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Abstract: Nowadays, multi-access edge computing (MEC) has been widely recognized as a promising
technology that can support a wide range of new applications for the Internet of Things (IoT). In
dynamic MEC networks, the heterogeneous computation capacities of the edge servers and the
diversified requirements of the IoT applications are both asymmetric, where and when to offload
and schedule the time-dependent tasks of IoT applications remains a challenge. In this paper, we
propose a flexible offloading and task scheduling scheme (FLOATS) to adaptively optimize the
computation of offloading decisions and scheduling priority sequences for time-dependent tasks in
dynamic networks. We model the dynamic optimization problem as a multi-objective combinatorial
optimization problem in an infinite time horizon, which is intractable to solve. To address this, a
rolling-horizon-based optimization mechanism is designed to decompose the dynamic optimization
problem into a series of static sub-problems. A genetic algorithm (GA)-based computation offloading
and task scheduling algorithm is proposed for each static sub-problem. This algorithm encodes
feasible solutions into two-layer chromosomes, and the optimal solution can be obtained through
chromosome selection, crossover and mutation operations. The simulation results demonstrate that
the proposed scheme can effectively reduce network costs in comparison to other reference schemes.

Keywords: multi-access edge computing; computation offloading; task scheduling; genetic algorithm

1. Introduction

Nowadays, the Internet of Things (IoT) has entered a new era of “Internet of Ev-
erything” [1]. Explosive growing smart phones, wearable devices, autonomous driving
cars, and intelligent robots, will be connected to the network. The rapid proliferation of
IoT mobile devices (MDs) has spurred the development of numerous intelligent appli-
cations, such as virtual reality and auto-driving [2], and has raised higher demands on
the computation capacities of the IoT networks [3]. In comparison to conventional data
transmission services, intelligent application services exhibit more complex and diversified
characteristics and demands both in task composition and quality of service (QoS). On the
one hand, these application services are typically composed of multiple time-dependent
tasks that employ diverse information technologies to collaboratively accomplish functions
such as identification, detection and comprehensive decision-making. On the other hand,
the computing-intensive and delay-sensitive tasks of intelligent applications put forward
higher performance requirements for real-time and high-speed processing. Handling all
application services on the resource-constrained MD sides is infeasible due to the limited
computing resources and battery power of the MDs.

Multi-access edge computing (MEC) has emerged as one promising technology that
overcomes the above limitations [4]. Compared to mobile cloud computing with high trans-
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mission latency and local processing with low processing efficiency, MEC can effectively
support a wide range of intelligent application services by bringing computing resources
closer to the MDs. Currently, the research on computation offloading in MEC has emerged
as a hotspot, drawing considerable attention from both academia and industry [5].

Currently, the existing computation offloading strategies typically concentrate on the in-
dependent task offloading or time-dependent task offloading of a single MD, which mostly
resolves the issue of “where” to offload. The offloading problems are often modeled as com-
binatorial optimizations or mix-integer optimization problems to minimize the delay [6–9],
energy consumption [10,11] or the trade-off of multiple performances [12–16]. A variety of
optimization methods, like Lyapunov algorithm [8,12], heuristic algorithm [11,17–19], swarm
intelligence algorithm [13,20,21] and deep reinforcement learning [7,22–24], are widely
adopted to solve the task offloading problems. However, for applications that contain
multiple time-dependent tasks, the computation offloading strategies should not only focus
on “where” to offload but also “when” to offload.

To comprehensively address this challenging problem, several aspects should be con-
sidered. To meet the application requirements of massive IoT MDs, there is an urgent
need for network collaboration to sufficiently explore the potential wireless and computing
capacities of heterogeneous MEC networks. To improve the service quality of applica-
tions, computation offloading decisions and task scheduling sequences should be jointly
optimized with time-dependent constraints to determine where and when to offload and
schedule the tasks. Obviously, this is a non-convex complex combinatorial optimization
problem that is NP-hard and challenging for general mathematical methods to solve. The
feasible solution space is a large, exhaustive search method that can not acquire the optimal
solution in a short time. Metaheuristic algorithms, including genetic algorithm (GA) [25,26],
hybrid algorithm [27], red deer algorithm [28] can effectively address complex combina-
torial optimization problems by simulating natural biological processes, and are widely
applied to solve the job scheduling and resource allocation problems in industry [29]. Fur-
thermore, a more flexible and fine-grained online offloading and scheduling mechanism
should be designed to adaptively resolve the resource competition and balance the multiple
performances of dynamic scenarios.

In this paper, we propose a flexible offloading and task scheduling scheme (FLOATS)
to address the computation offloading and task scheduling optimization problem for
time-dependent IoT applications in dynamic asymmetric MEC networks. Here, we use
the multi-connectivity technology to more flexibly utilize the heterogeneous wireless and
computing resources. The dynamic computation offloading and task scheduling problem
can be modeled as a multi-objective optimization problem in an infinite time horizon,
aiming to balance the serving latency, energy consumption and tardiness performances of
continuously arriving application tasks. To solve the above problem, we adopt a rolling
horizon approach to transform the dynamic optimization problem into a series of static
sub-problems. A GA-based computation offloading and task scheduling algorithm has
been developed for each static sub-problem. This algorithm utilizes a two-layer chro-
mosome construction to describe the offloading and scheduling solutions for multiple
application tasks and obtain the optimal solution through chromosome selection, crossover
and mutation operations. The main contributions of this paper are summarized as follows:

1. Taking into account the diversified requirements and time-dependent characteristics
of multiple applications, we utilize the computation offloading decision and task
scheduling priority to describe the offloading and scheduling solutions of multiple
application tasks based on the multi-connectivity technology. The problem of compu-
tation offloading and task scheduling for applications that continuously arrive can be
modeled as a multi-objective combinatorial optimization problem in an infinite time
horizon, making it challenging to solve.

2. To address this problem, we propose the FLOATS scheme to flexibly and adaptively
coordinate and orchestrate the wireless and computing resources of dynamic networks
among multiple application tasks. We divide the infinite time into numerous discrete
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time intervals named rolling horizon windows (RHW). By periodically updating
the network and application information in each RHW, the rolling-horizon-based
optimization and scheduling mechanism can decompose the dynamic intractable
optimization problem into a series of static sub-problems that are easy to solve.

3. For the static sub-problem in each RHW, a GA-based computation offloading and
task scheduling algorithm is proposed to find the optimal solution. We utilize a two-
layer chromosome construction to describe the offloading and scheduling solutions
of the sub-problems. In order to enhance the searching efficiency, we adopt multiple
methods to initialize the population chromosomes to avoid the GA algorithm falling
into the local optimal solution prematurely. Furthermore, various crossover and
mutation operations are applied to each layer of genes in the chromosomes to ensure
the feasibility and validity of the chromosomes in each generation.

4. Extensive simulation results validate the proposed optimization mechanism and algo-
rithm performance. In comparison to other reference schemes, the proposed scheme
demonstrates a significant reduction in network cost and enhances the efficiency in
resource utilization.

The rest of this paper is organized as follows. Section 2 provides an overview of the
related works to this paper. Then, we introduce the general network architecture and
define some system models in Section 3. The problem formulation is given in Section 4.
Section 5 provides a detailed description of the FLOATS scheme. The simulation results are
presented and analyzed in Section 7. Finally, Section 8 concludes this paper.

2. Related Work

There has been a large amount of work dedicated to the computation offloading problems
in MEC networks, while most of these existing works concentrated on the computation
offloading and resource allocation strategies of independent tasks in MEC networks [5].
According to the optimization objectives, the computation offloading schemes of independent
tasks can generally be divided into several categories, such as single objective optimization for
delay minimization [6–9], energy consumption minimization [10,11], and multi-objective
optimization for balancing multiple performances such as delay, energy consumption or
load variance [12,13].

With the continuous emergence of intelligent applications, computation offloading
for application-level services has gradually been focused. In practice, most computing-
intensive and delay-sensitive applications can be discomposed into several time-dependent
tasks, which makes fine-grained computation offloading and task scheduling possible.
Meanwhile, flexible and efficient management and orchestration of multiple nearby MEC
servers for time-dependent tasks can greatly increase the serving quantity of applications,
reduce task processing and waiting delay, and improve resource utilization efficiency.

In the research of computation offloading for application-level services, the time-
dependent characteristics of tasks within the same application can be modeled as a directed
acyclic graph (DAG) [17,18,20–22,30–33], based on which the tasks can be sequentially
offloaded to multiple MEC servers to improve service quality. Xu et al. in [33] proposed a
novel offloading algorithm for time-dependent tasks, which minimized the makespan by
finding the dynamic critical path based on the task graph. Chen et al. in [17] proposed a
heuristic algorithm called Daas to jointly optimize the offloading and scheduling problem
of DAG-type applications. Al-Habob et al. in [20] developed two heuristic algorithms that
used a genetic algorithm and conflict graph model to reduce the latency and offloading
failure probability for time-dependent tasks. Liu et al. in [21] designed an algorithm
based on integer particle swarm optimization (IPSO) to collaboratively offload the time-
dependent tasks to multiple edge nodes. In [22], Yan et al. considered an MEC system with
a single access point and an MD, and proposed a deep reinforcement learning framework
based on the actor–critic learning structure to jointly optimize offloading decisions and
resource allocation.
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However, the above literature concentrated on scenarios involving a single application
and multiple MEC nodes. Shi et al., in [30], proposed a fuzzy-based mobile edge architecture
with task partitioning to efficiently offload tasks of IoT applications in multi-layer MEC
networks. Fu et al. in [18] considered the fog/edge collaborative system and developed a
priority and dependency-based DAG tasks offloading algorithm (PDAGTO) to minimize
the application delay while meeting energy consumption requirements. Liu et al. in [31]
obtained the optimal task offloading and resource allocation policy by using the Lagrangian
dual method with the objective of minimizing the task serving latency. While the dependent
task offloading scenarios mentioned above are mostly static, it is imperative to take into
account the dynamics of the networks when offloading the application tasks in reality.
Mahmoodi et al. in [19] proposed an online heuristic strategy for multi-RAT-enabled mobile
devices to achieve the optimal computation offloading decisions of multi-component
applications. It should be noted that the research on computation offloading and task
scheduling of time-dependent applications in dynamic and heterogeneous MEC networks
is not sufficient at present. The fine-grained, flexible and adaptive computation offloading
and task scheduling mechanisms for time-dependent applications in complex MEC network
scenarios need to be further studied. The comparison of the existing computation offloading
strategies is highlighted in Table 1.

Table 1. Comparative study of the existing computation offloading strategies.

Paper Task MD Server Scenario Objective Algorithm

[6] Independent Multiple Multiple Static Delay Linear-search-based
algorithm

[7] Independent Single Single Dynamic Delay Deep reinforcement learning
algorithm

[8] Independent Multiple Multiple Dynamic Delay Lyapunov optimization and
matching theory

[10] Independent Multiple Multiple Static Energy Convex algorithm

[11] Independent Multiple Single Dynamic Energy Metaheuristic algorithm

[24] Independent Multiple Multiple Dynamic Offloaded traffic Deep reinforcement learning
algorithm

[12] Independent Single Single Dynamic Delay and energy Lyapunov algorithm

[13] Independent Multiple Multiple Static Delay, energy and load
variance

Multi-objective evolutionary
algorithm

[14] Independent Multiple Multiple Static Delay, energy and cloud
rental cost Convex algorithm

[33] Dependent Single Multiple Static Delay Heuristic algorithm

[17] Dependent Single Multiple Static Delay and offloading failure
probability Heuristic algorithm

[20] Dependent Single Multiple Static Service failure probability Genetic algorithm

[21] Dependent Single Multiple Static Delay and energy Integer particle swarm
algorithm

[22] Dependent Single Single Static Delay and energy Deep reinforcement learning
algorithm

[30] Dependent Multiple Multiple Static Delay Fuzzy logic

[18] Dependent Multiple Multiple Static Delay and energy Heuristic algorithm

[31] Dependent Multiple Multiple Static Delay and energy Convex algorithm

[19] Dependent Single Multiple Dynamic Delay and energy Heuristic algorithm
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3. System Model

In this section, we describe the general network architecture and define some system
models that are used in our scheme.

3.1. Network Model

We consider a dynamic heterogeneous MEC network which is composed of multiple
base stations (BSs) and smart MDs, as shown in Figure 1. Let M = {1, 2, · · · , m, · · · , M}
denote the set of the BSs. To cope with the computation-intensive tasks, each BS is equipped
with an MEC server. In the heterogeneous MEC network, multiple BSs with diversified
radio access technologies (RATs), transmission frequency bands and computation capacities
coexist in the system. Let U = {1, 2, · · · , u, · · · , U} denote the set of the smart MDs with
limited computation capacities. The applications of the MDs, which are composed of several
time-dependent tasks with diversified requirements, arrive dynamically. To effectively
utilize the wireless and computing resources in the heterogenous MEC network, we assume
that all smart MDs in the system support the multi-connectivity technology and can access
several BSs simultaneously. In this condition, the application tasks can be jointly and
cooperatively completed by multiple BSs.

MD

…

BSBS BSBS

BSBS

MDMD

…1 2 n1 2 n…1 2 n 1 2 n1 2 n

SDN controller

BSBS

Application

tasks

Figure 1. System model.

In dynamic scenarios, the MDs and network environment are both time-varying. Here,
we propose an SDN-based network architecture to facilitate the adaptive orchestration
and collaborative scheduling of multi-dimensional network resources in the heteroge-
neous MEC network. A centralized SDN controller is introduced in the system which is
responsible for network and MD state information collection and aggregation, collaborative
offloading and task scheduling optimization and execution.

3.2. Application Model

We consider a time-dependent, computation-intensive and delay-sensitive application
model here. For each MD in U , the dynamic arrival of its application follows a homogeneous
Poisson process with an average rate λ. Let AP = AP1 ∪AP2 ∪ · · · ∪APu ∪ · · · ∪APU de-
note the application set in the system, where APu = {APu1, APu2, · · · , APuv, · · · , APuVu}
is the application set of MD u ∈ U , Vu is the total application number of MD u. Specifically,
we use ta

uv to denote the arrival time of the application APuv.
We assume each application can be decomposed into multiple time-dependent tasks

with diversified requirements, i.e., a generic augmented reality (AR) application is com-
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posed of tracking, rendering, interaction, calibration and registration. The time dependency
relationship between tasks in application APuv can be described by a directed acyclic graph
(DAG) Guv = ⟨Tuv, Euv⟩, where Tuv = {Tuv1, Tuv2, · · · , Tuvn, · · · , TuvNuv} is the set of tasks.
Each task Tuvn in Tuv is computation-intensive and delay-sensitive, which can be described
by a triple {Ruvn, Zuvn, Duvn}, where Ruvn, Zuvn, Duvn are the input data size, the demanded
central processing unit (CPU) cycles and the recommended maximum serving delay of task
Tuvn. Here, we use T = T11 ∪ T12 ∪ · · · ∪ Tuv · · · ∪ TUVU (∀APuv ∈ APu, ∀u ∈ U ) to denote
all application tasks in the network.

We first define the predecessor task set to characterize the time dependency of the
tasks within the same application as follows:

Definition 1 (Predecessor task set). We define the task set consisting of all tasks that must
be executed before Tuvn within the same application as the predecessor task set T p

uvn of Tuvn. For
example, the predecessor task set of T113 is T p

113 = {T111, T112}.

3.3. Task Offloading and Scheduling Model

Here, we adopt the time division duplex (TDD) mode in the system. The characteristics
of the offloading process can be summarized as follows.

1. The order of the time-dependent tasks for each application is predefined, and the MEC
network cannot start transmitting and processing the task until all its predecessor
tasks have been processed.

2. Each application can be coordinately processed by multiple BSs, but each task can be
processed by only one of its candidate BSs.

3. Each BS and MEC server can transmit and process at most one task at a time.
4. The task is inseparable and non-preemptive; once it starts, the processing of the task

cannot be stopped or paused until it is completed.

To effectively coordinate network resources and orchestrate task scheduling, both the
computation offloading decision and task scheduling sequence should be determined to
figure out where and when to offload and schedule the time-dependent tasks. Here, we use
the vector A = [a111, a112, · · · , auvn, · · · ](∀Tuvn ∈ T ) to express the offloading decisions
of all tasks, where the integer parameter auvn ∈ {0, 1, 2, · · · , m, · · · , M} represents where
the task Tuvn should be executed. Specifically, auvn = 0 means the task Tuvn is executed
locally, and auvn = m(m ∈ M) indicates the task Tuvn is offloaded and executed in mth
MEC server. The vector O = [o111, o112, · · · , ouvn, · · · ] is used to represent the scheduling
priority sequence of all the tasks in the network, where ouvn is a non-repetitive integer
between 1 and |T |, ouvn = 1 indicates the task Tuvn has the highest scheduling priority
during scheduling, and ouvn = |T | means the task Tuvn has the lowest scheduling priority
during scheduling. Obviously, O is a vector with complex constraints. For ouvn, we
always have

ouvn > ouvn′(∀Tuvn′ ∈ T p
uvn). (1)

Definition 2 (High-priority task set). We define the task set consisting of all tasks that have
higher priorities and should be processed earlier than Tuvn(APuv ∈ APu, 1 ≤ n ≤ Nuv) as Tuvn’s
high-priority task set Hp

uvn, which can be written as follows:

• If the task Tuvn is processed locally (auvn = 0),

Hp
uvn ≜ {ouv′n′ |ouv′n′ < ouvn&auv′n′ = 0, ∀Tuv′n′ ∈ T } ∪ T p

uvn. (2)

• If the task Tuvn is offloaded to the MEC server(auvn = m(m ∈ M)),

Hp
uvn ≜{ou′v′n′ |ou′v′n′ < ouvn&au′v′n′ = auvn&Tu′v′n′ /∈ T p

uvn, ∀Tu′v′n′ ∈ T } ∪ T p
uvn. (3)

For the sake of clarity, we take A = [a111 = 0, a112 = 2, a113 = 0, a121 = 2, a122 = 0,
a123 = 2, a211 = 1, a212 = 2, a213 = 0, a311 = 0, a312 = 1, a313 = 1], O = [o111 = 4,
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o112 = 6, o113 = 11, o121 = 3, o122 = 8, o123 = 9, o211 = 1, o212 = 5, o213 = 12,
o311 = 2, o312 = 7, o313 = 10] as an example. For T113 that is locally processed, the
high-priority task set Hp

113 = {T122} ∪ T p
113 = {T111, T112, T122}. For T123 which is of-

floaded to the 2-nd MEC server, the high-priority task set Hp
123 = {T112, T212} ∪ T p

123 =
{T121, T122, T112, T212}.

3.4. Latency Model
3.4.1. Local Computing Mode

When the task Tuvn is executed locally (auvn = 0), the starting time suvn of task Tuvn
can be expressed by: {

suvn = max{su, ta
uv} if Hp

uvn = ∅
suvn = cp

uvn otherwise
. (4)

where su is the available serving time of MD u. cp
uvn is the maximum completion time of all

high-priority tasks of Tuvn in Hp
uvn, which can be expressed by cp

uvn = max{cuv′n′ |Tuv′n′ ∈
Hp

uvn}. Thus, the completion time cuvn of task Tuvn can be written as

cuvn = suvn +
Zuvn

Flocal
u

. (5)

where Flocal
u is the local computation capability of MD u.

3.4.2. MEC Offloading Mode

When the task is offloaded to the m-th MEC server (auvn = m) for execution, the wire-
less transmission time and the execution time based on the task offloading and scheduling
sequence should both be considered comprehensively.

According to the Shannon theorem [34], the uplink transmission rate from MD u to BS
m is

γum = B log(1 +
pugum

σ2 ). (6)

where B is the bandwidth of each BS, pu is the uplink transmit power of MD u, and gum
and σ2 are the wireless channel gain and white noise between MD u and BS m, respectively.

Therefore, the starting time suvn of Tuvn is{
suvn = str

m if Hp
uvn = ∅

suvn = max{sp′
uvn, cp′

uvn} otherwise
. (7)

where str
m is the available transmission time of BS m, sp′

uvn = max{su′v′n′ +
Ru′v′n′
γu′m

|∀Tu′v′n′ ∈
Hp

uvn} is the available time for MD u to upload the input data of Tuvn to the BS m through

uplink transmission. cp′
uvn = max{cuvn′ |∀Tuvn′ ∈ T p

uvn} is the maximum completion time of
all precedent tasks of Tuvn, which can also be regarded as the arrival time of Tuvn.

The completion time cuvn of task Tuvn can be given by:

cuvn = max{suvn +
Ruvn

γum
, cp

uvn, scom
m }+ Zuvn

Fmec
m

. (8)

where scom
m is the available serving time of the MEC server in BS m, Fmec

m is the computation
capability of m-th MEC server. cp

uvn is the available time for Tuvn to be executed at the m-th
MEC server, which can be expressed as cp

uvn = max{cu′v′n′ |Tu′v′n′ ∈ Hp
uvn}.

Thus, the serving latency luvn of Tuvn can be defined as

luvn =

{
cuvn − ta

uv T p
uvn = ∅

cuvn − cp′
uvn otherwise

. (9)
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For delay-sensitive tasks, long-serving latency can have an adverse impact on the
service quality of the application. Therefore, we need to reduce the number of tardy tasks
as much as possible. We use a binary parameter duvn to indicate whether the serving latency
luvn of Tuvn exceeds the recommended maximum serving delay Duvn or not, which can be
written as

duvn =

{
1 luvn − Duvn > 0
0 otherwise

. (10)

3.5. Energy Model
3.5.1. Local Computing Mode

When task Tuvn is executed locally, the energy consumption of Tuvn on MD u can be
written as [35]

El
uvn = ε(Flocal

u )3 Zuvn

Flocal
u

= ε(Flocal
u )2Zuvn. (11)

where ε is the switched capacitance related to the MD’s chip architecture.

3.5.2. MEC Offloading Mode

When Tuvn is offloaded to BS m(m ∈ M), the energy consumption of Tuvn is mainly
caused by the wireless transmission on the MD side, which can be written as

Em
uvn = pu

Ruvn

γum
. (12)

Thus, the energy consumption Euvn can be defined as

Euvn =

{
El

uvn, if auvn = 0
Em

uvn, if auvn = m(∀m ∈ M)
. (13)

4. Problem Formulation

In this section, we adopt a weighted sum of serving latency, energy consumption and
the number of tardy tasks of time-dependent application tasks to represent the network
cost, and the dynamic computation offloading and task scheduling optimization problem
can be formulated as follows:

min
{A,O}

J(T ,A,O)

= min
{A,O}

ω1 ∑
∀Tuvn∈T

luvn + ω2 ∑
∀Tuvn∈T

Euvn + ω3 ∑
∀Tuvn∈T

duvn

s.t. C1 :auvn ∈ {0, 1, 2, · · · , m, · · · , M}, ∀auvn ∈ A.

C2 :ouvn ∈ {0, 1, 2, · · · , |T |}, ∀ouvn ∈ O.

C3 :ouvn ̸= ou′v′n′ , ∀ouvn ∈ O and Tuvn ̸= Tu′v′n′ .

C4 :suvn ≥ ta
uv, ∀Tuvn ∈ T .

C5 :cuvn ≥ suvn, ∀Tuvn ∈ T .

C6 :suvn ≥ cuvn′ , ∀Tuvn ∈ T , ∀Tuvn′ ∈ T p
uvn.

(14)

where ω1, ω2 and ω3 are the weights assigned to the serving latency, energy consumption
and tardiness, respectively. Constraints C1, I2 and C3 normalize the feasible solutions of
the problem. Specifically, constraint C1 indicates the computation offloading decisions are
non-negative integers between 0 and M. Constraints C2 and C3 indicate the scheduling
prioritization decisions are non-repetitive integer between 1 and |T |. Constraints C4, C5
and C6 impose restrictions on starting and completion time for the time-dependent tasks.
Constraints C4 and C5 guarantee that the starting time of each task should be later than
the arriving time of the application it belongs to, and earlier than its completion time.
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Constraints C6 states that the starting time of each task should not be earlier than the
completion time of its predecessor tasks.

Clearly, the problem (14) is a combinatorial optimization problem in an infinite time do-
main with complex time-dependent constraints between the tasks within each application,
which is NP-hard and difficult to solve by traditional optimization methods. Meanwhile,
with the continuously arriving application tasks, we cannot obtain accurate and perfect
information about the future networks and application tasks in T in reality. Therefore, it is
difficult to find the global optimal solution to the original dynamic programming problem.

5. Flexible Offloading and Task Scheduling Optimization

In this section, we design a flexible offloading and task scheduling scheme, named
FLOATS, for time-dependent applications that arrive dynamically over an infinite time
horizon. Firstly, we adopt a rolling-horizon-based optimization and scheduling mechanism
that divides the infinite time into multiple optimization intervals and further transforms
the dynamic programming problem into a number of static sub-problems. In order to
solve the sub-problem in each optimization interval, we employ a two-layer chromosome
structure to describe the offloading decision and task scheduling priority and propose a
GA-based computation offloading and task scheduling algorithm to effectively obtain the
optimal solution.

Rolling-Horizon-Based Optimization and Scheduling Mechanism

In order to solve the dynamic programming problem in an infinite time horizon, we
propose an online periodic optimization and scheduling mechanism based on the rolling
horizon approach [36].

By dividing the infinite time into numerous discrete time intervals of the same length
τ, we initially transform the continuous-time optimization into the sum of a series of
static discrete-time optimization problems. Here, we define the equal length time inter-
val as the rolling horizon window (RHW), and describe the k-th RHW’s time frame as
[kτ, (k + 1)τ)(0 ≤ k ≤ ∞). We assume that the network condition and application infor-
mation remain unchanged in each RHW. To solve the dynamic optimization problem, we
adopt the rolling-horizon-based optimization and scheduling mechanism which periodi-
cally solves and executes the optimization problem of each RHW according to the updated
network and application conditions.Specifically, in the proposed mechanism, each RHW
is composed of three parts, which are the information update part, problem optimization
part and solution execution part.

In the information update part of each RHW, the centralized SDN is responsible for
collecting and updating the network condition such as channel gain {gum|∀u ∈ U ,∀m ∈ M},
the available time {su, str

m, scom
m |∀u ∈ U , ∀m ∈ M} of all the MDs, BSs and MEC servers in

next RHW, and the application information such as the current task status and the newly
arrived tasks. Let T kτ denote the task set waiting to be offloaded and scheduled at the
beginning of k-th RHW, all tasks within k-th RHW can be divided into four kinds of task
sets: completed task set T kτ

(com)
, ongoing task set T kτ

(on), unprocessed task set T kτ
(unpro) and

newly arrived task set T kτ
(new)

, which can be defined as follows:

T kτ
(com) ≜{Tuvn|cuvn ≤ (k + 1)τ, ∀Tuvn ∈ T kτ},

T kτ
(on) ≜{Tuvn|suvn < (k + 1)τ&cuvn > (k + 1)τ, ∀Tuvn ∈ T kτ},

T kτ
(unpro) ≜{Tuvn|suvn ≥ (k + 1)τ, ∀Tuvn ∈ T kτ},

T kτ
(new) ≜{Tuvn|kτ < ta

uv ≤ (k + 1)τ}.

(15)

Thus, T kτ can be derived by:
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T kτ ≜ (T (k−1)τ − T (k−1)τ
(com)

− T (k−1)τ
(on) ) ∪ T (k−1)τ

(new)

≜ T (k−1)τ
(unpro) ∪ T (k−1)τ

(new)
.

(16)

Thus, we can heuristically solve the original problem (14) by solving the following
discrete-time static optimization problem periodically:

min J(T kτ ,Akτ ,Okτ)

= min
{Akτ ,Okτ}

ω1 ∑
∀Tuvn∈T kτ

luvn + ω2 ∑
∀Tuvn∈T kτ

Euvn + ω3 ∑
∀Tuvn∈T kτ

duvn

s.t. C1′ :auvn ∈ {0, 1, 2, · · · , m, · · · , M}, ∀auvn ∈ Akτ .

C2′ :ouvn ∈ {0, 1, 2, · · · , |T |}, ∀ouvn ∈ Okτ .

C3′ :ouvn ̸= ou′v′n′ , ∀ouvn ∈ Okτ and Tuvn ̸= Tu′v′n′ .

C4′ :suvn ≥ ta
uv, ∀Tuvn ∈ T kτ .

C5′ :cuvn ≥ suvn, ∀Tuvn ∈ T kτ .

C6′ :suvn ≥ cuvn′ , ∀Tuvn ∈ T kτ , ∀Tuvn′ ∈ T p
uvn.

(17)

where Akτ and Okτ are the computation offloading decision and scheduling priority order
vectors of T kτ in k-th RHW. Clearly, (17) is a combinatorial optimization problem with
multiple time constraints. To solve the above problem, we propose a GA-based computation
offloading and task scheduling algorithm in Section 6.

6. GA-Based Computation Offloading and Task Scheduling Algorithm

The genetic algorithm is a stochastic searching algorithm that seeks the global op-
timal solution of the problem by simulating the natural evolution process in biological
evolution [25,37]. GA converts the solutions into a set of chromosomes and obtains the
optimal solution through chromosome selection, crossover and mutation.

6.1. Two-Layer Modified Chromosome Construction and Encoding

Chromosome construction and encoding are to express the solution of the optimized
problem in the form of the chromosome, of which the legitimacy, effectiveness and integrity
of solution space expression must be considered. In this section, we utilize the task offload-
ing decision vector Akτ and the scheduling priority vector Okτ to describe a solution Skτ

and further adopt the two-layer segmented coding method to transfer {Akτ ,Okτ} into the
chromosome Ikτ , which can be expressed by:

Ikτ = [Akτ ; Okτ ] (18)

where Akτ , Okτ are the gene segments of the computation offloading decisions part and the
scheduling prioritization decisions part with the chromosome length |T kτ |, respectively.

Each gene in the chromosome is represented by an integer. In the computation
offloading decisions part, each gene represents the offloading decision of the current task
according to the sequence of task numbers. In the scheduling prioritization decisions
part, each gene is directly encoded with the application number, and the order of all
application numbers indicates the scheduling sequence of the application tasks. In detail,
when the genes in the scheduling prioritization decisions part are compiled from left to
right, the application number uv appearing for the n-th time represents the task Tuvn, and
the occurrence number of the application number uv is equal to the total number of tasks
of the application APuv. A chromosome example and the corresponding encoding solution
are illustrated in Figure 2, and the Gantt chart corresponds to the solution which is decoded
from the given chromosome example, as shown in Figure 3.
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Figure 2. Chromosome structure and encoding.
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Figure 3. The Gantt chart corresponded to the given chromosome example.

6.2. Population Initialization

Population initialization is a key problem in evolutionary algorithms, and the quality
of initial solutions has a great impact on the convergence speed and quality of GA. Here,
we adopt two kinds of heuristic population generation methods named global heuristic
generation method and local heuristic generation method, combined with the random
generation method to initialize the population with Nc chromosomes.

• Global heuristic generation method: We randomly generate the scheduling prioritization
decisions Okτ for all tasks, and heuristically select the global optimal offloading
decision for each task sequentially. The detailed steps are as follows:

1. Randomly select an application number from the application set and fill it into
Okτ , decode the selected task number according to Section 6.1.

2. Calculate the network cost of the selected task based on the current network state,
select the offloading decision with the lowest network cost and fill it into Akτ.
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3. Update and record the available time of the MDs and BSs in the current network.
If the selected task is the last task of the application, remove the application from
the application set.

4. Repeat the first step until the application set is empty.

• Local heuristic generation method: We randomly generate the scheduling prioritization
decisions Okτ for all tasks and heuristically select the offloading decisions with the
lowest network cost for all tasks based on the initial network status. The detailed steps
are as follows:

1. Randomly select an application number from the application set and fill it into
Okτ , decode the selected task number according to Section 6.1.

2. Calculate the network cost of the selected task based on the initial network state,
select the offloading decision with the lowest network cost and fill it into Akτ.

3. If the selected task is the last task of the application, remove the application from
the application set. Repeat the first step until the application set is empty.

• Random generation method: We randomly generate the scheduling prioritization deci-
sions Okτ and the offloading decision vector Akτ for all tasks. The detailed steps are
as follows:

1. Randomly select an application number from the application set and fill it into
Okτ , decode the selected task number according to Section 6.1.

2. Randomly select an offloading decision for the selected task and fill it into Akτ .
3. If the selected task is the last task of the application, remove the application from

the application set. Repeat the first step until the application set is empty.

6.3. Fitness Evaluation and Chromosome Selection

We evaluate the quality of each solution by calculating the fitness value of each
chromosome based on the objective function of the problem (17). The fitness function is
defined as

Fitness = ξ − J(T kτ ,Akτ ,Okτ) (19)

where ξ is a constant value that is large enough to ensure non-negative fitness.
The classical tournament method is adopted in the selection operation to pick out a

certain quantity of parent chromosomes for generating the new population through the
crossover and mutation operations. In tournament method, we randomly take several
chromosomes from the original population each time, and select the chromosome with
the best fitness to enter the offspring population. Repeat this operation until the new
population reaches the size of original population.

6.4. Crossover and Mutation

Crossover operation affects the global search ability of genetic algorithm. In the
crossover operation, we recombine the gene fragments of Akτ and Okτ of the selected new
population chromosomes with the crossover probability ρc to generate the new individ-
uals. To ensure the legitimacy of newly generated chromosomes, we use two crossover
operations, named uniform crossover and precedence preserving order-based crossover,
for computation offloading decisions part and scheduling prioritization decisions part,
respectively [38].

• Computation offloading decisions part: uniform crossover. We randomly select multi-
ple crossover positions on Okτ and exchange corresponding genes from two parent
chromosomes. The detailed steps are as follows:

1. Randomly generate ⌊ |O
kτ |
2 ⌋ unequal integers between 1 and |Okτ |.

2. According to the generated integers, exchange corresponding position genes from
two parent chromosomes to generate the offspring chromosomes.
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As shown in Figure 4, we randomly generate 6 positions, and exchange the genes at the
2nd, 3rd, 5th, 6th, 8th and 10th positions from the computation offloading decisions
parts of parent chromosomes [0, 2, 0, 2, 0, 2, 1, 2, 0, 0, 1, 1], [1, 1, 0, 2, 1, 2, 0, 2, 2, 1, 2, 1] to
obtain the computation offloading decisions parts of offspring chromosome [0, 1, 0, 2, 1,
2, 1, 2, 0, 1, 1, 1], [1, 2, 0, 2, 0, 2, 0, 2, 2, 0, 2, 1].

• Scheduling prioritization decisions part: precedence preserving order-based crossover.
We randomly divide the application set into two subsets. For tasks of all applications
in one subset, we extract and preserve the priority gene sequences on Akτ from two
parent chromosomes, exchange the corresponding genes and sequentially fill them
into the gene positions of the two chromosomes. The detailed steps are as follows:

1. Randomly divide the application set into two subsets AP ′
1 and AP ′

2.
2. Search for the gene positions GP1, GP2 and gene sequences GS1, GS2 of tasks

in AP ′
1 from the scheduling prioritization decisions parts of the parent chromo-

somes I1 and I2.
3. Replace GS1 with GS2 and fill it into the gene positions GP1 in parent chromo-

some I1 to obtain the offspring chromosome I′1, and replace GS2 with GS1 and
fill it into the gene positions GP2 in parent chromosome I2 to obtain the offspring
chromosome I′2.

As shown in Figure 4, we randomly divide the application set into {11, 31} and
{12, 21}. For the scheduling prioritization decisions parts of the parent chromosomes
[21, 31, 12, 11, 21, 11, 31, 12, 12, 31, 11, 21], [11, 12, 31, 21, 21, 12, 31, 12, 11, 11, 21, 31], we
exchange the gene sequences [31, 11, 11, 31, 31, 11] and [11, 31, 31, 11, 11, 31] and get the
scheduling prioritization decisions parts of the offspring chromosomes [21, 11, 12, 31,
21, 31, 11, 12, 12, 11, 31, 21], [31, 12, 11, 21, 21, 12, 11, 12, 31, 31, 21, 11].
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Figure 4. Example of crossover operation.

Mutation operation can increase the diversity of chromosomes by randomly changing
some genes of chromosomes, which can improve the local search ability of the genetic
algorithm to a certain extent. As shown in Figure 5, two kinds of mutation methods are
adopted for Akτ and Okτ , respectively.

• Computation offloading decisions part: random mutation. For Akτ , we randomly mutate
each gene within {0} ∪M with the mutation probability of ρm.

• Scheduling prioritization decisions part: exchange mutation. For Okτ , we randomly
choose two genes for exchange with the mutation probability of ρm to maintain the
feasibility and validity of Okτ .
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6.5. Generating New Population

We produce the offspring population by employing the aforementioned selection,
crossover, and mutation operations. We combine the parent and offspring populations to
form a new population, and then sort all the chromosomes in descending order according
to their calculated fitness. In accordance with the principles of natural evolution, we
discard chromosomes that exhibit poor fitness, while only retaining a specific number of
chromosomes that demonstrate good fitness in the new population. The population evolves
continuously until the optimal fitness converges or the generation surpasses the maximum
generation Gc. The detailed pseudocode is provided in Algorithm 1.

Algorithm 1 GA-based computation offloading and task scheduling algorithm

1: Initialize: The population size Nc, maximum generation Gc, crossover probability ρc,
mutation probability ρm.

2: Generate the initial population based on the global heuristic generation method, local
heuristic generation method and random generation method.

3: G = 1.
4: repeat
5: Evaluate the fitness of each chromosome.
6: Execute the tournament selection operation to select the next-generation population.
7: Each chromosome in the population is randomly paired and performs the crossover

operation with the crossover probability ρc.
8: Each chromosome performs the mutation operation according to the mutation proba-

bility ρm.
9: Generate the new population.

10: G = G + 1;
11: until The optimal fitness converges or G > Gc

6.6. Computation Time Complexity

In the proposed GA algorithm, the time complexities to generate the initial chromo-
some population by using the GHG and LHG methods are O((|M|+ 2)× |T kτ |), and
the time complexity to initialize the chromosome population by using RH method is
O(2|T kτ |). The time complexity to calculate the fitness is O(|T kτ | × Nc), the time com-
plexity of crossover operation is O(2N2

c ), the time complexity of mutation operation is
O(2|T kτ | × Nc). Due to Nc > (|M|+ 2)× |T kτ |, and the time complexity of proposed
algorithm is O(2Gc × N2

c ).

7. Simulation and Performance Evaluation
7.1. Simulation Setup

Here, we consider a heterogeneous MEC network that consists of 4 BSs and 20 MDs
that are randomly distributed within a 500 m × 500 m square area. For each BS, the
bandwidth is 10 MHz. The MEC servers have diversified computation capacities which
are randomly generated from [2, 8] GHz. For each MD, the maximal uplink transmit
power is 23 dBm, the local computation capacity is 1 GHz, and the switched capaci-
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tance ε = 10−27 [35]. The white noise σ2 = −174 dBm/Hz. The path loss model is
128.1 + 37.6 log(d), where d(km) is the distance between the BS and MD [39]. The ap-
plication arrival of each MD follows the Poisson process with the mean value of λ app/s.
Each application consists of 3 time-dependent tasks. The input data size Ruvn of each task
follows a uniform distribution of [R̄ − 500, R̄ + 500] KB, where R̄ is the mean input data size
of tasks. The demanded CPU cycles per bit Zuvn/Ruvn of each task randomly varies in the
range of [250, 750] cycles/bit. The recommended maximum serving delay Duvn is randomly
generated between [250, 750] ms. The weight parameters are set to be ω1 = 1, ω2 = 1, and
ω3 = 10. The time length of RHW is 250 ms. The parameters of the GA algorithm are listed
as follows: Nc = 2000, ρc = 0.8, ρm = 0.01. The proportions of chromosomes generated
based on the global heuristic generation method, local heuristic generation method and
random generation are 0.6, 0.3, 0.1 [40]. The simulation parameters are modified from [41],
and the detailed simulation parameters are listed in Table 2.

Table 2. Main simulation parameters.

System Parameters Values

MD number U 20
BS number M 4

Channel bandwidth B 10 MHz
Local computation capacity Flocal

u 1 GHz
Computation capacity of MEC server Fmec

m [2, 8] GHz
Input data size of task Ruvn [R̄ − 500, R̄ + 500] KB

Demanded CPU cycles per bit Zuvn/Ruvn [250, 750] cycles/bit
Recommended maximum serving delay Duvn [250, 750] ms

Maximal uplink transmit power pu 23 dBm
Pathloss 128.1 + 37.6 log(d)

White noise σ2 −174 dBm/Hz
Time length of RHW τ 250 ms

Chromosome Nc 2000
Crossover probability ρc 0.8
Mutation probability ρm 0.01

Here, we compare our proposed FLOATS scheme with the following reference schemes:

(1) FIFO-FLO: First-in-first-out prioritization-based flexible computation offloading al-
gorithm, in which each task can be processed locally or flexibly offloaded to one of
the multiple MEC servers and the computation offloading decisions are optimized by
GA method.

(2) FIFO-greedy: First-in-first-out prioritization-based computation offloading algorithm,
in which each task can be processed locally or flexibly offloaded to one of the mul-
tiple MEC servers, and the computation offloading decisions are optimized by the
greedy method.

(3) COATS: Computation offloading and task scheduling algorithm with single-connectivity
technology, in which each MD accesses the BS with the maximal received signal and
all tasks of each MD can be processed locally or be processed by the MEC server
equipped in associated BS.

We evaluate the performances of the proposed scheme and the reference schemes for
all tasks of dynamically arrived applications in the MEC network within 3s. By using the
Monte Carlo simulation method, all performance results are obtained over 50 runs with
various simulation parameters.

7.2. Performance Evaluation

To evaluate the performance of the proposed GA algorithm, we consider a small-scale
problem and compare the performance of the proposed scheme with the optimal solution
obtained through exhaustive search. Figure 6 illustrates the performance comparisons
of the proposed FLOATS and exhaustive search with application numbers ranging from
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2 to 5 and BS numbers ranging from 2 to 3. It can be seen that the proposed scheme
can achieve near-optimal performances. When the problem size is relatively small, the
proposed scheme can achieve the same results as the optimal solution. As the number of
MDs increases, there is an extremely small gap between the proposed solution and the
optimal solution.
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Figure 6. Performance comparison between the proposed scheme and exhaustive search.

Figure 7 shows the performance comparison of the proposed schemes and the reference
schemes under different application arrival rates λ. Figure 7a illustrates the impacts of the
application arrival rates on the total network cost. It can be seen from Figure 7a, as the
application arrival rate increases, the total network cost grows. Compared with COATS
with single-connectivity technology, other schemes using multi-connectivity technology
can simultaneously utilize the wireless and computing resources of multiple BSs and
significantly reduce the total network costs. Compared with COATS, which only optimizes
the task scheduling, and FIFO-FLO, which only optimizes the computation offloading, the
proposed FLOATS can significantly reduce the total network cost of the application tasks.
It proves that the joint optimization of computation offloading and task scheduling can
improve the serving quality of the application tasks. The network cost reduction of the
proposed FLOATS compared to FIFO-greedy proves the effectiveness of the GA algorithm
used in our scheme.

In order to better illustrate the trade-off between the three performances, Figure 7b–d
show the detailed total serving latency, energy consumption and the number of tardy tasks
of different schemes, respectively. It can be figured out that the total serving latency, energy
consumption and the number of tardy tasks of the applications gradually increase as the
application arrival rate rises. Specifically, compared with COATS, other schemes such as
FIFO-FLO, FIFO-greedy and FLOATS can specifically shorten service latency and improve
tardiness performance. This is achieved by allowing application tasks to be offloaded
to multiple MEC servers for execution. Additionally, by retaining fewer tasks for local
execution, they further reduce energy consumption. The performance gains of FLOATS in
serving latency and the number of tardy tasks compared with FIFO-FLO and FIFO-greedy
prove the utilization of GA algorithm in the joint optimization of computation offloading
and task scheduling can improve the service quality of the applications. Meanwhile,
FLOATS can reduce the local computing probability and gain better energy consumption
performance.

Figure 8 shows the performance comparison between the proposed scheme and the
reference schemes under different mean input data sizes of tasks. Figure 8a shows the total
network cost comparison of different schemes. It can be seen from Figure 8a, with the increase
in the input data size, COATS can not effectively achieve the load balance of the system and
has the lowest utilization rate of network resources and highest network cost of the application
tasks. Compared with FIFO-greedy, the adoption of the GA algorithm in FLOATS can bring
about a network cost reduction of over 40% and can improve the resource utilization efficiency.
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Furthermore, compared with FIFO-FLO, the proposed FLOATS can reduce network cost by at
least 20% by jointly optimizing the computation offloading and task scheduling.
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Figure 7. Performances of different application arrival rates λ (app/s) (R̄ = 1000 KB, τ = 250 ms).
(a) Total network cost. (b) Total serving latency. (c) Total energy consumption. (d) Total number of
tardy tasks.
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Figure 8. Performances of under different mean input data size of tasks R̄ (KB) (λ = 0.6 app/s,
τ = 250 ms). (a) Total network cost. (b) Total serving latency. (c) Total energy consumption. (d) Total
number of tardy tasks.
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Figure 8b–d show the performances of total serving latency, energy consumption and
the number of tardy tasks of different schemes, respectively. Figure 8b,d demonstrate
that as the input data size increases, both the wireless transmission and computational
demands of the system increase, leading to a gradual rise in the serving latency and
tardiness of the application tasks due to the long waiting time of the application tasks. The
proposed FLOATS always outperforms other schemes both in the serving latency and the
tardiness performances. Meanwhile, from Figure 8c, we can find out that as the input data
increase, the wireless transmission and local computing processing load increases, which
results in higher energy consumption on the MD sides. Compared with COATS, FIFO-
FLO and FIFO-greedy, the proposed FLOATS is more energy-efficient due to its reduced
local computing load. These three figures indicate that the proposed FLOATS consistently
achieves a comparatively lower service delay and energy consumption compared with
other schemes, and can significantly decrease the rate of tardy tasks in the network.

Figure 9 shows the performance comparison between the proposed scheme and the
reference schemes under different RHW time lengths. As shown in Figure 9a, with the
increase in the RHW time length, the optimization period is prolonged, and the scheduling
of tasks will be gradually delayed, while the number of tasks that can be comprehensively
optimized grows accordingly. Due to limited available resources and long service waiting
latency, the performance of COATS is not significantly affected by shorter RHWs, while for
other schemes that can flexibly utilize the wireless and computing resources of multiple BSs
and MDs, the total network cost of tasks experiences a moderate increase when the RHW
time length falls within the minimum delay tolerance range. When the RHW time length
exceeds the minimum delay tolerance range, the waiting time of tasks for scheduling will
be extended, which results in a rapid increase in the total network cost performance. Under
different RHW time lengths, the proposed FLOATS still maintains superior performances
than other reference schemes.
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Figure 9. Performances of different RHW time lengths τ (ms) (R = 1000 KB, λ = 0.6 app/s). (a) Total
network cost. (b) Total serving latency. (c) Total energy consumption. (d) Total number of tardy tasks.

Figure 9b–d show the performances of total serving latency, energy consumption and
the number of tardy tasks of different schemes, respectively. Note that with shorter RHW
time lengths, tasks can be optimized and scheduled frequently, which leads to shorter
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waiting time for tasks and reduces the possibility of tardiness. As the RHW time length
increases, the serving latency and tardiness both go up rapidly, and more tasks remain for
scheduling in the network. From the three figures, it can be seen that the proposed FLOATS
can effectively balance the performances of the three objectives under different RHW time
lengths. Specifically, when the RHW time lengths are less than 500 ms, the proposed
FLOATS performs better in terms of the network costs and three performances compared to
other schemes. When the RHW time lengths are greater than 500 ms, the proposed FLOATS
will keep more tasks executed locally to reduce the number of tardy tasks, and the serving
latency and energy consumption of MDs will also increase accordingly.

8. Conclusions

In this paper, we propose the FLOATS scheme to adaptively coordinate and orchestrate
heterogeneous wireless and computing resources to meet the diversified requirements of
multiple IoT applications in dynamic environments. We first adopt the multi-connectivity
technology and utilize the computation offloading decision and scheduling priority se-
quence to describe a more flexible offloading and scheduling solution for time-dependent
tasks. The dynamic problem is formulated as a multi-objective combinatorial optimization
problem in an infinite time horizon. To address this, a rolling-horizon-based optimization
and scheduling mechanism is developed which decomposes the original problem into a
series of static sub-problems. To search for the optimal solution of the static sub-problems,
we propose a GA-based computation offloading and task scheduling algorithm based on
the two-layer chromosome construction and search for the optimal solution by selection,
crossover and mutation operations. Simulation results show that the proposed scheme
can considerably reduce the network cost and make a good balance between multiple
performances compared with other reference schemes. Although the proposed GA algo-
rithm can effectively improve the service quality of the applications, its computational
complexity still becomes a hindrance in large-scale network scenarios. Therefore, it is
recommended to use it in low- or medium-network-scale scenarios. In future work, we
will consider applying a distributed algorithm or deep reinforcement learning algorithm
to further explore the computation offloading and task scheduling algorithms with lower
complexity for time-dependent tasks in large-scale networks.
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Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of things
QoS Quality of service
MEC Multi-access edge computing
RHW Rolling-horizon window
DAG Directed acyclic graph
BS Base station
SDN Software-defined network
GA Genetic algorithm
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