,641,233,0 15.77015392
12 8 884,180,126,963,189,000 17.94654075 105,597,948,140,887,000,0 18.02365548
12 9 154,536,766,330,510,000,000 20.18903182 189,163,078,432,656,000,000 20.27683637
12 10 270,327,973,135,294,000,000,00 22.43189099 338,765,521,831,683,000,000,00 22.5298992
12 11 473,064,933,203,821,000,000,000,0 24.67492076 606,622,526,889,045,000,000,000,0 24.78291853
12 12 828,000,782,196,875,000,000,000,000 26.91803075 108,623,009,982,456,000,000,000,000,0 27.03592183

Table 4. The subtree numbers of flower and sunflower networks when m = n = 3, 4, . . . , 12.

n m η(S fn,m) logη(S fn,m)
10 η(Fln,m) logη(Fln,m)

10

3 3 102,7 3.011570444 101,7 3.007320953
4 4 105,451 5.023050703 112,636 5.051677219
5 5 187,184,91 7.272270835 215,012,25 7.332463204
6 6 513,612,006,6 9.710635168 617,934,704,1 9.790942587
7 7 201,051,445,463,5 12.3033072 249,018,559,016,5 12.39623172
8 8 106,896,683,359,669,0 15.02896423 134,000,723,234,807,0 15.12710714
9 9 725,328,036,700,938,000 17.86053446 928,294,891,665,960,000 17.96768596

10 10 622,370,323,833,015,000,000 20.79404888 804,6744,796,912,410,000,00 20.90562023
11 11 654,629,293,559,492,000,000,000 23.81599544 853,195,489,291,013,000,000,000 23.93104855
12 12 827,993,950,521,421,000,000,000,000 27.03592183 108,623,009,982,456,000,000,000,000,0 27.03592183

With Table 2, we can obtain Figure 5; with Table 3, we can obtain Figure 6; and with
Table 4, we can obtain Figure 7. Observing Tables 2–4 and Figures 5–7, we find that the
subtree numbers of flower networks are always greater than that of sunflower networks.
Therefore, the network reliability of flower networks are higher than that of sunflower
networks. When designing a more reliable network, the flower network is a better choice
in terms of reliability.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

10

15

20

25

30

35

Figure 5. The subtree number of flower network Fln,m(n = 12, 3 ≤ m ≤ 18) and sunflower network
S fn,m(n = 12, 3 ≤ m ≤ 18), in semi-log(Log-Y) coordinates.
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Figure 6. The subtree number of flower network Fln,m(m = 12, 3 ≤ n ≤ 12) and sunflower network
S fn,m(m = 12, 3 ≤ n ≤ 12), in semi-log(Log-Y) coordinates.
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Figure 7. The subtree number of flower network Fln,m(m = n = 3, 4 · · · , 12) and sunflower network
S fn,m(m = n = 3, 4 · · · , 12), in semi-log(Log-Y) coordinates.

6. Concluding Remarks

Using a generating function, structure analysis, and auxiliary structure introduction,
we obtained the subtree generating function of flower networks Fln,m(n ≥ 3, m ≥ 2).
Moreover, by introducing and solving the subtrees of an auxiliary cyclic chain network,
we presented the subtree generating function of sunflower networks S fn,m(n ≥ 3, m ≥ 2).
We also briefly discussed the behavior of the subtree numbers in the flower graphs and
sunflower graphs. Additionally, we obtain the conclusion that under some parameter
constraints, the flower networks are more reliable than sunflower networks. These findings
are likely useful in designing reliable networks. Our study provides a theoretical basis for
exploring new structural properties of complex networks and chemical molecules. Many
important networks are derived from the flower and sunflower networks; for future work,
we intend to investigate other topological indices of flower networks, sunflower networks,
and their derived networks and analyze the relationships between them.
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