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Abstract: Current physical systems are built in more that one coordinate: for example, electrical
power systems, aeronautical systems and robotic systems can be modeled in multibond graphs
(MBG). However, in these systems, some elements use only one axis or dimension—for example,
actuators and controllers—which can be modeled in bond graphs (BG). Therefore, in this paper,
modeling of systems in multibond graphs and bond graphs (MBG-BG) is presented. Likewise,
the junction structure of systems represented by (MBG-BG) is introduced. From this structure,
mathematical modeling in the state space is presented. Likewise, modeling of systems on a platform
(MBG-BG) can be seen as symmetric to the mathematical model that represents these systems. Finally,
a synchronous generator modeled by (MBG-BG) as a case study is developed, and simulation results
using 20-Sim software are shown. Furthermore, an electrical power system connected to the power
supply of a DC motor as another case study is explained.

Keywords: bond graph; multibond graph; junction structure; synchronous generator

1. Introduction

Many real systems generally cannot be modeled, analyzed and controlled in a single
dimension or coordinate because their field of action or work space is in three dimensions
or coordinates. At the same time, these types of systems require an energy supply in a
coordinate or are controlled from one coordinate to the three coordinates that compose
them. The first step to address the problems of these systems is to obtain their mathematical
models; with this, you can carry out their analysis to know their performance and their
subsequent control.

Systems formed by several dimensions are representative of three-phase electrical
systems, robotic systems, construction systems, aeronautical systems and thermal systems.
The modeling of these systems is traditionally carried out by knowing the physical and
chemical properties of the elements and their connections, resulting in a state space model.

Bond graph theory was introduced by H. Paynter in 1961 and was formalized, ex-
panded and applied by Karnopp and Rosenberg. Researchers such as Thoma, Brown,
Breeveld and Tanguy have published many developments that have promoted bond
graphs to be widely known.

The bond graph methodology is based on the transfer of power through links called
power bonds. Likewise, this methodology is not exclusive to an energy domain and allows
systems formed by several energy domains (electrical, magnetic, mechanical, hydraulic
and thermal) to be modeled in a unified manner. Furthermore, causality is applied to each
bond, allowing the mathematical model to be obtained. Systems modeled by bond graphs
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can be linear or non-linear and time-variant or time-invariant. Due to the characteristics
of causality applied to bond graphs, structural properties of the systems such as stability,
decoupling, controllability and observability can be obtained. Likewise, the design of
observers and controllers can be determined with the advantage that they are feasible
because the required physical elements are clearly indicated on the bond graph.

Some basic papers on bond graph theory are cited below. The determination of the
structural properties of dynamic LTI MIMO systems with structural controllability and
structural observability are presented in [1]. A procedure to model systems in bond graphs
is introduced in [2]. The design of observers applied to the control of systems modeled in
bond graphs is proposed in [3]. Control based on the bond graph model, including PID
control, is proposed in [4]. Obtaining the Langrangian and Hamiltonian models of a system
from the properties of a bond graph is proposed in [5].

The methodology, properties and applications using bond graphs have been involved
in such a way that the following recent references are cited. Bond graphs are used to analyze
electric vehicle behavior and control design for optimization purposes in [6]. The hydraulic,
thermal, electromechanical, thermodynamic and electrical energy domains are applied for
the modeling of a battery and a photovoltaic cell as a bond graph in [7]. MOSFET and PiN
diode models are developed for the modeling and simulation of a buck converter as a bond
graph in [8]. The behavior of a wind turbine blade considering the optimal value of rotary
effects as a bond graph is proposed in [9].

Recently, the bond graph methodology has been extended to the modeling of systems
with multiple axes appearing as multibond graphs (MBG), which are vector bond graphs.
The characteristics of multibond graphs are essentially similar to those of bond graphs with
the care that they handle signals of various axes or dimensions. Before the appearance of
multibond graphs, multi-axis systems were modeled as bond graphs, but the potential of
the tools for analysis and synthesis were not clearly visualized.

Some essential work in multibond graphs are as follows: The description of the
terminology and elements of multibond graphs are introduced in [10]. A procedure to
describe the decomposition of the elements in multibond graphs into 1- and 2-port elements
and junctions with their bonds are developed in [11]. The causality assignment of vector
bond graphs is proposed in [12].

Recently, some advances and applications in multibond graphs have been published
and are described below. The determination of the steady state of alternating-current
electric circuits as multibond graphs using multibonds for the real and imaginary parts of
phasors is proposed in [13]. The chains of kinematic joints applied to the suspension in a
helicopter as a multibond graph are proposed in [14].

Some models of one-hand prostheses considering three under-actuated joints and
translational and revolution movement are proposed in [15]. A model of a ball dropped
in a bowl with a cartilage layer as a multibond graph is presented in [16]. Trajectory and
force control schemes applied to a prosthetic finger mechanism using a multibond graph
are presented in [17].

The direct modeling in (d, q, 0) coordinates of a three-phase electrical system as a
multibond graph is presented in [18].

However, there are systems that have several axes: for example, electrical power
systems, electrical machines, automobile systems, robotic systems, aeronautical systems and
thermal systems. These systems can be modeled as multibond graphs, but some sections
of these systems are one coordinate, so they have to be modeled in an environment of
multibond graphs connected to bond graphs. If these systems are modeled as bond graphs,
they result in very extensive models that are difficult to analyze and control. Therefore,
it is most convenient to model subsystem with a single coordinate as bond graphs and
those with several coordinates as multibond graphs, which gives rise to multibond graphs
connected to bond graphs (MBG-BG). Now, for analysis and, subsequently, the control
design, the mathematical model of the same is required.
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The main contribution of this paper is to propose a junction structure for systems
modeled as (MBG-BG) that allows determining their mathematical models in the state
space in a direct and structured way. From this paper, methodologies such as stability,
controllability, observability and singular perturbations can be developed to analyze these
types of systems.

The junction structure is the fundamental link of a bond graph model to its mathe-
matical representation and considers variables, connections and constitutive relationships
of its elements. Some of the basic papers on junction structures are the following: The
solubility of junction structures applied to bond graphs is established in [19]. The order
and linear independence of the variables in a junction structure from its bond graph are
proposed in [20]. The determination of the equations in the state space of an LTI MIMO
system modeled as a bond graph as well as the properties of structural controllability and
structural observability are presented in [1]. The junction structure and its properties of
switching systems represented as a bond graph are proposed in [21].

Currently, bond graph papers have been published based on junction structures for
nonlinear systems in [22].

Therefore, this paper presents the bases through the junction structure of an (MBG-BG)
model determining its mathematical model and being able to extend the properties of
stability, controllability and observability as future works.

In this paper, a case study of a synchronous generator with damping windings mod-
eled as (MBG-BG) is proposed. This type of generator is three-phase in the stator windings,
determining a subsystem in coordinates (a, b, c), there are damping windings that are
modeled as two windings in (d, q) coordinates, the excitation winding is a subsystem with
a simple circuit determining a single coordinate, and the supply of mechanical energy to
the generator is through a single coordinate mechanical subsystem. Therefore, in this paper,
an (MBG-BG) model of this generator is presented, and by using a proposed lemma, its
nonlinear mathematical model is obtained. To check the validity of the model, simulations
of the variables of this generator using different coordinates are presented using 20-Sim
software (version 4.0).

Through this paper, some symmetries can be found: the modeling of bond graphs to
multibond graphs, the modeling of multibond graphs connected with bond graphs, and
their models in state space; the case study of the transformation of coordinates (a, b, c) to
(d, q, 0) in the modeling of a synchronous generator is another symmetry.

Section 2 describes the fundamental elements in the modeling of bond graphs and
multibond graphs. Section 3 proposes the junction structure for (MBG-BG) models and,
through a lemma, the obtaining of its mathematical model; the proposed methodology is
applied to two case of studies in Section 4. Finally, the conclusions are given in Section 5.

2. Modeling in Bond Graphs and Multi-Bond Graphs

When two elements, components or systems are connected, power transfer always
occurs P(t). Likewise, this power can be due to electrical, mechanical, hydraulic or thermal
energy domains. To work in a unified frame of reference, bond graph theory uses general-
ized variables called effort e(t) and flow f (t); the main characteristics of these variables is
their product, which determines the power

P(t) = e(t) · f (t). (1)

Generalized power variables in different energy domains are indicated in Table 1.
The main property of bond graph modeling is to represent power interactions graphi-

cally, as illustrated in Figure 1.
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Table 1. Power variables.

System Effort (e(t)) Flow ( f (t))

Electrical Voltage (v(t)) Current (i(t))

Mechanical
Force (F(t))

Torque (τ(t))
Velocity (ν(t))

Ang. velocity (ω(t))

Hydraulic Pressure (P(t)) Volume flow rate (Q(t))

Thermodynamics Temperature (T(t)) Entropy flow (S(t))
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Figure 1. Power bond.

The generalization in the modeling of systems that determine power arrangements
found in typical systems such as robotics and electrical in three phases has given risen to
modeling with multibond graphs, for which the generalized power variables are effort and
flow but in vector notation e(t) and f (t), and the power is given by

P(t) = eT(t) · f (t) (2)

where

e(t) =

 ea(t)
eb(t)
ec(t)

 =

 ex(t)
ey(t)
ez(t)

 (3)

and

f (t) =

 f a(t)
f b(t)
f c(t)

 =

 f x(t)
f y(t)
f z(t)

 (4)

Power interactions that are used graphically in a multibond are shown in Figure 2
along with their equivalence with bonds.
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Figure 2. Multibond (a) multibond symbol, (b) multibond power equivalent individual bonds.
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There are two additional variables in bond graphs to mathematically describe a system,
which are the energy variables: momentum p(t) and displacement q(t); they are related to
the power variables by

p(t) =
∫

e(t)dt (5)

q(t) =
∫

f (t)dt. (6)

For multibond graphs, these variables are the momentum vector and the displacement
vector and are related to the power variables by

p(t) =
∫

e(t)dt (7)

q(t) =
∫

f (t)dt. (8)

One of the main properties of bond graph theory is the application of causality to
its elements. Causality allows knowing the input and output signals for each bond or
multibond. Graphically, it is applied to a vertical stroke; towards the direction of this
vertical stroke, the direction of the effort is determined, and in opposition is the flow in this
bond or multibond, as shown in Figure 3.
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Figure 3. Causal symbols, (a) single bond graphs, (b) multibond graphs.

The basic elements to build models in bond graphs or multibond graphs are the following:

2.1. 1-Ports Active

These are the elements that supply power to the system because there are two general-
ized power variables, so there are two elements of this type for bonds graphs:

(
MSe, MS f

)
effort and flow sources, respectively. In multibond graphs,

(
MSe, MS f

)
are the multiport

effort source and multiport flow source, respectively. Figure 4 shows the representation of
these sources.
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Figure 4. Flow and effort sources, (a) for bond graphs, (b) multibond graphs.

2.2. 1-Ports Passive

These elements are characterized by storing or dissipating energy. The dissipative
element is shown in Figure 5a, and for a multibond graph, it is shown in Figure 5b.
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Figure 5. Dissipative elements for (a) single bond graphs, (b) multibond graphs.

The constitutive relationship of the element R1 in a bond graph is given by

e(t) = ΦR1 [ f (t)] (9)

In case R1 is linear,
e(t) = R1 · f (t) (10)

For R2,
f (t) = ΦR2 [e(t)] (11)

If R2 is linear,

f (t) =
1

R2
e(t) (12)

In a multibond graph for R1,

e(t) = ΦR1

[
f (t)

]
(13)

If ΦR1 is a linear matrix relationship of dimension 3, ea(t)
eb(t)
ec(t)

 =

 R11 R12 R13
R21 R22 R23
R31 R32 R33

 f a(t)
f b(t)
f c(t)

 (14)

For the mulltiport resistor R2,

f (t) = ΦR2 [e(t)] (15)

Its linear matrix version of dimension 3 is f a(t)
f b(t)
f c(t)

 =


1

R11
1

R12
1

R13
1

R21
1

R22
1

R23
1

R31
1

R32
1

R33


 ea(t)

eb(t)
ec(t)

 (16)

Another 1-port element is the 1-port inertia for bond graphs or the element of multiport-
I for multibond graphs; these elements in an integral causality assignment are shown in
Figure 6.
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Figure 6. Inertia element and inertia multiport in integral causality assignment, (a) single bond
graphs, (b) multibond graphs.

The constitutive relation for the storage element I of Figure 6a is defined by

f (t) = Φ−1
I

[∫
e(t)dt

]
= Φ−1

I [p(t)]. (17)
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If this element is linear, the relationship is

f (t) =
1
L

∫
e(t)dt =

1
L

p(t). (18)

For the multiport I, the relationship between input and output is

f (t) = Φ−1
I

[∫
e(t)dt

]
= Φ−1

I

[
p(t)

]
(19)

For a linear multiport,

f (t) = L−1
∫

e(t)dt = L−1 p(t) (20)

In expanded form, pa(t)
pb(t)
pc(t)

 =

 La Lab Lac
Lab Lb Lbc
Lac Lbc Lc

 f a(t)
f b(t)
f c(t)

 (21)

Now, if this 1-port is in derivative causality assignment, it is as shown in Figure 7.
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Figure 7. Inertia element and inertia multiport in derivative causality assignment, (a) single bond
graphs, (b) multibond graphs.

The constitutive relationship of element I is given by

e(t) =
dΦI [ f (t)]

dt
(22)

If it is a lineal element,

e(t) = L
d[ f (t)]

dt
(23)

For multiport I, its relationship is

e(t) =
dΦI

[
f (t)

]
dt

(24)

If it is a linear element, we have

 ea(t)
eb(t)
ec(t)

 =

 La Lab Lac
Lab Lb Lbc
Lac Lbc Lc




d f a(t)
dt

d f b(t)
dt

d f c(t)
dt

 (25)

The other storage element is the capacitance in an integral causality assignment, as
illustrated in Figure 8.MSe : abcv
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Figure 8. Capacitor element and capacitor multiport in integral causality assignment, (a) single bond
graphs, (b) multibond graphs.
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The constitutive relation for element C is defined by

e(t) = Φ−1
C

[∫
f (t)dt

]
= Φ−1

C [q(t)] (26)

If this element is linear,

e(t) =
1
C

∫
f (t)dt =

1
C

q(t) (27)

The constitutive relation for multiport C is expressed by

e(t) = Φ−1
C

[∫
f (t)dt

]
= Φ−1

C

[
q(t)

]
(28)

Considering a linear multiport element,

e(t) = C−1
∫

f (t)dt = C−1q(t) (29)

In expanded form, qa(t)
qb(t)
qc(t)

 =

 Ca Cab Cac
Cab Cb Cbc
Cac Cbc Cc

 ea(t)
eb(t)
ec(t)

 (30)

This element in a derivative causality assignment is shown in Figure 9.
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Figure 9. Capacitor element and capacitor multiport in derivative causality assignment, (a) single
bond graphs, (b) multibond graphs.

For element C, its constitutive relationship is

f (t) =
dΦC[e(t)]

dt
(31)

With a linear relationship,

f (t) = C
d[e(t)]

dt
(32)

For multiport C, the constitutive relation is

f (t) =
dΦC[e(t)]

dt
(33)

For the linear case,

 f a(t)
f b(t)
f c(t)

 =

 Ca Cab Cac
Cab Cb Cbc
Cac Cbc Cc




dea(t)
dt

deb(t)
dt

dec(t)
dt

 (34)

2.3. 2-Ports

Important elements in the transfer of power between various sections of a system are
modeled in bond graph by transformers and gyrators modulated by a constant magnitude
or by a signal, as shown in Figure 10.
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Depending on the causality, the constitutive relationship between the ports of a trans-
former may be different as presented in [23]. Thus, for Figure 10a, the relations are given by

[
e1
f1

]
=

 kt 0

0
1
kt

[ e2
f2

]
(35)

where kt is the constant modulus for a transformer (TF), and for a modulated transformer
(MTF), kt = α(t).

Figure 10. Transformer, (a) single bond graphs, (b) multiport bond graphs, (c) sigle bond with
reversed causality and (d) multiport bond graphs with reversed causality and multiport transformer.

For the transformer with a causality illustrated in Figure 10c, the port relations are

[
e2
f2

]
=

 kt 0

0
1
kt

[ e1
f1

]
(36)

The multiport transformer has constitutive relations defined by[
e1
f1

]
=

[
Kt 0
0 K−1

t

][
e2
f2

]
(37)

where Kt is the constant modulus matrix for a multiport transformer (TF), and for a
multiport modulated transformer (MTF), Mt = Ψ(t).

For a multiport transformer with the causality shown in Figure 10d, the multibond
relations are [

e1
f1

]
=

[
K−1

t 0
0 Kt

][
e2
f2

]
(38)

Another important element of port-2 represents the gyrators illustrated in Figure 11.
The constitutive relation for the gyrator (GY) of Figure 11 is expressed by

[
e1
f1

]
=

 0 kg
1
kg

0

[ e2
f2

]
(39)

where kg is the constant modulus for a gyrator (GY), and for a modulated gyrator (MGY),
kg = β(t).
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If the gyrator has a causality like the one shown in Figure 11c, the constitutive relation is

[
e1
f1

]
=

 0
1
kg

kg 0

[ e2
f2

]
(40)

In case it is a modulated gyrator (MGY), kg = β(t).

(a)

Figure 11. Gyrator and multiport gyrator, (a) single bond graphs, (b) multiport bond graphs, (c) sigle
bond with reversed causality and (d) multiport bond graphs with reversed causality.

The multiport gyrator of Figure 11b has the constitutive relation given by[
e1
f1

]
=

[
0 Kg

K−1
g 0

][
e2
f2

]
(41)

where Kg is the modulo constant matrix for a multiport gyrator (GY), and for a modulated
multiport gyrator (MGY), Kg = Λ(t).

In case the gyrator is in a causality like the one shown in Figure 11d, the relationship
is defined by [

e1
f1

]
=

[
0 Kg

K−1
g 0

][
e2
f2

]
(42)

In case it is a modulated gyrator (MGY), kg = β(t).

2.4. 3-Ports

3-ports represent the serial (1-junction) and parallel (0-junction) connections in the
different physical systems. These junctions are conservative power elements, which are
shown in Figure 12.

The junctions are the elements that allow the connection of the elements and form the
bond graph models for which the constitutive relations for 1-junction are given by

e1 = e2 + e3; f1 = f2 = f3 (43)

and for 0-junction, they are
e1 = e2 = e3; f1 = f2 + f3 (44)

The effort and flow relationships of multibonds applied to junctions 1 and 0 are similar
to the previous ones considering that they have vectors: for 1-junction

e1 = e2 + e3; f1 = f2 = f3 (45)
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and for the other junction
e1 = e2 = e3; f1 = f2 + f3 (46)

A junction structure of a system modeled by a multibond graph connected to a bond
graph is proposed in the next section.

1
 2e t

 2f t

 1e t

 1f t

 3f t 3e t

0
 2e t

 2f t

 1e t

 1f t

 3f t 3e t

(a) (b)

1
 1e t  2e t

 2f t 1f t

 3e t 3f t

0
 1e t  2e t

 2f t 1f t

 3e t 3f t

Figure 12. (a) Single-element junctions and (b) mutltiport junctions.

3. A Mathematical Model of a System Composed of MultiBond Graphs and
Bond Graphs

Some systems that are defined on three axes and modeled by bond graphs can lead to
very extensive and complicated models. These types of systems modeled by multibond
graphs can determine a compact and organized model.

However, many systems with three-axis actuators and controllers are individual for
each axis. Thus, modeling these systems in multibond graphs can result in multibond
graphs with multibonds with non-complete signals: that is, multibonds that, mathemati-
cally represented, determine vectors with one non-zero element and the rest with zeros.
Due to this, the utility of multibond graphs is not used for these signals.

Therefore, it is possible to model three-axis systems with multibond graphs in which
one axis can contain the actuator and control subsystems modeled by bond graphs. In
order to have analysis tools for these systems with three coordinates linked to subsystems
of one coordinate, the determination of the mathematical model of the same is required.
The proposed junction structure for (MBG-BG) is shown in Figure 13.

dz

inD

outD

  
   

,  f

Multiport
Sources

M Se M S

       Multiport 

 

0,  1,  ,  

Juntion Structure

MTF MGY

  

  
        

Multiport
Dissipation
Elements



u

dx

x
z

   
,  f

Sources
MSe MS

Multiport 
 
 
      
 

 

Storage
fields
 

  

 0,  1,  MTF,  MGY

Juntion Structure

Y

  
   Detector
   ,  Df

Multiport

De

kt kg

  
Dissipation
Elements

 
  ,  Df
Detectors
De

inD

outD

dz
dx

xz x
x

x
x

u Y

Figure 13. Junction structure for (MBG-BG).
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The block diagram information representing a multibond graph and bond graph
determines the following elements and key vectors:

• Bond graph section:

– Elements of energy supply sources denoted by
(

MSe, MS f

)
with variables u(t) ∈ <p.

– Energy storage elements denoted by (C, I):

* In integral causality assignment with state variables x(t) ∈ <n and co-energy
vector z(t) ∈ <n determining linearly independent state variables.

* In derivative causality assignment with state variables xd(t) ∈ <m and co-
energy vector zd(t) ∈ <m determining linearly dependent state variables.

– Detection elements for system outputs denoted by
(

De, D f

)
with variables y(t) ∈ <q.

– Energy dissipation elements denoted by (R) with variables Din(t) ∈ <r and
Dout(t) ∈ <r.

– The different elements of a system
(

MSe, MS f

)
, (C, I),

(
De, D f

)
and (R) are

connected by the 0 and 1 junctions or by transformers (MTF) and gyrators
(MGY) modulated by variables or constants.

• Multibond graph section:

– Source multiport elements denoted by
(

MSe, MS f
)

with multiport input vari-

ables u(t) ∈ <p.
– Storage multiport fields denoted by (C, I I):

* In integral causality assignment with multiport state variables x(t) ∈ <n and
multiport co-energy vector z(t) ∈ <n that determine linearly independent
multiport state variables.

* In derivative causality assignment with multiport state variables xd(t) ∈ <m

and multiport co-energy vector zd(t) ∈ <m that determine linearly depen-
dent multiport state variables.

* These fields can be used to connect the multibond graph and bond graph
sections according to the system characteristics.

– Multiport detection elements denoted by
(

De, D f

)
with multiport outputs

y(t) ∈ <q.
– Multiport energy dissipation denoted by (R) with multiport variables Din ∈ <r

and Dout ∈ <r.
– Multiport junctions (0, 1), modulated multiport transformers (MTF) and mod-

ulated multiport gyrators (MGY) are used to connect the different multiport
elements

(
MSe, MS f

)
, (C, I I),

(
De, D f

)
and (R). In addition, these transform-

ers or gyrators can be used to connect this section of the multibond graph with
the section of the bond graph.

According to the proposed junction structure of Figure 13, the connection between
multibond graphs and bond graphs is through multiport transformers and gyrators or
through multiport energy storage fields. Thus, for the multiport field of (C, I I) in an
integral causality assignment, the constitutive relation is defined by[

z(t)
z(t)

]
=

[
F Fm

FT
m F

][
x(t)
x(t)

]
(47)

For multiport elements (C, I I) in derivative causality and for resistive multiport (R),
they are expressed by

zd(t) = Fdxd(t) (48)

Dout(t) = LDin(t) (49)
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For the elements (C, I) in derivative causality and for dissipative elements (R), they
are given by

zd(t) = Fdxd(t) (50)

Dout(t) = LDin(t) (51)

The scheme in Figure 13 for modeling (MBG− BGI) systems determines a class of
nonlinear systems representative of products of state variables for which the characteristics
are defined in the following lemma.

Lemma 1. Consider a system modeled by multibond graphs and bond graphs (MBG− BGI) with
a predefined integral causality assignment according to Figure 13. The connection between them is
described by transformers and/or gyrators and/or storage fields for which the combined multiport
junction structure is defined by

•
x(t)
•
x(t)

Din(t)
Din(t)
y(t)
y(t)
zd(t)
zd(t)


=



S11
11(x) S12

11(x) S11
12(x) S12

12(x) S11
13(x) S12

13(x) S11
14(x) 0

S21
11(x) S22

11(x) S21
12(x) S22

12(x) S21
13(x) S22

13(x) 0 S22
14(x)

S11
21(x) S12

21(x) S11
22(x) 0 S11

23(x) S12
23(x) 0 0

S21
21(x) S22

21(x) 0 S22
22(x) S21

23(x) S22
23(x) 0 0

S11
31(x) S12

31(x) S11
32(x) S12

32(x) S11
33(x) S12

33(x) 0 0
S21

31(x) S22
31(x) S21

32(x) S22
32(x) S21

33(x) S22
33(x) 0 0

S11
41(x) 0 0 0 0 0 0 0

0 S22
41(x) 0 0 0 0 0 0





z(t)
z(t)

Dout(t)
Dout(t)

u(t)
u(t)
•
xd(t)
•
xd(t)


(52)

Then a nonlinear state-space representation is given by

E(x)

[ •
x(t)
•
x(t)

]
= A(x)

[
x(t)
x(t)

]
+ B(x)

[
u(t)
u(t)

]
(53)

where

E(x) =
[

E11(x) E12(x)
E21(x) E22(x)

]
=

[
I − S11

14(x)FdS11
41(x)F −S11

14(x)F−1
d S11

41(x)Fm
−S22

14(x)F−1
d S22

41(x)FT
m I − S22

14(x)F−1
d S22

41(x)F

]
(54)

A(x) =
[

A11(x) A12(x)
A21(x) A22(x)

]
=

[
A′11(x)F + A′12(x)FT

m A′11(x)Fm+A′12(x)F
A′21(x)F+A′22(x)FT

m A′21(x)Fm+A′22(x)F

]
(55)

with

A′11(x) = S11
11(x) + S11

12(x)M(x)S11
21(x) + S12

12(x)M(x)S21
21(x) (56)

A′12(x) = S12
11(x) + S11

12(x)M(x)S12
21(x) + S12

12(x)M(x)S22
21(x) (57)

A′21(x) = S21
11(x) + S21

12(x)M(x)S11
21(x) + S22

12(x)M(x)S21
21(x) (58)

A′22(x) = S22
11(x) + S21

12(x)M(x)S12
21(x) + S22

12(x)M(x)S22
21(x) (59)

B(x) =
[

B11(x) B12(x)
B21(x) B22(x)

]
(60)

B11(x) = S11
13(x) + S11

12(x)M(x)S11
23(x) + S12

12(x)M(x)S21
23(x) (61)

B12(x) = S12
13(x) + S11

12(x)M(x)S12
23(x) + S12

12(x)M(x)S22
23(x) (62)

B21(x) = S21
13(x) + S21

12(x)M(x)S11
23(x) + S22

12(x)M(x)S21
23(x) (63)

B22(x) = S22
13(x) + S21

12(x)M(x)S12
23(x) + S22

12(x)M(x)S22
23(x) (64)
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being

M(x) = L
[

I − S11
22(x)L

]−1
(65)

M(x) = L
[

I − S22
22(x)L

]−1
(66)

with system outputs [
y(t)
y(t)

]
= C(x)

[
x(t)
x(t)

]
+ D(x)

[
u(t)
u(t)

]
(67)

where

C(x) =
[

C11(x) C12(x)
C21(x) C22(x)

]
=

[
C′11(x)F + C′12(x)FT

m C′11(x)Fm+C′12(x)F
C′21(x)F+C′22(x)FT

m C′21(x)Fm+C′22(x)F

]
(68)

C′11(x) = S11
31(x) + S11

32(x)M(x)S11
21(x) + S12

32(x)M(x)S21
21(x) (69)

C′12(x) = S12
31(x) + S11

32(x)M(x)S12
21(x) + S12

32(x)M(x)S22
21(x) (70)

C′21(x) = S21
31(x) + S21

32(x)M(x)S11
21(x) + S22

32(x)M(x)S21
21(x) (71)

C′22(x) = S22
31(x) + S21

32(x)M(x)S12
21(x) + S22

32(x)M(x)S22
21(x) (72)

D(x) =
[

D11(x) D12(x)
D21(x) D22(x)

]
(73)

D11(x) = S11
33(x) + S11

32(x)M(x)S11
23(x) + S12

32(x)M(x)S21
23(x) (74)

D12(x) = S12
33(x) + S11

32(x)M(x)S12
23(x) + S12

32(x)M(x)S22
23(x) (75)

D21(x) = S21
33(x) + S21

32(x)M(x)S11
23(x) + S22

32(x)M(x)S21
23(x) (76)

D21(x) = S21
33(x) + S21

32(x)M(x)S11
23(x) + S22

32(x)M(x)S21
23(x) (77)

Proof. From line seven of (52) with the first line of (47),

zd(t) = S11
41(x)[Fx(t) + Fmx(t)] (78)

Deriving with respect to time with (48),

•
xd(t) = Fd

[
•
S

11

41(x)Fx(t) + S11
41(x)F

•
x(t) +

•
S

11

41(x)Fmx(t) + S11
41(x)Fm

•
x(t)

]
(79)

Now from line eight of (52) with the second line of (47),

zd(t) = S22
41(x)

[
FT

mx(t) + Fx(t)
]

(80)

Deriving with respect to time with (50),

•
xd(t) = F−1

d

[
•
S

22

41(x)FT
mx(t) + S22

41(x)FT
m
•
x(t) +

•
S

22

41(x)Fx(t) + S22
41(x)F

•
x(t)

]
(81)

From the second and third lines of (52) with (49) and (51), the relationship of the
vector Din(t) is expressed as

Din(t) =
[

I − S11
22(x)L

]−1[
S11

21(x)z(t) + S12
21(x)z(t) + S11

23(x)u(t)

+S12
23(x)u(t)

]
(82)
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and for Din(t), it is

Din(t) =
[

I − S22
22(x)L

]−1[
S21

21(x)z(t) + S22
21(x)z(t) + S21

23(x)u(t)

+S22
23(x)u(t)

]
(83)

substituting (79) and (82) with (49),

•
x(t) = S11

11(x)z(t) + S12
11(x)z(t) + S11

12(x)L
[

I − S11
22(x)L

]−1[
S11

21(x)z(t)+

S12
21(x)z(t) + S11

23(x)u(t) + S12
23(x)u(t)

]
+ S12

12(x)L
[

I − S22
22(x)L

]−1

[
S21

21(x)z(t) + S22
21(x)z(t) +S21

23(x)u(t) + S22
23(x)u(t)

]
+

S11
14(x)Fd

[
•
S

11

41(x)Fx(t) + S11
41(x)F

•
x(t) +

•
S

11

41(x)Fmx(t) + S11
41(x)Fm

•
x(t)

]
+S11

13(x)u(t) + S12
13(x)u(t) (84)

with (65) and (66), (84) is reduced to[
I − S11

14(x)FdS11
41(x)F

]•
x(t)− S11

14(x)FdS11
41(x)Fm

•
x(t) =

[
S11

11(x) + S11
12(x)M(x)S11

21

+S12
12(x)M(x)S21

21(x)
]
z(t) +

[
S12

11(x) + S11
12(x)M(x)S12

21(x) + S12
12(x)M(x)S22

21(x)
]
z(t)+[

S11
13(x)+ S11

12(x)M(x)S11
23(x) + S12

12(x)M(x)S21
23(x)

]
u(t) +

[
S12

13(x) + S11
12(x)M(x)S12

23(x)

+S12
12(x)M(x) + S22

23(x)
]
u(t) + S11

14(x)Fd

[
•
S

11

41(x)Fx(t) +
•
S

11

41(x)Fmx(t)

] (85)

With the first line of (54), (56), (57), (61) and (62), the expression (85) is given by

E11(x)
•
x(t) + E12(x)

•
x(t) = A′11(x)z(t) + A′12(x)z(t) + B11(x)u(t) + B12(x)u(t) (86)

With (47), (54) and the first line of (55) and (60), the state equation for multiport state
variables x(t) given by the first line of (53) is proven.

From the second line of (52), (81)–(83) with (49) and (51),

•
x(t) = S21

11(x)z(t) + S22
11(x)z(t) + S21

12(x)L
[

I − S11
22(x)L

]−1[
S11

21(x)z(t)+

S12
21(x)z(t) + S11

23(x)u(t) + S12
23(x)u(t)

]
+ S22

12(x)L
[

I − S22
22(x)L

]−1

[
S21

21(x)z(t) + S22
21(x)z(t) + S21

23(x)u(t) +S22
23(x)u(t)

]
+

S22
14(x)F−1

d

[
•
S

22

41(x)FT
mx(t) + S22

41(x)FT
m
•
x(t) +

•
S

22

41(x)Fx(t) + S22
41(x)F

•
x(t)

]
+S21

13(x)u(t) + S22
13(x)u(t) (87)

With (65) and (66), Equation (87) is reduced to
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−S22
14(x)F−1

d S22
41(x)FT

m
•
x(t) +

[
I − S22

14(x)F−1
d S22

41(x)F
]•

x(t) =
[
S21

11(x) + S21
12(x)M(x)S11

21(x)

+S22
12(x)M(x)S21

21(x)
]
z(t) +

[
S22

11(x) + S21
12(x)M(x)S12

21(x) + S22
12(x)M(x)S22

21(x)
]

+
[
S21

13(x) + S21
12(x)M(x)S11

23(x) + S22
12(x)M(x)S21

23(x)
]
u(t)

+
[
S22

23(x) + S21
12(x)M(x)S12

23(x) + S22
12(x)M(x)S22

23(x)
]
u(t)

+S22
14(x)F−1

d

[
•
S

22

41(x)FT
mx(t) +

•
S

22

41(x)Fx(t)

]
(88)

With the second line of (54), (58), (59), (63) and (64), the expression (88) is given by

E21(x)
•
x(t) + E22(x)

•
x(t) = A′21(x)z(t) + A′22(x)z(t) + B21(x)u(t) + B22(x)u(t) (89)

With (47), (54) and the second line of (55) and (60), the equation of state for state
variables x(t) given by the second line of (53) is proven.

From the fifth line of (52), (82) and (83) with (49) and (51),

y(t) = S11
31(x)z(t) + S12

31(x)z(t) + S11
32(x)L

[
I − S11

22(x)L
]−1[

S11
21(x)z(t)+

S12
21(x)z(t) + S11

23(x)u(t) + S12
23(x)u(t)

]
+ S12

32(x)L
[

I − S22
22(x)L

]−1

[
S21

21(x)z(t) + S22
21(x)z(t) +S21

23(x)u(t) + S22
23(x)u(t)

]
+S11

33(x)u(t) + S12
33(x)u(t) (90)

With (65) and (66), (90) is reduced to

y(t) = S11
31(x)z(t) + S12

31(x)z(t) + S11
32(x)M(x)

[
S11

21(x)z(t) + S12
21(x)z(t)+

S11
23(x)u(t) + S12

23(x)u(t)
]
+ S12

32(x)M(x)
[
S21

21(x)z(t) + S22
21(x)z(t)

+S21
23(x)u(t) + S22

23(x)u(t)
]
+ S11

33(x)u(t) + S12
33(x)u(t) (91)

From the first line of (68) and (73) with (69), (70), (74) and (75), the first line of (67)
is proven.

From the sixth line of (52), (82) and (83) with (49) and (51),

y(t) = S21
31(x)z(t) + S22

31(x)z(t) + S21
32(x)L

[
I − S11

22(x)L
]−1[

S11
21(x)z(t)+

S12
21(x)z(t) + S11

23(x)u(t) + S12
23(x)u(t)

]
+ S22

32(x)L
[

I − S22
22(x)L

]−1

[
S21

21(x)z(t) + S22
21(x)z(t) +S21

23(x)u(t) + S22
23(x)u(t)

]
S21

33(x)u(t) + S22
33(x)u(t) (92)

With (65) and (66), (92) is reduced to

y(t) = S21
31(x)z(t) + S22

31(x)z(t) + S21
32(x)M(x)

[
S11

21(x)z(t) + S12
21(x)z(t)+

S11
23(x)u(t) + S12

23(x)u(t)
]
+ S22

32(x)M(x)
[
S21

21(x)z(t) + S22
21(x)z(t)

+S21
23(x)u(t) + S22

23(x)u(t)
]
+ S21

33(x)u(t) + S22
33(x)u(t) (93)
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From the second line of (68) and (73) with (71), (72), (76) and (77), the second line of
(67) is proven.

Next, the proposed methodology is applied to a case study.

4. Case Studies

In this section, two case studies are described applying the methodology of this paper.

4.1. Synchronous Generator

Currently, the majority of electrical power systems are based on the generation of
electrical energy in hydroelectric, thermoelectric and nuclear power plants, which have syn-
chronous generators as their main element [24–26]. A diagram of a two-pole synchronous
generator is shown in Figure 14. This machine is characterized by having a three-phase
armature winding (a, b, c) as a stator; in the rotor, the field winding ( f ) causes excitation;
and a damping winding eliminates electromagnetic transients (D, Q).

d-axis
a-axis

q-axis

 Direction
of Rotation

b-axis c-axis























sa

fc

bi

fb n

n

n
di

sb

sc

ci

qi
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di
Fi

Fi


qi

Fig. 14. Schematic

Figure 14. Schematic diagram of a three-phase synchronous generator.

Figure 15 illustrates the equivalent circuits of the synchronous generator where the
armature winding is indicated, which is represented by three lines with resistance and
inductance equivalent to each phase (Ra, La), (Rb, Lb) and (Rc, Lc); the field winding is a
circuit with a DC voltage source with its equivalent resistance and inductance

(
R f , L f

)
,

and the damping winding is modeled as two shorted circuits with resistance and inductance
(RD, LD) and

(
RQ, LQ

)
, respectively.

Fig. 15. Stator and rotor
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Figure 15. Stator and rotor circuits of a synchronous generator.

The model of the synchronous generator with its armature winding determines a time-
varying three-phase electrical subsystem. Due to this, the Park transformation is applied to
have a coordinate transformation and obtain an equivalent time-invariant system.

The following assumptions are considered to obtain the generator model:
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• The stator windings are sinusoidally distributed along the air gap.
• The inductance of the rotor with its position does not cause variation due to stator slots.
• The phenomena of hysteresis and magnetic saturation are not taken into account.

From Figure 15, the following elements are identified:

• The armature phase windings are a, b, c with phase voltages and currents (va, vb, vc) and
(ia, ib, ic), respectively; (Ra, Rb, Rc) denote the stator phase resistances, and (Laa, Lbb, Lcc)
denote the stator phase self inductances.

• The field winding is f with voltage v f and current i f in this winding; R f and L f denote
resistance and self inductance of this winding, respectively.

• The damping circuit on the d-axis is D with voltage and current denoted by vD
and iD, respectively; RD and LD denote the resistance and self inductance of this
winding, respectively.

• The damping circuit on the q-axis is Q with voltage and current denoted by vQ
and iQ, respectively; RQ and LQ denote the resistance and self inductance of this
winding, respectively.

The synchronous generator of Figure 15 is represented by six windings that are
magnetically coupled. The magnetic coupling between the windings is a function of the
rotor position. The instantaneous terminal voltage v of any winding is in the form

v(t) = ±∑ Ri(t)±
•
λ(t) (94)

where λ(t) is the flux linkage, R is the winding resistance, and i(t) is the current, with
positive directions of stator currents flowing out of the generator terminals.

In order to remove the time variance of the armature winding variables (a, b, c), the
Park transformation is applied so that the new variables in coordinates (d, q, 0) move at the
rotor speed. This transformation is defined by [25]

idq0 = Piabc (95)

where the current vectors are defined as

idq0 =

 id
iq
i0

; iabc =

 ia
ib
ic

 (96)

and the Park transformation matrix is

P =

√
2
3

 cos θ cos
(
θ − 2π

3
)

cos
(
θ + 2π

3
)

sin θ sin
(
θ − 2π

3
)

sin
(
θ + 2π

3
)

1√
2

1√
2

1√
2

 (97)

The angle between the d-axis and the rotor is described by

θ = wRt + δ +
π

2
(98)

where wR is the rated angular frequency in rad/s, and δ is the synchronous torque angle in
electrical radians.

Similarly, the transformations for voltages and flux links are expressed by

vdq0 = Pvabc (99)

λdq0 = Pλabc (100)

According to Figure 15, a model (MBG-BG) of the synchronous generator in coordi-
nates (d, q, 0) is proposed in Figure 16.
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Figure 16. (MBG-BG) of the synchronous generator.

This model has the following characteristics:

• The section of the armature winding is in coordinates (d, q, 0), to which the multiport
resistor R : Rdq0 with multibond 2 and multiport inductance I I : Ldq0 with multibond 3
are connected. The multiport effort source 17 in coordinates (a, b, c) is connected to a
multiport transformer TF modulated with the Park transformation matrix so that the
multibond 10 has a multiport effort equivalent to the voltage in coordinates (d, q, 0).
The multibond 14 is the stator–rotor connection in a synchronous generator through a
multiport gyrator MGY modulated by a matrix T, which are the flux links λd and λq
that give rise to the electromagnetic torque of the machine. Note that the multibonds
in this section are dimension 3.

• The section of the damping windings are used in a synchronous generator to start
the machine and as a means of energy dissipation when there are internal or external
electromagnetic transients to the machine. These windings are modeled on the rotor
as two shorted windings for which the multiport resistance is R : RDQ, which is
connected to bond 8. These windings have their self- and mutual-inductance with
respect to the inductances of the other windings of the machine, so this inductance is
I I : LDQ. These windings have no supply source, and note that these multibonds are
dimension 2.

• The last electrical section of this generator is constituted by the field winding R : RF
of bond 7 and is linked by bond 5 to the inductance of this winding I : LF. Note that
the dimension of this section is 1.

• The mechanical section consists of the moment of inertia of the generator I : Tj
connected to bond 18. Considering the effects of air friction with mechanical resistance
R : Rj with bond 20, the mechanical energy input to the generator is through the effort
source MSe : Tm linked to bond 16. The conversion of mechanical energy to electrical
energy is carried out by means of the multiport gyrator MGY, for which bond 17 is the
mechanical part of dimension 1, and the electrical part is multibond 19 of dimension 3
since it determines the three-phase electrical generation.

• The subsystems of the multiport armature winding (d, q, 0) of dimension 3, of the
damping windings (D, Q) of dimension 2, and of the field winding (F) of dimension 1
due to the design and construction structure of the generator present mutual magnetic
flux links and determine mutual inductances MdD, MdF, MqQ, MDF, MDd, MFd, MQq
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and MFD. Therefore, they are modeled in a multiport field I I : M in which the self-
and mutual-inductances of these windings are considered.

The key vectors of the multibond graph–bond graph model (MBG-BG) of the generator
for the storage elements are defined by

x(t) =

[
p3

p4

]
;
•
x(t) =

[
e3
e4

]
; z(t) =

[
f3

f4

]
(101)

x(t) =

[
p5
p18

]
;
•
x(t) =

[
e5
e18

]
; z(t) =

[
f5
f18

]
(102)

where the constitutive relations are given by
f3

f4

f5
f18

 =

[
F Fm

FT
m F

]−1


p3

p4

p5
p18

 (103)

where

F−1=

[
Ldq0 M34
MT

34 LDQ

]
; F−1

m =

[
M35 0
M45 0

]
; F−1 =

[
LF 0
0 Tj

]
(104)

with

Ldq0 = diag
{

Ld, Lq, L0
}

(105)

LDQ = diag
{

LD, LQ
}

(106)

M34 =

 MdD 0
0 MqQ
0 0

; M35 =

 MdF
0
0

; M45 =

[
MDF

0

]
(107)

The key vectors for the dissipation elements

Din(t) =

[
f2

f8

]
; Dout(t) =

[
e2
e8

]
(108)

Din(t) =

[
f7
f20

]
; Dout(t) =

[
e7
e20

]
(109)

with constitutive relations given by

L = diag
{

Rdq0, RDQ

}
(110)

L = diag
{

RF, Rj
}

(111)

with

Rdq0 = diag
{

Rd, Rq, R0
}

(112)

RDQ = diag
{

RD, RQ
}

(113)

The inputs to the system are

u(t) = e9; u(t) =
[

e6
e16

]
(114)

and the selected outputs are the currents in coordinates (a, b, c), defined by

y(t) = f12 (115)
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The multiport junction structure is described by



e3
e4

inee5
e18

ineine f2

f8

ine f7
f20

ine f12


=



0 0 0 −T −I 0 0 0 P−1 0 0
0 0 0 0 0 −I 0 0 0 0 0

ine0 0 0 0 0 0 −1 0 0 1 0
TT 0 0 0 0 0 0 −1 0 0 1

ineineI 0 0 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0 0

ine0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0

ineP 0 0 0 0 0 0 0 0 0 0





f3

f4

ine f5
f18

ineinee2
e8

inee7
e20

ineinee1
inee6
e16



(116)

where
TT =

[
λq −λd 0

]
In order to obtain the mathematical model of the system in state space, the proposed

lemma is applied. As there are no storage elements in derivative causality,

E(x) =
[

I 0
0 I

]
(117)

Likewise, there are no algebraic loops in both sections of the multibond graph and
bond graph

M(x) = L (118)

M(x) = L (119)

From (56) and (57) with (110), (111), (116), (118) and (119),

A′11(x) =

[
−Rdq0 0

0 −RDQ

]
(120)

A′12(x) =

[
0 −T
0 0

]
(121)

From the first line of (55),

A11(x) = −
[

Rdq0L′dq0 Rdq0M′34

RDQ
(

MT
34
)′ RDQL′DQ

]
(122)

A12(x) = −
[

Rdqo M′35 −T · Tj
RDQ M′45 0

]
(123)

where  Ldq0 M34 M35

MT
34 LDQ M45

MT
35 MT

45 LF


−1

=


L′dq0 M′34 M′35(
MT

34
)′ L′DQ M′45(

MT
35
)′ (

MT
45
)′ L′F

 (124)

From (60)–(62) with (116), (118) and (119), the multiport input matrix is defined by

B11(x) =

[
P−1

0

]
(125)

B12(x) =

[
0
0

]
(126)
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From (58), (110), (111), (116), (118) and (119),

A′21(x) =
[

0 0
TT 0

]
(127)

From (59), (110), (111), (116), (118) and (119),

A′22(x) =
[
−RF 0

0 −Rj

]
(128)

From the second line of (55),

A21(x) =

[
−RF M′35 −RF M′45
TT L′dq0 0

]
(129)

A22(x) =

[
−RFL′F 0
TT M′35 −RjT′j

]
(130)

The input matrix is obtained from (63), (64), (116), (118) and (119)

B21(x) = 0 (131)

B22(x) = I (132)

By substituting (122), (123), (125) and (126) into the first line of (53) with (55), the
state equation for the multibond graph section in a three coordinates is defined

•
x(t) = −

[
Rdq0L′dq0 Rdq0M′34

RDQ
(

MT
34
)′ RDQL′DQ

]
x(t)−

[
Rdqo M′35 −T · Tj
RDQ M′45 0

]
x(t) +

[
P−1

0

]
u(t) (133)

And substituting (129)–(132) into the second line of (53) with the second lines of (55)
and (60),

•
x(t) =

[
−RF M′35 −RF M′45 −RFL′F 0
TT L′dq0 0 TT M′35 −RjT′j

][
x(t)
x(t)

]
+

[
0 1 0
0 0 1

] e1
e6
e16

 (134)

From (69), (70), (74) and (75) with the first line of (68) and (73), the output equation
is given by

y(t) =
[

P 0 0 0
][ x(t)

x(t)

]
(135)

With the state equations given by (133) and (134), we have the representation of a
system modeled by multibond graphs and bond graphs. In addition, there are the terms
due to (MBG), the terms of (BG), and also the relationship between them.

In order to obtain the behavior of the synchronous generator using the (MBG-BG)
model, simulation results using 20-Sim software are shown. The numerical parameters of
the generator elements are indicated in Table 2.

Table 2. Parameters of the case study.

va = 440 sin(wt) V Rd = 0.1 Ω Ld = 1.7H MdD = 1.55H

vb = 440 sin(wt− 2π/3) V Rq = 0.1 Ω Lq = 1.64H MqQ = 1.49H

vc = 440 sin(wt + 2π/3) V R0 = 1.0 Ω L0 = 1.0H MdF = 1.55H

vF = 120 V RF = 2.5 Ω LD = 1.605H MDF = 1.55H

Tm = 1000 N·m RJ = 1.0 N·m·s LQ = 1.526H TJ = 2.37 N·m·s2
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The first part of the simulation results consists of the three-phase supply voltages to
the generator in coordinates (a, b, c) and in coordinates (d, q, 0) as shown in Figure 17.
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Figure 17. Supply voltages: (a) in coordinates (a, b, c); (b) in coordinates (d, q, 0).

The three-phase voltage applied to the generator is in balanced conditions: that is, it
is at a constant maximum magnitude and with a phase shift of 120 in coordinates (a, b, c),
defining voltages of constant magnitude in coordinates (d, q, 0).

The response of the (MBG-BG) model is found with the currents
(
id, iq, i0

)
, which

is the response of the generator when the three-phase voltages are supplied; the torque
applied to the mechanical subsection indicates the input mechanical energy and is related
to the voltage in the excitation winding. Thus, the currents

(
id, iq, i0

)
shown in Figure 18a

are stable after the transient period has finished. These current signals are obtained from
the multibond graph with multibonds of dimension 3.

Figure 18b shows the currents in the damping windings
(
iD, iQ

)
, which absorb the

energy of the electromechanical transient of the generator at its startup and which after
the dynamic period must stabilize at zero magnitude as seen in the corresponding graphs.
These currents are obtained from the multibond graph with multibonds of dimension 2.
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Figure 18. Electric currents of the model: (a) of the main windings in coordinates (d, q, 0); (b) of the
damping windings (D, Q).

Figure 19 shows the two remaining variables of the generator model, which are the
current in the excitation winding iF and the speed w; both signals being stable indicates
good operation of the generator. These excitation current and velocity signals are obtained
from the bond graph part of the model with bonds of dimension 1.
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Figure 19. (a) Current in the field winding and (b) speed.

Finally, the objective of the generator is to supply electrical energy to the system
through the currents (ia, ib, ic) that are obtained from the currents

(
id, iq, i0

)
; the section

representing these currents in the multibond graph indicates that balanced three-phase
currents are delivered to the system, showing good operation of the generator, which is
shown in Figure 20.
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100

200 i_a {A}
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10.645 10.655 10.665

−20

−10

0

10

20

Figure 20. Output current in coordinates (a, b, c).

4.2. Three-Phase Electrical System

Electrical power systems allow the generation, transmission, distribution and con-
sumption of electrical energy. This case study consists of a three-phase electrical energy
generation system (va, vb,vc) Figure 21 present the second case study. Due to the differ-
ence in the generation and transmission voltage levels, a set of single-phase transformers
(T1, T2, T3) is connected between the supply and the transmission lines formed by the
resistance and inductance connected to phase a : (Ra, La), phase b : (Rb, Lb) and phase
c : (Rc, Lc). These lines are connected to an energy storage system made up of capacitors
(Ca, Cb, Cc). From the terminals of the capacitors, it is necessary to connect a DC motor, for
which a three-phase rectifier (Da, Db, Dc) based on power diodes is applied. The output of
this rectifier feeds a motor through a single-phase transformer (T4) to guarantee that the
motor receives the voltage at its terminals at the desired value.

The DC motor model consists of the resistance Rar and inductance Lar armature
winding parameters; the mechanical part of the motor is formed by the inertia J and friction
with the air b; the electromechanical conversion takes place with a module n. For this motor,
the field winding is constant, so its model is not necessary. The complete model of this
system is shown in Figure 22.
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Figure 21. Electrical power system feeding a DC motor.
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Figure 22. (MBG-BG) of the electrical power system.

A fundamental aspect of modeling systems with multibond graphs and bond graphs is
to be able to link these and make them graphically and mathematically consistent. Therefore,
for the output of the three-phase rectifier and the input to the single-phase transformer (T4),
another transformer with a (T) module is required to make this connection. Note that the
three-phase rectifier is modeled based on nonlinear resistances Rdabc of the Schottky model.

The key vectors are defined by

x(t) =

[
p4

q6

]
;
•
x(t) =

[
e4
f6

]
; z(t) =

[
f4

e6

]
(136)

x(t) =

[
p11
p16

]
;
•
x(t) =

[
e11
e16

]
; z(t) =

[
f11
f16

]
(137)

with the constitutive relationships of these storage elements expressed by

F = diag
{

L−1
abc, C−1

abc

}
(138)
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where

Labc =

 la lab lac
lab lb lbc
lac lbc lc

 (139)

Cabc =

 ca 0 0
0 cb 0
0 0 cc

 (140)

The key vectors for the dissipative elements are defined by

Din(t) =

[
f3

f8

]
; Dout(t) =

[
e3
e8

]
(141)

Din(t) =

[
f12
f15

]
; Dout(t) =

[
e12
e15

]
(142)

with the constitutive relations

L = diag{Rabc, Rdabc} (143)

L = diag{Rar, b} (144)

with the input
u(t) = e1 (145)

The input and output relations of the transformer with module T are given by

e9 = Te18 (146)

e18 = TTe9 (147)

where
T =

[
1 1 1

]
(148)

The junction structure of (MBG-BG) is given by



e4
f6

inee11
e16

ineine f3

f8

ine f12
f15


=



0 −I 0 0 −I 0 0 0 K−1

I 0 −1
w TT 0 0 0 0 0 0

ine0 1
w T 0 −n 0 −1

w T −1 0 0
0 0 n 0 0 0 0 −1 0

ineineI 0 0 0 0 0 0 0 0
0 0 1

w T 0 0 0 0 0 0
ine0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0





f4

e6
ine f11

f16
ineinee3

e8
inee12

e15
ineinee1


(149)

In this case, S11
22(x) = 0 and S22

22(x) = 0; then (65) and (66)

M(x) = L (150)

M(x) = L (151)

Also, there are no storage elements in derivative causality; then E(x) = I.
From (56), (150) and (151) with (143), (144) and (149),

A′11(x) =
[
−Rabc −I

I 0

]
(152)
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From (57), (150) and (151) with (149),

A′12(x) =
[

0 0
−1
w TT 0

]
(153)

From (58), (150) and (151) with (149),

A′21(x) =
[

0 1
w T

0 0

]
(154)

From (59), (150) and (151) with (143), (144) and (149),

A′22(x) =
[
−Rar +

1
w TRdabcTT 0
0 −b

]
(155)

From (61) and (63) with (151), (143), (144) and (149),

B11(x) =
[

K−1

0

]
(156)

and

B21(x) =
[

0
0

]
(157)

For this case study, there are no energy storage element fields, so Fm = 0. From (55)
and (60) with (152)–(157), the state equation given by (53) is defined as

[ •
x(t)
•
x(t)

]
=



−RabcL−1
abc −C−1

abc 0 0

−L−1
abc 0

−1
wLar

TT 0

0
1
w

TC−1
abc −Rar

Lar
+

1
wLar

TRdabcTT 0

0 0 0
−b
J


[

x(t)
x(t)

]
+


K−1

0
0
0

u(t) (158)

From this paper, structural properties of a model can be obtained. Likewise, the control
design in section (BG) to (MGB) or the opposite can be established for future work.

5. Conclusions

System modeling with the combination of multibond graphs with bond graphs has
been presented. Physical systems such as electrical power, aeronautical and robotic systems,
due to their characteristics, require modeling in several axes or dimensions, and at the
same time, there are components that are represented in one axis or dimension, so this
paper responds to the need to model these systems through (MBG-BG). The mathematical
modeling of systems represented by (MBG-BG) is proposed through a junction structure
that is introduced. Finally, the modeling and simulation of a synchronous generator on
the (MBG-BG) platform has been presented. Additionally, the obtainment of a state-
space model of an electrical power system feeding a DC motor is proposed. Structural
properties such as stability, controllability and singular perturbations of systems modeled
by (MBG-BG) as future work can be proposed from this paper.

Author Contributions: Conceptualization, G.G.-A. and N.B.G.; methodology, G.G.-A. and A.J.P.R.;
software, A.P.G. and L.F.F.G.; validation, A.P.G. and G.A.-J.; formal analysis, G.G.-A.; investigation,
G.A.-J.; writing—original draft preparation, G.G.-A., G.A.-J. and N.B.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Symmetry 2023, 15, 2170 28 of 28

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sueur, C.; Dauphin-Tanguy, G. Bond graph approach for structural analysis of MIMO linear system. J. Frankl. Inst. 1991, 328,

55–70. [CrossRef]
2. Antic, D.; Vidojkovic, B.; Mladenovic, M. An Introduction to Bond Graph Modelling of Dynamic Systems. In Proceedings of the

TELSIKs 99, Nis, Serbia, 13–15 October 1999.
3. Karnopp, D. Bond Graphs in Control: Physical State Variables and Observers. J. Frankl. Inst. 1979, 308, 219–234. [CrossRef]
4. Gawthrop, P. Physical Model-based Control: A Bond Graph Approach. J. Frankl. Inst. 1995, 332B, 285–305. [CrossRef]
5. Brown, F.T. Hamiltonian and Lagrangian Bond Graphs. J. Frankl. Inst. 1991, 328, 809–831. [CrossRef]
6. Rahmani, A.; Hasan, M.N.; Zak, M. Modelling and Validation of Electric Vehicle Drive Line Architecture using Bond Graph. Test

Eng. Manag. 2020, 82, 15154–15167.
7. Badoud, A.E.; Merahi, F.; Bouamama, B.O.; Mekhilef, S. Bond Graph modeling, design and experimental validation of a

photovoltaic/fuel cell/electrolyzer/battery hybrid power system. Int. J. Hydrogen Energy 2021, 46, 24011–24027. [CrossRef]
8. Zrafi, R.; Ghedira, S.; Besbes, K. A Bond Graph Approach for the Modeling and Simulation of a Buck Converter. J. Low Power

Electron. Appl. 2018, 8, 2. [CrossRef]
9. Mohammed, A.; Sirahbizu, B.; Lemu, H.G. Optimal Rotary Wind Turbine Blade Modeling with Bond Graph Approach for Specific

Local Sites. Energies 2022, 15, 6858. [CrossRef]
10. Breedveld, P.C. Multibond graph elements in physical systems theory. J. Frankl. Inst. 1985, 319, 1–36. [CrossRef]
11. Breedveld, P.C. Decomposition of multiport elements in a revised multi bond graph notation. J. Frankl. Inst. 1984, 318, 253–273.

[CrossRef]
12. Behzadipour, S.; Khajepour, A. Causality in vector bond graphs and its application to modeling of multi-body dynamic systems.

Simul. Model. Pract. Theory 2006, 14, 279–295. [CrossRef]
13. Nuñez, I.; Breedveld, P.C.; Weustink, P.B.T.; Gonzalez, G. Steady-State power flow analysis of electrical power systems modelled

by 2-dimensional multibond graphs. In Proceedings of the International Conference on Integrated Modeling and Analysis in
Applied Control and Automation, Bergeggi, Italy, 21–23 September 2015; pp. 39–47.

14. Boundon, B.; Malburet, F.; Carmona, J.C. Design Methodology of a Complex CKC Mechanical Joint with an Energetic Represen-
tation Tool “Multibond Graph”: Application to the Helicopter. In Multibody Dynamics, Computational Methods and Applications;
Springer International Publishing: Berlin/Heidelberg, Germany, 2014.

15. Mishra, N.; Vaz, A. Bond graph modeling of a 3-joint String-Tube Actuanted finger prosthesis. Mech. Mach. 2017, 117, 1–20.
[CrossRef]

16. Pathak, A.K.; Vaz, A. A simplified model for contact mechanics of articular cartilage and mating bones using bond graph.
In Proceedings of the 3rd International and 18th National Conference on Machines and Mechanisms, Mumbai, India, 13–15
December 2017.

17. Mishra, N.; Vaz, A. Development of trajectory and force controllers for 3-joint string- tube actuated finger prosthesis based on
bond graph modeling. Mech. Mach. Theory 2020, 146, 103719. [CrossRef]

18. Gonzalez, G.; Barrera, N.; Ayala, G.; Padilla, A. Modeling and Simulation in Multibond Graphs Applied to Three-Phase Electrical
Systems. Appl. Sci. 2023, 13, 5880. [CrossRef]

19. Rosenberg, R.C.; Andry, A.N. Solvability of Bond Graph Junction Structures with Loops. IEEE Trans. Circuits Syst. 1979, 26,
130–137. [CrossRef]

20. Rosenberg, R.C.; Moultrie, B. Basis Order for Bond Graph Junction Structures. IEEE Trans. Circuits Syst. 1980, 27, 909–920.
[CrossRef]

21. Rahmani, A.; Dauphin-Tanguy, G. Structural analysis of switching systems modelled by bond graph. Math. Comput. Dyn. Syst.
2010, 12, 235–247. [CrossRef]

22. Gonzalez, G.; Padilla, A. Quasi-steady-state model of a class of nonlinear singularly perturbed system in bond graph approach.
Electr. Eng. 2018, 100, 293–302. [CrossRef]

23. Breedveld, P.C. Essential gyrators and equivalence rules for 3-port junction structures. J. Frankl. Inst. 1984, 318, 253–273.
[CrossRef]

24. Kundur, J.R. Power System Stability and Control; Mc. Graw-Hill: New York, NY, USA, 1994.
25. Anderson, P.M. Power System Control and Stability; The Iowa State University Press: Ames, IA, USA, 1977.
26. Krause, P.C.; Wasynczuk, O.; Sudhoff, S.D. Analysis of Electrical Machinery and Drive Systems; IEEE Press-Wiley-Interscience:

Hoboken, NJ, USA, 2002.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/0016-0032(91)90006-O
http://dx.doi.org/10.1016/0016-0032(79)90114-5
http://dx.doi.org/10.1016/0016-0032(95)00044-5
http://dx.doi.org/10.1016/0016-0032(91)90056-9
http://dx.doi.org/10.1016/j.ijhydene.2021.05.016
http://dx.doi.org/10.3390/jlpea8010002
http://dx.doi.org/10.3390/en15186858
http://dx.doi.org/10.1016/0016-0032(85)90062-6
http://dx.doi.org/10.1016/0016-0032(84)90014-0
http://dx.doi.org/10.1016/j.simpat.2005.06.001
http://dx.doi.org/10.1016/j.mechmachtheory.2017.06.018
http://dx.doi.org/10.1016/j.mechmachtheory.2019.103719
http://dx.doi.org/10.3390/app13105880
http://dx.doi.org/10.1109/TCS.1979.1084615
http://dx.doi.org/10.1109/TCS.1980.1084732
http://dx.doi.org/10.1080/1383950500068344
http://dx.doi.org/10.1007/s00202-016-0507-x
http://dx.doi.org/10.1016/0016-0032(84)90014-0

	Introduction
	Modeling in Bond Graphs and Multi-Bond Graphs
	1-Ports Active
	1-Ports Passive
	2-Ports
	3-Ports

	A Mathematical Model of a System Composed of MultiBond Graphs and Bond Graphs
	Case Studies
	Synchronous Generator
	Three-Phase Electrical System

	Conclusions
	References

