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Abstract: Effective information transmission is a central element in quantum information protocols,
but the quest for optimal efficiency in channels with symmetrical characteristics remains a prominent
challenge in quantum information science. In light of this challenge, we introduce a hybrid channel
that encompasses thermal, magnetic, and local components, each simultaneously endowed with
characteristics that enhance and diminish quantum correlations. To investigate the symmetry of this
hybrid channel, we explored the quantum correlations of a simple two-qubit Heisenberg spin state,
quantified using measures such as negativity, `1-norm coherence, entropic uncertainty, and entropy
functions. Our findings revealed that the hybrid channel can be adeptly tailored to preserve quantum
correlations, surpassing the capabilities of its individual components. We also identified optimal
parameterizations to attain maximum entanglement from mixed entangled/separable states, even
in the presence of local dephasing. Notably, various parameters and quantum features, including
non-Markovianity, exhibited distinct behaviors in the context of this hybrid channel. Ultimately, we
discuss potential experimental applications of this configuration.

Keywords: thermal reservoir; magnetic field; classical dephasing; static noise; quantum characteristics

1. Introduction

The transmission of information in quantum information processing is performed us-
ing various types of communicating means, which include local and non-local channels [1].
The design of such transmitting channels is important because the resourcefulness of the
quantum systems may be lost if the inclusive channels have disorders or no optimal charac-
teristics. In the previous era, various types of channels with various characteristics have
been treated separately. However, this would be far from reality, as the characteristics
of these various channels can be found at the same place simultaneously, for example
the thermal, magnetic, and dephasing effects. In this regard, the thermal interaction picture
of the channels has been studied using the concept of Gibb’s density matrix operation [2].
Besides this, magnetic fields have also been used to demonstrate the quantum correlations’
dynamics explicitly [3]. Most importantly, the local channels have been successfully used
for decades for the transmission of information [4]. On the contrary, non-local channels
have been investigated, and many efforts for their practical empowerment have been made
recently [5]. Compared to the non-local ones, the classical ones have the advantage of
being easily implemented, as they do not need any complex design. Pure classical channels,
nonetheless, are influenced by certain types of flaws and disorders, such as the impact
of surface charge carriers [6], electronic currents [7], and so forth. One of these disorders
causes static noise, which will be considered to influence classical channels in the current
situation and has been found to completely degrade quantum correlations [8].
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We are planning to demonstrate the effectiveness of a complex mixed channel deployed
for information transmission; therefore, we will consider simple two-qubit correlations to
evaluate our goal. In the emerging discipline of quantum information science, non-classical
correlations are now the primary priority of foundational scientific study [9]. A crucial
non-local resource known as quantum entanglement explains a particular kind of non-
classical correlation among sub-systems of a quantum composite state [10]. When a group
of particles interacts spatially such that the quantum states of each particle are mutually
exclusive, this is referred to as quantum entanglement. This non-local correlation causes
measurements on one part of an entangled pairing and immediately affects the results of
measurements on the other. Quantum computers can perform computations that are not
conceivable on classical computers because of the advantage that non-local systems can
exist in multiple states simultaneously [11]. Researchers are actively developing a quantum
Internet and quantum encrypted communications using entanglement [12], which would
allow for new varieties of telescopes [13], sensors [14], and ultra-secure broadcasting [15].
Besides, various studies have focused on providing schemes and critical studies on improv-
ing the degree of quantum correlations between the sub-systems of the non-local states
considering various procedures (for example, see Refs. [16–18]), therefore giving rise to the
successful implementation of the quantum protocols. In addition, the information encoded
in qubits can be processed more quickly and with less processing power because of the
quantum entanglement phenomenon. Recently, it has been demonstrated that quantum
coherence and entanglement, two fundamentally dissimilar aspects of quantum theory,
are functionally equivalent and have made a variety of quantum technologies possible;
therefore, both would remain part of the current study [19].

The uncertainty principle holds that the results of simultaneous measurements of non-
commuting observables commonly have an intrinsic lower bound on the uncertainty [20].
This assumption both illustrates how the classical and quantum realms differ and provides
the rationale for the ambiguity of quantum mechanics. In essence, it states that you cannot
begin preparing a quantum particle whose location and momentum are predictable with
certainty, simultaneously [21]. Kennard and Robertson revisited the principle of uncertainty
after it had taken the form of a standard deviation and was based on the combined variance
of two observables [22]. For example, for two observables X and Y , the associated uncer-
tainty relation was defined as ∆X∆Y ≥ 1/2|〈[X ,Y ]〉|. Furthermore, Deutsch established
the well-known version of the entropic uncertainty (EU) relation in 1983 and proposed
the uncertainty principle in terms of the Shannon entropy [23]. Afterward, Kraus first
proposed another simplified version of the EU relation, which was verified in 1988 by
Maassen and Uffink [24,25]. Besides, for different quantum systems and situations, various
EU relations have been established. The study of the EU will provide an important aspect
of the current hybrid channel to induce uncertainty in the process of quantum information
processing [26–28].

The integrability of the Heisenberg Hamiltonian preserves the capacity to identify its
precise spectrum [29]. This framework, which Heisenberg first developed, can be consid-
ered a recognition of the potential for the advancement of integrable frameworks in low
dimensions in both classical and quantum statistical mechanics, as well as field theory [30].
In practice, they have been used in a variety of domains, such as condensed matter physics
and high-energy physics [31]. In addition, a large amount of time has been put into study-
ing Heisenberg spin chains recently, and the preservation of quantum correlations has
greatly benefited as a result [32]. Quantum information theory methods have been used
to study the reduced density matrix of the spin-1 Heisenberg chains, including looking
at quantum mutual information [33], quantum discord [34], and the local quantum un-
certainty measure [35]. Quantum discord, as opposed to the entanglement of formation,
was used to pinpoint the critical regions associated with quantum phase transitions in an
XXZ spin chain model [36]. It has been demonstrated that these properties differ from
those of thermal entanglement and that thermal quantum correlations can be produced by
altering the magnetism and the strength of the Heisenberg interaction coupling strength in
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the antiferromagnetic system [37]. However, all these studies have been carried out with-
out considering dephasing. No quantum information configuration considers dephasing;
therefore, it is recommended to investigate how much the system is tolerant to dephasing.
Indeed, this would allow us to expect the success rate and lifespan of the quantum protocols
employed. This made us realize a configuration of the Heisenberg spin-1/2 model, which
includes several interactions under local dephasing.

In this work, we considered examining a two-qubit spin state influenced by a ther-
mal and magnetic field [38]. The spin system was further assumed to be characterized
by the Dzyaloshinskii–Moriya interaction (DM), Kaplan, Shekhtman, Entin-Wohlman,
and Aharony interaction, (KSEA) and the anisotropy parameters’ interaction [39,40]. The DM
interaction, an antisymmetric exchange interaction that controls chiral spin configurations,
is brought on by inversion symmetry breaking in non-centrosymmetric crystal lattice in-
terfaces [41]. On the other hand, the KSEA interaction is caused by the symmetric helical
interaction [40]. Besides, the generated quantum correlations need interaction with external
channels to be transmitted. As it is known that classical channels are highly destructive for
quantum correlations, therefore, we were motivated to investigate the impact of the joint
implications of the external thermal–magnetic–classical channel (TMCC) on the quantum
correlation dynamics. The reason behind designing such a configuration is to devise a
reliable and physically constructional transmitting channel, which we believe will be help-
ful in quantum correlations’ preservation during communication using non-local systems.
The entanglement measurement in the spin state is performed by using negativity (NG),
which is one of the well-known bipartite entanglement monotones [42]. As stated before,
entanglement and coherence are two fundamental correlations of quantum systems. Moti-
vated by this, we also analyzed the dynamics of coherence using the `1-norm of coherence
in the spin system [43]. Quantum systems are always influenced by uncertainty; therefore,
we also considered assessing the degree of uncertainty between different observables of
the system using EU relations [44]. Besides uncertainty, mixedness disorder is a commonly
found phenomenon where most of the quantum correlations in quantum systems are lost
because of its emergence. The degree of disorder in the spin state when subjected to the
hybrid channel with thermal, magnetic, and local dephasing parts was computed utilizing
linear entropy (EN). One of the basic motivations behind the simultaneous measurement
of entanglement, coherence, entropic uncertainty, and mixedness disorder is to find the
reaction of the assumed hybrid channel towards different non-classical characteristics.

This work is presented as follows: In Section 2, we provide the details of the physical
model of the assumed system and channel, along with an introduction to the measurement
of two-qubit correlations. Section 3 gives a detailed analysis of the results obtained, and in
Section 5, we summarize this work.

2. Physical Model
2.1. Thermal and Magnetic Interaction

We assumed a two spin-1/2 XXZ-type Heisenberg system when exposed to an external
homogeneous magnetic field characterized by the DM (Dz) and KSEA (Kz) coupling
interactions oriented along the z-axis (as shown in Figure 1). This configuration has the
Hamiltonian model given by [32]

H = ∆z

(
Sz

1Sz
2

)
+ Dz

(
Sx

1 Sy
2 − Sy

1Sx
2

)
+ J
(

Sx
1 Sx

2 + Sy
1Sy

2

)
+ Kz

(
Sx

1 Sy
2 + Sy

1Sx
2

)
+ B

(
Sz

1 + Sz
2

)
, (1)

where Sg
f with ( f = {1, 2}, g = {x, y, z}) are the spin-1/2 Pauli matrices of the spin f ,

∆z is the real anisotropy coupling constant describing the symmetric exchange spin–spin
interaction in the z-direction, Dz is the DM interaction strength regulating the spin–orbit
antisymmetric coupling, and J is the Heisenberg exchange interaction between the spin
particles. Note that J > 0 (J < 0) corresponds to the antiferromagnetic (ferromagnetic)
interaction between the spins sites, respectively. Besides, Kz represents the KSEA interaction
strength oriented along the z−axis responsible for symmetric spin–orbit coupling, while
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B is the homogeneous part of the considered magnetic field. The Hamiltonian expression
given in Equation (2) in the computational basis {|00〉, |01〉, |10〉, |11〉} takes the form:

H =


2B + ∆z 0 0 −2iKz

0 −∆z 2iDz + 2J 0

0 −2iDz + 2J −∆z 0

2iKz 0 0 −2B + ∆z

. (2)

The corresponding eigenvectors of the Hamiltonian H are

|Θ1+ ,4−〉 =
√

Λ± 2B
2Λ

(
|00〉 ± 2iKz

Λ± 2B
|11〉

)
, |Θ2+ ,3−〉 =

1√
2

(
|01〉 ± 2J ± 2iDz

υ
|10〉

)
,

with Λ =
√

4B2 + 4K2
z and υ =

√
4J2 + 4D2

z . Besides, the eigenvalues of Equation (2) are
E1+ ,4− = ∆z ±Λ, and E2 = −∆z + υ.

Using Gibbs’s density operator, the thermal state density matrix for the Hamiltonian
given in Equation (2) in equilibrium with a thermal reservoir at temperature T using the
eigenvectors has the form:

ρ(0, T) = ∑
i

pi|Θi〉〈Θi| (3)

where pi =
e−βEi

Z is the probability associated with the eigenstate |Θi〉 with Ei being the
eigenenergy corresponding to |Θi〉 and

Z = Tr
[

exp{−H
T
}
]
=

4

∑
i=1

exp
[
−Ei

T

]
(4)

with Boltzmann’s constant kB = 1, ensuring that the probabilities sum up to 1. This
representation can be used to see the non-factorable quantum superposition of the thermal
Heisenberg state for the two-qubit system in terms of its eigenvalues and eigenvectors.
As one can see, the bases in the eigenvectors |00〉, |10〉, |01〉, and |11〉 are in superposition of
each other, hence suggesting that the considered two spins are in the entanglement domain.

Figure 1. The physical model of the hybrid channel with thermal, magnetic, and classical dephasing
parts controlled by static noise employed for the dynamics of the two-qubit Heisenberg spin state
characterized by various parameters, such as spin–spin, DM, and KSEA interaction.
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Finally, the thermal density matrix ρ(0, T) in the computational basis has the form:

ρ(0, T) =


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ∗23 ρ33 0

ρ∗41 0 0 ρ44

. (5)

The corresponding entries are given by

ρ11 =
1
Z

e−
∆z
T

(
cosh(ϕ)− B sinh(ϕ)√

B2 + K2
z

)
,

ρ14 = ρ∗41 =
1

Z
√

B2 + K2
z

iKze−
∆z
T sinh(ϕ),

ρ22 = ρ33 =
1
Z

e∆z /T cosh(v),

ρ23 = ρ∗32 =
1

Z
√

D2
z + J2

(−J − iDz)e∆z /T sinh(v),

ρ44 =
1
Z

e−
∆z
T

(
B sinh(ϕ)√

B2 + K2
z
+ cosh(ϕ)

)
, (6)

where ϕ = 1
T (2
√

B2 + K2
z), v = 1

T (2
√

Dz2 + J2) and partition function Z = 2e−
∆z
T (e

2∆z
T

cosh(v) + cosh(ϕ)).

2.2. The Exposure to a Classical Channel

Here, we provide the exposure of the two-qubit spin state to a common classical
environment driven by static noise. In the present case, the Hamiltonian, which governs
the current physical model, is written as [45]

HXY = HX ⊗ IY + IX ⊗HY, with HP =

[
∆Pλ + ε 0

0 ε− ∆Pλ

]
, (7)

where HP (P = X, Y) denotes the Hamiltonian state of the sub-system P , ε is the equal
energy splitting between the sub-systems, I is the 2× 2 identity matrix, λ is the coupling
constant, ∆P regulates the stochastic behavior of the classical field and is flipping between
±1, and Sz is the spin-Pauli matrix.

For the time evolution of the system, we used the following time-unitary operator,
where

UXY(t) = exp
{
− i

∫ t

t0

H(z)dz
}
=


U11 U12 U13 U14

U12 U11 U14 U13

U13 U14 U11 U12

U14 U13 U12 U11

, (8)

which is the time-unitary matrix with h̄ = 1, and the matrix entries are

U11 = exp{−2itε} cos(∆Xλt) cos(∆Yλt),

U12 =− i exp{−2itε} cos(∆Xλt) sin(∆Yλt),

U13 =− i exp{−2itε} sin(∆Xλt) cos(∆Yλt),

U14 =− exp{−2itε} sin(∆Xλt) sin(∆Yλt). (9)
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To obtain the time-evolved state of the system for the initial thermal state density matrix
ρ(0, T) given in Equation (6) when exposed to an identical channel, i.e., ∆X = ∆Y, we
use [45]

ρX,Y(t, T) = UXY(t)ρ(0, T)UXY(t)† → ρ(t, T) = UXX(t)ρ(0, T)UXX(t)†, (10)

and explicitly, the above equation takes the following shape:

ρ(t, T) =


ρ11 0 0 e−4i∆Xλtρ14

0 ρ22 ρ23 0

0 ρ∗32 ρ33 0

ρ∗41e4i∆Xλt 0 0 ρ44

. (11)

The Influence of Classical Static Noise Disorder

Next, we provide the application and influence of the static noise on the time-evolved
state of the spin system. In this regard, static noise is primarily characterized by ∆Q, namely
the disorder parameter. This noise has the probability distribution function O(δ) = 1/∆Q
and exhibits the range |δ− δo| ≤ ∆Q/2, where δo denotes the mean value of the proba-
bility distribution function [46]. The autocorrelation function of the stochastic parameter
〈δ∆(t)∆(0)〉 = ∆2

Q/2 reveals crucial insights into the nature of the stochastic process. This
expression implies that the fluctuations in ∆(t) exhibit persistence over time, as the auto-
correlation function does not decay to zero, but instead, maintains a value of ∆2

Q/2. This
characteristic behavior gives rise to a power spectrum dominated by a δ function sharply
peaking at zero frequency. The presence of this distinct peak signifies a longer characteristic
timescale associated with the noise, surpassing the timescales of the system–environment
coupling. Consequently, the static noise displays non-Markovian characteristics, suggesting
that the temporal correlations within the stochastic parameter persist over timescales com-
parable to or longer than the timescales of the underlying system–environment interactions.
This nuanced understanding of the noise properties provides valuable insights into the
intricacies of the dynamical processes and sheds light on the non-Markovian nature of
the associated stochastic fluctuations. However, it should be noted that, for the practi-
cal deployment of the configuration, besides noise, other resources related to the design
should be taken into account. For example, in a study, the non-Markovian behavior of the
Rabi pulses was found to be deeply dependent on the configuration, including the dot
dimensions and the waveform shapes of the applied laser [47]. Besides a particular type of
dephasing, the connection between cavity decay and the phonon-induced renormalization
of the light–matter interaction has also been found to affect the transitions of the state [48].

To evaluate the impact of the static noise on the dynamics of the spin state, the time-
evolved state density matrix was averaged over all possible noise configurations. Therefore,
we integrated the matrix in Equation (11) between r+ = δo − ∆Q/2 and r− = δo + ∆Q/2
as [8]

ρst(t, T) =
∫ r+

r−

1
∆Q

ρ(t, T)d∆X =


ρ11 0 0 ρ̂14

0 ρ22 ρ23 0

0 ρ∗23 ρ33 0

ρ̂∗41 0 0 ρ44

, (12)

where ρii(ii = 11, 22, 33, 44, 23) remains the same as given in Equation (6). However,

ρ̂14 = ρ̂∗41 =
ρ14e−4iδoλt sin(2∆Qλt)

2∆Qλt .
Note that the final matrix given in Equation (12) represents the two-spin system

simultaneously influenced by a thermal, magnetic, and classical channel. Note that the off-
diagonal matrix elements are included now with dephasing terms; hence, the coherence loss
of the systems is included. Therefore, the loss of entanglement, the rise of the uncertainty,
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and the mixedness in the state with time would give us a realistic model in comparison,
if one only considered the case of magnetic and thermal interaction.

2.3. Quantum Criteria Quantifiers
2.3.1. Bipartite Negativity

Multiple quantitative factors have been developed that demonstrate the level of
entanglement in a quantum state. For example, negativity (NG) has been investigated as a
valuable and calculable witness to entanglement for any pure and mixed states. The Peres–
Horodecki separability criterion serves as the foundation for this. On a rescaled scale, NG
for a statistical ensemble ρXY is defined as [49]

NG = 2 ∑
i
|Qi|, (13)

where Qi are the negative eigenvalues of the partially transposed density matrix ρTX
XY with

respect to sub-system X. The state is maximally correlated if NG = 1, while for NG = 0,
the state will become separable [45].

2.3.2. The Entropic Uncertainty Measure

Consider Bob and Alice to be the two users. Alice receives a qubit in the desired
quantum state created by Bob. Alice must now select one of the two measurements and
notify Bob of her selection. We can now lower the result’s uncertainty by using Bob’s
measurement data [22]. The uncertainty standard deviation for two observables X and Y
can be represented as: ∆X∆Y ≥ 1

2 |〈[X , Y ]〉| [23,26–28].
Instead of utilizing the standard deviation to describe uncertainty, Deutsch suggested

the entropic uncertainty relation for every pair of observables, as shown in the above
equation. Based on Deutsch’s method, Maassen and Uffink created a tighter entropic uncer-
tainty formulation, which can be represented as S(X ) + S(Y) ≥ log2 c(X ;Y) [25], where
S(K)(K = X ,Y) is known as the Shannon entropy denoting the probability distribution
of measuring the observable K, while c(X ;Y) = maxa, b |〈ψ|φ〉|2 is the maximal overlap
between the eigenvectors ψ and φ of the two non-degenerate observables.

A new definition presented by Renes et al. and Berta et al. considered the entropic
uncertainty relations in composite systems and proposed a quantum-memory-assisted
entropic uncertainty relation [50,51]. Therefore, the quantum-memory-assisted entropic
uncertainty regarding system A is reproduced corresponding to q quantum memory B
with a tighter bound and has the form

S(X |B) + S(Y|B) ≥ S(A|B)− log2 c(X ;Y)), (14)

where S(X |B) = S(ρX B)− S(ρB) is the conditional von Neumann entropy of the system
after the unilateral measurement is applied on X on sub-system A. Note that the same
procedure can be carried out for Y as well. The associated post-measurement state now
can be written as

ρX B = ∑
i
(|ψ〉〈ψ| ⊗ I)ρAB(|ψ〉〈ψ| ⊗ I). (15)

The conditional entropy S(A|B) computes the correlation between sub-system B owned by
its memory system A.

Equation (14) comprises the entropic uncertainty (EU) on the left-hand side and
entropic uncertainty lower bound on the right-hand side. In the current case, we only
emphasize measuring the left-hand side of the uncertainty relations.

2.3.3. `1-Norm of Coherence

Different metrics, including the distance metric [52], the relative entropy of coher-
ence [32], and purity can be used to evaluate the coherence. The `1-norm is a reliable
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coherence monotone and a coherence criterion [32]. Besides, the `1-norm coherence for a
two-qubit state ρ = ∑X,Y ρXY|X〉〈Y| is the sum of all the off-diagonal entries as [43]

LC(t) = ∑
X 6=Y
|ρXY|, (16)

where |ρXY| is the absolute value of the elements of the density matrix ρXY.

2.3.4. Linear Entropy

Linear entropy, a simple-to-evaluate scalar field, is used to measure the mixedness of
quantum states. For example, by approximating the log2 ρXY of S(ρXY) with the first-order
term, i.e., ρXY − 1 in the Mercator series, one may obtain

EN(t) =− Tr[ρXY log2 ρXY]. (17)

For the next-to-last equality, the density matrix’s unit trace feature (Tr[ρXY] = 1)
is used.

3. Results

This section is devoted to exploring the numerical results obtained for the dynamics
of the two-qubit spin state influenced by an external TMCC configuration. Additionally,
the impact of various parameters such as the anisotropy, spin coupling strength, DM and
KSEA interactions, as well as external noise parameters of the static noise was studied.
Utilizing the NG, EU, LC, and EN functions given in Equations (13), (14), (16), and (17),
we explored the dynamics of entanglement, quantum memory, coherence, and entropy in
the spin system. All the functions were evaluated for the final density matrix obtained in
Equation (12).

In Figure 2, we analyze the dynamics of entanglement, entropic uncertainty, coherence,
and entropy in a two-spin state when coupled with an external TMCC. Initially, the state
remains maximally entangled and coherent, as NG = LC = 1. The depicted entropic
uncertainty and entropy in the state remain zero initially, as EU = EN = 0. After the onset,
the action of the joint TMCC appears, and as a result, entanglement, as well as coherence
become easily lost. In agreement, the EU and EN remained increasing functions of the
entropic uncertainty and disorder in the system. The overall dynamical maps of the spin
state correlations remained non-Markovian; however, the degree of non-Markovianity
shown by each measure differed. For example, the NG and LC functions showed a large
number of entanglement and coherence revivals. This suggested that the two-qubit system
and coupled fields strongly support information exchange between them. On the other
hand, the non-Markovian behavior shown by the EU and EN functions remained weaker.
Therefore, the NG and LC functions were more sensitive than the EU and EN functions
and recorded the least exchange of attributes between the state and the field. Besides,
the NG and LC functions showed anti-correlation with the EU and EN functions, as both
pairs evolved in opposite directions to each other. Furthermore, for the increasing values of
the disorder parameter ∆Q, the entanglement and coherence remained fragile and became
easily lost in the state. On the other hand, the uncertainty between the observables of the
particles and associated mixedness disorder in the state was enhanced by the increasing
strength of ∆Q. However, it was noticeable that the rate of revivals was directly depen-
dent on ∆Q. The phenomenon of the sudden death and birth of entanglement occurred
repeatedly. Finally, the entanglement and coherence functions seemed to completely decay
with time, while the uncertainty and entropy functions achieved a final higher saturation
level. One of the studies that comprehensively investigated superconductivity showed that
this phenomenon was enhanced by increasing the degree of the disorder correlations [53].
As we only focused on the impact of static noise here, therefore, we comprehended that
any physical deployment of the configuration with static noise would also need to consider



Symmetry 2023, 15, 2189 9 of 21

other related impacts besides the disordered parameter studied here. Note that the static
noise disorder decaying quantum coherence can also be from the study given in Ref. [54].
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Figure 2. Dynamics of negativity (a), entropic uncertainty (b), `1-norm coherence (c), and linear
entropy (d) as functions of static noise disorder parameter ∆Q against time in a two-spin system influ-
enced by an external TMCC. For all the plots, we set λ = 0.1, Kz = 5, and J/T/Dz/Jz/∆z/B/J/ = 1.

In Figure 3, the impact of weak, as well as strong coupling strength λ of the classical
channel on the dynamics of entanglement, coherence, entropic uncertainty, and entropy
disorder in a two-spin system when exposed to an external magnetic field is studied.
Initially, the two-qubit spin system remains maximally entangled and coherent as the
functions are NG = LC = 1. On the contrary, EU = EN = 0 suggests that the system is
free of entropic uncertainty and mixedness. As the interaction between the external TMCC
and the two-qubit spin system starts, the initial maximal correlations in the state decrease.
The speed of decay of entanglement and coherence is regulated by the coupling strength
of the classical field. The strong coupling of the spin state with the classical environment
resulted in a quicker decay of correlations and vice versa. Besides, the non-Markovian
behavior of the classical fields is highly enhanced in the strong coupling regimes, while
becoming negligible at the weaker coupling strength end. Likewise, the uncertainty and
entropy disorder increased with higher speeds as λ increased. Finally, the speed of entropic
uncertainty and entropy is directly related to the decay rate of the entanglement and
coherence, therefore showing an anti-correlation between the two pairs of phenomena.
The phenomenon of the sudden death and birth of entanglement varied with the varying
strengths of coupling strength regimes of the classical field. Compared to Figure 2, the decay
observed in the current case had the least values. Hence, quantum correlation decay can
be highly controlled by tuning the coupling intensity between the classical field and the
two-qubit state. However, the fact remains consistent that both the parameters, namely
the disorder ∆Q and coupling parameter λ, regulated the rate of the sudden death and
birth of the entanglement and coherence. Finally, for the higher λ values, the entanglement
and coherence became completely lost, hence suggesting maximum entropy disorder and
absolute separability in the state. From the current study, we noticed that the coupling
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strength of the channel induced a certain degree of decay in the quantum features, which
was also confirmed for quantum coherence in the study [54].
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Figure 3. Dynamics of negativity (a), entropic uncertainty (b), `1-norm coherence (c), and linear entropy
(d) as functions of classical field’s coupling strength λ against time in a two-spin state influenced by an
external TMCC. For all the plots, we set ∆Q = 2, Kz = 5, and J/T/Dz/Jz/∆z/B/J = 1.

The temperature influence on the dynamics of entanglement, coherence, entropic
uncertainty, and entropy is analyzed in a system of a two-qubit spin state when subjected
jointly to TMCC in Figure 4. The influence was taken into account when the temperature
of coupled fields was assumed at different fixed higher and lower values. The difference
between the dynamics of the entanglement, coherence, uncertainty, and disorder functions
was significant. As seen for the higher temperature values (T = 7), the initial entanglement
and coherence values decreased while the original entropic uncertainty and mixedness in
the state increased, hence contradicting the characteristic properties of disorder parameter
∆Q (Figure 2) and λ (Figure 3), which do not influence the initial values of the inclusive
functions. Besides this, the dynamical maps of entanglement comprise repeated sudden
death and birth revivals for the lower temperature values (T = 0.1). On the contrary,
the entanglement decayed exponentially with time for the higher temperature values.
The coherence function LC deviated from the entanglement NG function and showed
revivals of coherence, even at the higher temperature values, hence suggesting the strength-
ened nature of coherence in the spin state compared to the associated entanglement. Unlike
the cases in Figures 2 and 3, entanglement and coherence remained preserved for longer
intervals of time in the current case, especially for the higher temperature values. The
impact of increased temperature has been found to induce quantum discord in a dimerized
spin chain, therefore agreeing with the current results that, even at high temperatures,
quantum correlations can be kept preserved [55]. It is interesting to note that, for the
higher temperature values, the initial values of the entanglement and coherence functions
decreased, but remained largely preserved for the latter interval of time. Likewise, the en-
tropic uncertainty and entropy functions were initially directly affected by the temperature;
however, for the higher temperature values, the uncertainty and mixedness in the state
reduced at the latter intervalof time. However, for the lower entropic uncertainty and
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mixedness, one must keep the temperature at minimum values. In comparison, the NG
function’s revival character seemed very susceptible to the increasing values of temperature
and became easily dissipated.
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Figure 4. Dynamics of negativity (a), entropic uncertainty (b), `1-norm coherence (c), and linear
entropy (d) as functions of temperature T against time in a two-spin system influenced by an external
TMCC. For all the plots, we set ∆Q = 2, λ = 0.1, Kz = 5, and J/Dz/Jz/∆z/B/J = 1.

Figure 5 discloses the dynamics of entanglement, coherence, entropic uncertainty,
and mixedness in a two-qubit spin system coupled with TMCC. In particular, the impact of
the KSEA interaction (Kz) fixed to different strengths was evaluated on the dynamics of
the system. The dynamical maps of the NG, EU, LC, and EN functions seem increasingly
different from those observed in Figures 2–4. As can be seen, a higher degree of entangle-
ment and coherence preservation limit was achieved for a lower KSEA interaction strength
Kz = 1.0. In close connection, a lower limit of entropic uncertainty and mixedness in the
two-qubit state was observed at Kz = 1.0. However, for the increasing strength of the
KSEA interaction (Kz = 5), the entanglement, as well as the coherence function suffered a
greater decay. This contradicts most of the previous findings obtained in Refs. [32,56,57],
where, for the increasing strength of Kz, quantum correlations in the state became more
preserved. One of the reasons behind this can be the changes brought up by the KSEA
interaction in the spin structures, as evidenced in Ref. [58], where cycloidal spin structures
were distorted by this interaction. However, it was noticeable that the increasing KSEA
interaction strength improved the revival character of the NG, EU, LC, and EN functions.
In particular, for Kz = 5.0, the entanglement and coherence functions started facing sudden
deaths and births with decreasing amplitudes. Besides, entanglement for Kz = 3.0 dissi-
pated completely and only agreed with the entropy disorder in the state. The coherence
function, on the other hand, remained non-zero for Kz = 3.0 and agreed with the entropic
uncertainty function. As can be seen for Kz = 3.0, the EU function showed minimal un-
certainty between the observables of the state compared to that seen at Kz = 5.0. Hence,
the KSEA interaction of the external magnetic field most likely differently affects different
quantum criteria. The revivals in the entanglement and coherence functions suggest strong
information exchange between the two-qubit spin state and coupled fields. Therefore,
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with the increasing KSEA interaction, one can reverse the information lost from the system,
and the conversion of free classical states into resourceful non-local states is feasible. Finally,
entanglement and coherence seemed indefinitely preserved in the two-qubit state for the
lower Kz values, which may greatly benefit the quantum-information-processing protocols.
Besides, the decay rates of entanglement and coherence were found to be proportional to
the increasing speed of entropic uncertainty and mixedness in the state, therefore showing
an inverse relation between them. In comparison, the LC followed by the NG function
caught a greater number of revivals compared to the EU and EN functions. This means
that the NG and LC are highly sensitive to the stimuli caused by the external TMCC.

KZ = 1.0

KZ = 3.0

KZ = 5.0

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

Scaled time

N
G
(t
,
K
Z
)

KZ = 1.0

KZ = 3.0

KZ = 5.0

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

Scaled time

E
U
(t
,
K
Z
)

(a) (b)

KZ = 1.0

KZ = 3.0

KZ = 5.0

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

Scaled time

L
C
(t
,
K
Z
)

KZ = 1.0 KZ = 3.0

KZ = 5.0

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Scaled time

E
N
(t
,
K
Z
)

(c) (d)

Figure 5. Dynamics of negativity (a), entropic uncertainty (b), `1-norm coherence (c), and linear entropy
(d) as functions of KSEA interaction along the z-axis Kz against time in a two-spin state influenced by an
external TMCC. For all the plots, we set ∆Q = 2, λ = 0.1, and J/Dz/Jz/∆z/B/J = 1.

In Figure 6, we probe the influence of different fixed values of magnetic field strength
parameter B on the time evolution of the two-spin system when connected with TMCC.
At the onset, the state preserved different values of initial entanglement and coherence.
For the higher magnetic field strengths, B = 9.0, the initially encoded entanglement and
coherence decreased, while the entropic uncertainty and mixedness in the state increased.
Therefore, the external magnetic field negatively affected the preservation of quantum
correlations in the spin state. Besides the initial level, the time evolution of the entanglement
and coherence functions was also negatively affected by the magnetic field. As seen for the
higher magnetic field strength, B = 9.0, entanglement and coherence revived at a lower
level, while the entropic uncertainty and mixedness functions reached a higher saturation
level. On the contrary, for the lower magnetic field strength, B = 1.0, the entanglement and
coherence functions seemed more preserved, and the reverse can be seen for the entropic
uncertainty mixedness in the state. In a similar study, the authors confirmed that the proper
tuning of the magnetic field can lead to non-zero discord [59], as we found also in our
current study for entanglement and coherence. The revival rate, on the other hand, was
not disturbed by the different strengths of the external magnetic field and remained the
same. However, for the lower B values, the revivals in entanglement and coherence had a
higher amplitude, therefore predicting the larger information flow between the two qubits
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and coupled fields. In comparison, the impact of magnetic field parameter B matched
that of the disorder parameter ∆Q and coupling constant λ (especially the higher λ values)
of the classical field, as illustrated in Figures 2 and 3, respectively. As can be seen in the
mentioned cases, the entanglement functions quickly decayed, while the emergence of
uncertainty disorder in the state occurred faster. Therefore, for the optimal longer and
greater degree of quantum correlations in the two-qubit state, one must tune the external
magnetic field to the least values. Moreover, in agreement with Figures 2–5, we found
an anti-correlation between the growing EU and EN functions with the decaying NG
and LC functions. Finally, the decreasing amplitudes of the revivals in entanglement and
coherence showed that the state at the final intervalsof time will become fully separable
with a higher degree of uncertainty and disorder, depending on the strength of the external
magnetic field.
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Figure 6. Dynamics of negativity (a), entropic uncertainty (b), `1-norm coherence (c), and linear
entropy (d) as functions of magnetic field strength B against time in a two-spin state influenced by an
external TMCC. For all the plots, we set ∆Q = 2, λ = 0.1, Kz = 5, and J/Dz/Jz/∆z/J = 1.

When coupled with the TMCC configuration, the impact of different fixed values
of the DM interaction strength Dz on the dynamics of entanglement, coherence, entropic
uncertainty, and entropy functions in a two-qubit spin state is investigated in Figure 7.
The role of the Dz parameter in the dynamics of entanglement, coherence, uncertainty,
and mixedness was found to be contradicting all the cases studied in Figures 2–6. In all
the previous figures, the parameters associated with the classical, as well as the magnetic
field seemed to negatively affect the initially encoded quantum correlations and positively
accelerate the uncertainty and mixedness function. However, the opposite occurred in the
current case, where, for the increasing strength of Dz, the entanglement and coherence
functions were enhanced, while the uncertainty and entropy functions were suppressed.
Precisely, the two-qubit state for the initial, as well as for the later interval of time remained
maximally entangled and coherent for Dz = 6.0. In agreement, for Dz = 6.0, the state
remained indefinitely free of the uncertainty and mixedness disorder, which is interesting.
However, for Dz < 5, the agreement between the entanglement and coherence functions
vanished, where the prior one became non-maximal, while the latter one remained maximal.
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It is also interesting that, for Dz = 3.5, entanglement showed a quick drop and seemed
completely dissipating while the coherence remained preserved with a non-zero value.
The initial, as well as the later dynamical map of entanglement functions seemed in close
connection with the entropy function. On the other hand, the LC function and the associated
dynamical outlooks seemed similar to that obtained for the uncertainty in the state. As seen
for different values of Dz, the initial level of entanglement and entropy differed. However,
for a similar situation, the initial levels of coherence and uncertainty corresponded to
each other, and both functions started from maximal coherence and zero uncertainty
points, respectively. The revival characteristic of the entanglement and coherence appeared
enhanced for the lower Dz values and, so, the opposite. Finally, by regulating Dz to
higher values, the state may be kept maximally entangled and coherent while free from
uncertainty and entropy disorder, while detuning of Dz may cause the initial, as well as
the latter preserved levels of quantum correlations to decrease, while enhancement in the
uncertainty and entropy in the state may occur. Besides this, the fact remains consistent
that there is an anti-correlation between the entanglement and coherence pair with the
uncertainty and entropy pair. The results in Ref. [60] can be viewed as a verification of the
current finding, where the authors found enhancement of the entanglement by increasing
the DM interaction to a suitable strength.
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Figure 7. Dynamics of negativity (a), entropic uncertainty (b), `1-norm coherence (c), and linear
entropy (d) as functions of DM interaction strength along the z-axis Dz against time in a two-
spin state influenced by an external TMCC. For all the plots, we set ∆Q = 2, λ = 0.1, Kz = 5,
and J/Dz/∆z/B/J = 1.

In Figure 8, we address the dynamics of entanglement, coherence, entropic uncer-
tainty, and entropy mixedness in a two-spin system when exposed to an external TMCC.
The influence of different fixed values of the anisotropy factor of the two-spin system on
the dynamics of the two-qubit correlations was obtained in detail. The dynamical outlook
obtained for different values of ∆z seemed in agreement with that obtained in Figure 7 for
different fixed values of the DM-interaction. However, the results obtained contradicted
the results obtained in Figures 2–6, where strong entanglement and coherence decay are
detected. For the increasing anisotropy strengths, entanglement and coherence remained
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highly preserved. For instance, see the slopes of entanglement and coherence at ∆z = 6.0,
where the state remains maximally entangled and coherent indefinitely. In close connection,
for ∆z = 6.0, the EU and EN functions remained zero, hence predicting zero-entropic un-
certainty and disorder in the spin state. It is interesting to note that, for ∆z = 3.5, coherence
improved, while entanglement was witnessed to decay completely in a short time, and
the same is also witnessed in Figure 7 against Dz. The improvement in entanglement with
the increase in ∆z was also observed in Ref. [60], however without reaching the maximal
degree of quantum correlation. Entanglement and coherence showed repeated sudden
death and birth revivals at ∆z = 1.0, therefore predicting strong information exchange
between the two-qubit state and coupled fields. The entropy function EN agreed with
the entanglement function NG (where entanglement completely decayed) and showed
that, for ∆z = 3.5, the entropy in the system became maximum. On the other hand, the LC
and EU functions agreed and showed that a minimum coherence decay and uncertainty
rise occurred for ∆z = 3.5 when compared to ∆z = 1.0. The entanglement and coherence
functions stayed in inverse relation with the entropic uncertainty/entropy functions; as can
be seen, both grew in opposite directions.
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Figure 8. Dynamics of negativity (a), entropic uncertainty (b), `1-norm coherence (c), and linear
entropy (d) as functions of the symmetric exchange spin-spin interaction strength in the z-direction
along ∆z against time in a two-spin state influenced by an external TMCC. For all the plots, we set
∆Q = 2, λ = 0.1, Kz = 5, and J/Dz/B/J = 1.

In Figure 9, we investigate the impact of Heisenberg exchange interaction parameter
J on the preservation of entanglement/coherence and the generation of entropic uncer-
tainty and entropy disorder in the spin state exposed to the TMCC. We demonstrated the
results for the ferromagnetic (J < 0), as well as for the antiferromagnetic (J > 0) regimes.
The impact of both the ferromagnetic and antiferromagnetic regimes was found to similarly
affect the generation of entanglement and the suppression of the entropic uncertainty and
disorder in the state. As can be seen for both the positive and negative regimes of the
Heisenberg exchange interaction, the entanglement and coherence functions were gradually
generated, while the entropic uncertainty and entropy functions decayed with time. Notice
that, for certain critical ranges, such as ±3.5 < J < ±4.5, the state seemed initially partially
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entangled while having non-zero uncertainty and mixedness. Interestingly, coherence in
the state was unaffected by this range, and the state remained maximally entangled and
coherent. Therefore, this suggested the strengthened nature of coherence compared to the
entanglement. In the range +4.5 < J < −4.5, the dynamics of the state exhibited either zero
or partially preserved entanglement and coherence regimes at the latter intervals of time.
However, for the range ±4.5 < J = ±6.0, the state remained maximally entangled and
coherent, while encountering no decay. In agreement, for the forenamed region, the state
remained completely free of uncertainty and entropy. In comparison, the coherence func-
tion exhibited a larger number of revivals of coherence compared to the other inclusive
functions. As seen, all other functions exhibited a lower number of revivals or completely
dissipated after a short interval of time. In one of the previous studies (Ref. [61]), for the
Heisenberg spin models, the spin–spin exchange terms allowed for the state stabilization
under certain conditions, which may be the actual cause for it to positively accelerate the
quantum functions under certain limits.

(a) (b)

(c) (d)

Figure 9. Dynamics of negativity (a), entropic uncertainty (b), `1-norm coherence (c), and linear
entropy (d) as functions of the Heisenberg exchange interaction strength J against time in a two-spin
state influenced by an external TMCC. For all the plots, we set ∆Q = 2, λ = 0.1, Kz = 5, T = 0.5 and
J/Dz/B/J = 1.

Fidelity of the State

Finally, we give a brief account to cover how much the state becomes distinguished
from the one originally assumed. In this regard, the notion of fidelity can be used to
determine the discrimination between any two given states. Let one of the states be ρst(t, T),
given in Equation (12), and the other one be any arbitrary state σ. Further, the σ state is
assumed as two categories: The first is given in Equation (5), namely ρ(0, T). In the second
case, let us consider a maximally entangled state ψ = 1√

2
(00 + 00); therefore, the initial
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density matrix of the state becomes ρ0 = ψψ. Therefore, σ ∈ {ρ(0, T), ρ0)}. Using such
a comparison would lead us to clarify the distance between the resultant, initial thermal,
or maximally entangled two-qubit state. In this case, the fidelity for the two matrices
ρst(t, T) and σ can be written as

FIDX = Tr[ρst(t, T)σ] + 2
√

det[ρst(t, T)]det[σ], (18)

where the fidelity between states ρst(t, T) and ρ(0, T) becomes

FID1 = X1 + X2 + X3 (19)

where

X1 =ρ2
11 + ρ2

22 + ρ2
33 + ρ2

44 + 2ρ23ρ∗23,

X2 =
ρ14ρ∗14 sin(2∆Qλt) cos(4∆oλt)

∆Qλt
,

X3 =

√√√√√ (|ρ14|2 − ρ11ρ44)
(
ρ22ρ33 − ρ23ρ∗23

)2
(

ρ14ρ∗14 sin2(2∆Qλt)− 4∆2
Qλ2ρ11ρ44t2

)
∆2

Qλ2t2
.

Besides, the fidelity between ρst(t, T) and the maximally entangled state has the form:

FID2 =
1
4

(
2(ρ11 + ρ44) +

e−4i∆oλt sin(2∆Qλt)
(
ρ14 + ρ∗14e8i∆oλt)

∆Qλt

)
(20)

In Figure 10, the fidelity dynamics for between the states ρst(t, T)− ρ(0, T) (FID1)
and ρst(t, T)− ρ0 (FID2) is presented against various static noisy dephasing parameters.
This would enable us to predict how much the resultant state deviates from the originally
considered state under strong and weak dephasing limits. In Figure 10a, the two states
seem completely comparable; however, with time, they become distinguished more and
more. However, the fidelity loss rate is mostly concentrated on the dephasing strength
introduced in the system. For example, for ∆Q = 5.0, the fidelity loss rate is quick enough,
and so, the opposite can be seen at the weak dephasing limits. However, for the weak
dephasing limits, the minimum achieved by the green slopes was deeper than that seen for
the strong dephasing limits. This shows that the states became more distinguishable at a
specific duration. Besides, for the stronger dephasing strengths, the slopes show quicker
revivals as compared to that at the weak dephasing end. After a long time, all the slopes
finally seem to achieve a similar saturation level, hence predicting a similar amount of
fidelity even for the different ∆Q values. In the second case in Figure 10b, initially, the state
remained more distinguishable; however, the fidelity increased between the states ρst(t, T)
and ρ0. The rate of fidelity increase remained higher for the weak dephasing strengths
and decreased for the higher dephasing strengths. However, with time, the slopes for the
different values of ∆Q seem to accumulate the same saturation level. This showed that there
would remain a constant amount of distinguishability between the maximally entangled
and our considered state ρst(t, T) in the current given conditions.

Furthermore, in the current work, we found that entropic uncertainty and entropic
disorder negatively affect the degree of quantum correlations in the state. As can be seen,
when the entropic uncertainty and disorder rose, entanglement and coherence decayed.
It is noticeable that the rate of entropic uncertainty and mixedness remained higher than
the decay rate of entanglement and coherence. This suggested that the entropic uncer-
tainty and disorder in the two-qubit spin states led, while the oppositefunctions lagged,
hence illustrating the rise in uncertainty and entropy as the major causes of the loss of
quantum correlations in the spin systems. Besides, we believe that the current config-
uration can be successfully employed for the transmission of quantum information in
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associated protocols. As can be seen, this configuration can be readily exploitable to induce
longer quantum correlation preservation. Moreover, the cases of the implementation of
individual classical channels have been found to be damaging to the quantum correlation
preservation compared to when the classical channel is employed jointly with an external
magnetic field [8,45]. In addition, the current results also show that the same configuration
with individual external magnetic fields and thermal fields exhibits lesser and shorter
preserved quantum correlations compared to when it is jointly employed with the classical
field [32,56,57].
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Figure 10. (a) Dynamics of fidelity between states ρst(t, T) and ρ(0, T) for the two-qubit case when
exposed to the hybrid channel against various strengths of classical dephasing while setting λ = 0.1,
Kz = 5, T = 0.5, and J/Dz/B/J = 1. (b) Same as (a), but for ρst(t, T) and ρ0.

4. Experimental Feasibility

Any configuration, without its experimental nature, would be assumed not to be
beneficial. For this reason, we give some experimental prospects for the current studied
configuration. We found that classical channels have been experimentally well adopted with
quantum channels previously for information processing; for example, see Refs. [62–65].
In Ref. [62], by keeping a spacing of 1.6nm between the local and non-local channels
while tuning the frequency to 200 GHz at −24 dBm, the authors disclosed a resourceful
joint channel. They found the total coexistence power in single-mode fiber (SMF), where
the secret key rate (SKR) was recorded to drop by 73%. Besides this, at 0 dBm, for the
total coexistence power in hollow core nested antiresonant nodeless (HC-NAN) fiber
(250-times greater power savings than that achieved for SMF), the SKR remained more
preserved. The co-deployment of a discrete variable–quantum key distribution channel
with 8× 200 Gbps classical channels was resourcefully demonstrated using a 2 km-long
HC-NAN fiber with a high-speed transmission of 1.6 Tbps [63]. Here, the authors claimed
the coexistence of classical–quantum channels was recorder to have a reduced decay and
even more power savings (nearly 40-times) compared to the individual utilization of
quantum channels. In reference to our study, the authors in Ref. [64] experimentally probed
the counter-propagation of local quantum channels over a 1km-long seven-core, multicore
fiber and found that they showed high tolerance to the noise compared to the individual
use of the counterparts, hence showing agreement with our results. The authors in Ref. [65]
realized a quantum–classical channel over a seven-core multicore fiber, based on space
division multiplexing with the highest launch power of 25 dBm. By looking into the above
studies, it can be readily deduced that classical channels can be combined together with
quantum channels such as the ones studied here. Moreover, we proposed that, if the current
configuration is utilized by applying certain procedures, then it might turn out to be a
resourceful way for the practical transmission of quantum information, quantum devices,
and associated quantum operations.
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5. Conclusions

This study disclosed the characterization of a hybrid channel comprising thermal,
magnetic, and classical parts characterized by various quantum correlations’ strengthening
and weakening characteristics. The case of a two-qubit state for the sake of simplicity
was introduced to investigate the time evolution of entanglement, coherence, entropic
uncertainty, and entropy disorder under the considered channel. Various quantum tools
were used to characterize the parameters of the configuration, and the resultant dynamical
maps of the assumed quantum criteria were explicitly studied. Finally, we provided the
optimal parameter setting that best suited quantum correlation preservation and entropic
uncertainty, as well as disorder suppression under the action of the hybrid channel.

We demonstrated that the collective symmetry of the current configuration shared by
the thermal, magnetic, and classical fields continues to be a crucial factor in maintaining
the preservation of quantum correlations. There exist certain aspects in this joint external
field setup that can be used to avoid the emergence of entropic uncertainty and entropy
disorder in the state. For example, in the weaker coupling regimes of the classical field, for
certain values of the DM, spin–spin, and anisotropy interaction strengths, the state remains
maximally entangled and coherent initially, as well as for the latter interval of time. In close
connection, for the given conditions, the state can be kept completely free of uncertainty
and entropy disorder. The entanglement and coherence decay were found to completely
depend on the emergence of the entropic uncertainty and entropy disorder in the two-qubit
spin state system. Certain aspects of the coupled fields, such as the coupling strengths, the
disorder parameter of the static noise, the magnetic field strength, and the temperature
of the hybrid channel were found to be responsible for the emergence of the uncertainty
and entropy, as well as for the decay of the entanglement and coherence. Interestingly,
previously, the KSEA interaction was found to be highly influential for the preservation
of quantum correlations; however, the opposite was witnessed when imposed with the
current hybrid channel. Finally, we believe that the intersection of the thermal, classical,
and magnetic fields along with certain state parameters remains a vital choice, which shows
the capacity to be controlled easily for the preservation of quantum data compared to that
when they are considered individually.
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