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Abstract: Given n ≥ 6, D = {1, 2, . . . , b n
2 c}, and a generating set S ⊆ D, the circulant graph Cn(S) has

Zn as a vertex set in which two distinct vertices i and j are adjacent if and only if |i− j|n ∈ S, where
|x|n = min(|x|, n− |x|) is the circular distance modulo n. In this paper, we determine the L(2, 1)-
labeling number of Cn(D\X), referred to as λ(Cn(D\X)), for X = {b n

2 c}, X = {a}, X = {a, b},
and in the general case when |X| < b n

2 c − d
n
4 e, where a, b ∈ D. Furthermore, we demonstrate that

for all n ≥ 6 and any given set S, λ(Cn(S)) = n + gcd(n, S)− 2 if and only if gcd(n, S) ≥ 2, and
λ(Cn(S)) ≤ n− 1 if and only if gcd(n, S) = 1. Additionally, we establish that when the diameter of
Cn(S) equals 2, λ(Cn(S)) = n− 1. This observation motivated us to investigate the properties of S
that lead to a diameter of Cn(S) equal to 2. Then, we introduce a highly distinctive family, denoted as
An, that generates a large number of generating sets. For each value of n, we acquire a circulant graph
Cn(An) with a diameter of 2, λ(Cn(An)) = n− 1, and various additional interesting properties.

Keywords: L(2, 1)-labeling; circulant graphs; path covering

MSC: 05C15; 05C78

1. Introduction and Preliminary

The frequency assignment problem (FAP) is an optimization challenge encountered in
telecommunications, radio spectrum management, wireless network planning, and satellite
communication. Its main goal is to allocate frequencies to transmitters or communica-
tion links in a manner that minimizes interference and maximizes system performance.
In wireless communication, using different frequencies for distinct transmitters is essen-
tial to prevent interference, a task that becomes increasingly intricate when faced with
multiple transmitters and limited frequency resources. Solving the FAP entails finding an
optimal assignment that adheres to constraints such as frequency separation, power limits,
and interference avoidance.

Distance-constrained graph labeling has emerged as a general model for the FAP. This
approach assumes that the distance of transmitters can be modeled by a graph and that
the distance of the transmitters influences possible interference in such a way that the
closer two transmitters are, the farther apart their frequencies must be. In a formal sense,
an assignment of non-negative integers to the vertices of a graph G is an L(c1, . . . , ct)-
labeling if, for any two vertices with a distance of at most i ≤ t, the difference between
their assigned integers (labels) is at least ci. Here, t ≥ 1 denotes the depth at which distance
constraints are applied, while integers c1 ≥ c2 ≥ . . . ≥ ct act as parameters for the problem.
Again, the goal is to minimize the maximum label used.

Due to its difficulty, many particular cases of this general problem have been studied.
Among them is the radio k-labeling problem, initially introduced by Chartrand et al. [1,2].
This problem can be regarded as a particular case of the L(c1, . . . , ct)-labeling problem,
with constraints defined by ci = k + 1 − i, where k ≥ 1 is an integer. Formally, a ra-
dio k-labeling of G is a function f that assigns each vertex of G a value from the set
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{0, 1, 2, . . . , rnk( f )}, subject to the condition | f (x)− f (y)| ≥ k + 1− d(x, y), where d(x, y)
is the distance between the vertices x and y in G. The term rnk( f ) denotes the span of f .
Consequently, the radio k-labeling number rnk(G) of G corresponds to the minimum span
among all radio k-labelings of G. The task of determining the radio k-labeling number
appears to be challenging, even when dealing with particular graphs. Kchikech et al. [3]
introduced a classical approach to establish a lower bound for rnk(G) in a given graph
G. To accomplish this, they employed a distinct graph parameter known as the upper
traceable number [4], denoted as t+:

Theorem 1 ([3]). Let G be a graph of order n, then for any positive integer k,

rnk(G) ≥ (n− 1)(k + 1)− t+(G);

Moreover, if k ≥ 2diam(G)− 2, then

rnk(G) = (n− 1)(k + 1)− t+(G).

For a graph G of order n and for a linear ordering s: (x0, x1, . . . , xn−1) of its ver-
tices, let d(s) = ∑n−2

i=0 d(xi, xi+1). The upper traceable number t+(G) of G is defined by
t+(G) = max d(s), where the maximum is taken over all linear orderings s of vertices of
G. Kràl et al. [5] showed that the problem of determining the upper traceable number of a
given graph is an NP-hard problem.

The radio k-labelings extend certain well-known graph labelings, as presented in
Table 1. Each row in the table provides the more commonly used terminology for a given
value of k, with diam(G) representing the diameter of graph G.

Table 1. Radio k-labelings for k = 1, 2, diam(G)− 1, diam(G).

k Radio k-Labeling Radio k-Labeling Number, rnk(G)

1 Vertex coloring Chromatic number, χ(G)
2 L(2, 1)-labeling Lambda number, λ(G)
diam(G)− 1 Antipodal labeling Radio antipodal number, ac(G)
diam(G) Radio labeling Radio number, rn(G)

Our focus lies on L(2, 1)-labelings, which were introduced by Griggs and Yeh in
1992 [6]. Since then, this problem has been extensively studied [7–9]. Formally, an L(2, 1)-
labeling of a graph G is an assignment f : V(G)→ Z+ ∪ {0} such that

| f (x)− f (y)| ≥
{

2, if d(x, y) = 1,
1, if d(x, y) = 2.

The span, λ( f ), of an L(2, 1)-labeling f is the difference between the largest and
the smallest label used by f . For simplicity, we assume the label zero corresponds to
the smallest value, thereby making the span equivalent to the highest assigned label.
Consequently, the L(2, 1)-labeling number λ(G) of G corresponds to the minimum span
among all L(2, 1)-labelings of G.

Griggs and Yeh [6] employed the greedy algorithm to demonstrate that λ(G) ≤
∆2 + 2∆ for any graph G, where ∆ denotes the maximum degree of G. This upper bound
was later enhanced by Gonçalves [10] to ∆2 + 2∆− 2, which is currently the best upper
bound known for λ(G) in terms of the maximum degree across graphs in general. Griggs
and Yeh [6] proposed the ∆2-conjecture, suggesting that λ(G) ≤ ∆2 for any graph G with
∆ ≥ 2. Although the conjecture has been verified for specific families of graphs, including
paths, cycles, wheels [6], trees [11,12], Cartesian products, compositions of graphs [13],
generalized Petersen graphs [14], and chordal graphs [15], its general validity remains
unproven. For only a limited number of graph classes, such as paths, cycles, wheels, trees,
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and generalized Petersen graphs, the efficient computation of λ(G) is possible. However,
for a vast array of graph families, it remains unknown whether calculating λ(G) is NP-
complete or can be solved in polynomial time. Therefore, our research has been directed
towards determining bounds for the λ-number of graphs, with a particular focus on
utilizing the following result, which is a specific case of Theorem 1 when k = 2.

Corollary 1. Let G be a graph of order n

λ(G) ≥ 3(n− 1)− t+(G);

Moreover, if diam(G) ≤ 2, then

λ(G) = 3(n− 1)− t+(G).

This paper centers its attention on circulant graphs, a subset of the more general
family of Cayley graphs. Specifically, circulant graphs are Cayley graphs over the simplest
family of groups, namely the cyclic groups. Given n ≥ 6, D = {1, 2, . . . , b n

2 c} and a
generating set S ⊆ D. The circulant graph Cn(S) = (V(Cn(S)), E(Cn(S))) has Zn as a
vertex set in which two distinct vertices i and j are adjacent if and only if |i− j|n ∈ S, where
|x|n = min(|x|, n− |x|) is the circular distance modulo n. For example, Cn({1}) is the cycle
Cn, while Cn(D) is the complete graph Kn. The circulant graph C24({3, 4, 5, 6}) is illustrated
in Figure 1.
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Figure 1. Circulant graph C24(S) with S = {3, 4, 5, 6}.

Circulant graphs are regular and vertex-transitive. Their symmetry has consistently
captivated mathematicians. Applications have been found for these graphs in various
domains, including the modeling of data connection networks [16,17] and the theory of
designs and error-correcting codes [18].

Observations

1. Since circulants belong to the family of Cayley graphs, any undirected circulant
graph is vertex-transitive. As a result, for any pair of vertices x and y within Cn(S),

d(x, y) = d(0, z), where z =

{
y− x, if x < y,
n− x + y, otherwise.

2. The complementary of Cn(S) is Cn(S) = Cn(S), where S = D\S.

In this paper, we delve into the L(2, 1)-labeling of circulant graphs. The initial investi-
gation into this problem was conducted by Mitra and Bhoumik [19]. They presented upper
bounds for the span of the L(2, 1)-labeling for circulant graphs with generating sets D\{ n

2 }
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(for even n), D\{a}, and D\{a, n
2 } (for n even and a ∈ D). Expanding upon their research,

we commence by providing precise span values of the L(2, 1)-labeling for circulants with
generating sets D\{b n

2 c} (for all n), D\{a}, and D\{a, b}, where a, b ∈ D. Subsequently,
we generalize these results to any set X ⊂ D, by introducing conditions related to the
cardinality of X, ensuring that the graph Cn(D\X) possesses an exact span value of the
L(2, 1)-labeling.

Furthermore, we demonstrate that for all n ≥ 6 and any given set S, the L(2, 1)-
labeling number of Cn(S) assumes two distinct values: λ(Cn(S)) = n + gcd(n, S)− 2 if and
only if gcd(n, S) ≥ 2, and λ(Cn(S)) ≤ n− 1 if and only if gcd(n, S) = 1, where gcd(n, S)
denotes the greatest common divisor of n and the elements belonging to S. Our research
also seeks to give a precise value for λ(Cn(S)) when gcd(n, S) = 1, which leads us to
find that λ(Cn(S)) = n− 1 when diam(Cn(S)) = 2. This discovery led us to explore the
characteristics of S such that diam(Cn(S)) = 2.

Then, we introduce a highly distinctive family, denoted as An, that generates a large
number of generating sets. For each value of n, we acquire a circulant graph Cn(An) with a
diameter of 2, λ(Cn(An)) = n− 1, and various additional interesting properties.

2. Main Results

Mitra and Bhoumik [19] determined the upper bound for λ(Cn(S)) when S = D\{ n
2 }.

Specifically, for even values of n, they showed that λ(Cn(S)) ≤ 3n
2 − 2. Expanding upon

this discovery, we proceed to provide the exact value for the span of the L(2, 1)-labeling of
Cn(S), for all n.

Theorem 2. For any generating set S = D\{b n
2 c}, where n ≥ 6,

λ(Cn(S)) =

{
n− 1, if n is odd,
3n
2 − 2, if n is even.

Proof. Let n ≥ 6, and let S = D\{b n
2 c}. According to Corollary 1, if diam(Cn(S)) = 2,

then we can establish that λ(Cn(S)) = 3(n− 1)− t+(Cn(S)).

Claim 1. For each integer n ≥ 6, diam(Cn(S)) = 2.

Proof. If i ∈ S, then |0 − i|n = min(i, n − i) = i ∈ S. Thus, (0, i) ∈ E(Cn(S)) and
d(0, i) = 1. If i = b n

2 c, then |0 − i|n = i 6∈ S. Thus, d(0, i) ≥ 2. However, 2 ≤
d(0, i) ≤ d(0, i − 1) + d(i − 1, i) ≤ d(0, i − 1) + 1. Moreover, |0− (i − 1)|n = i − 1 ∈ S,
i.e., d(0, i − 1) = 1. Thus, d(0, i) = 2. Hence, for all i ∈ {1, 2, . . . , b n

2 c}, d(0, i) ≤ 2.
Consequently, diam(Cn(S)) = 2.

Now, the current task is to precisely determine the value of the parameter t+(Cn(S)).

Claim 2. For each integer n ≥ 6, t+(Cn(S)) =

{
2(n− 1), if n is odd,
3n
2 − 1, if n is even.

Proof. Let n = 2p + 1 with p ≥ 2, we provide the permutation {x0, x1, . . . , xn−1} to the set
of vertices V(Cn(S)) such that,{

x2j = j, for j ∈ {0, 1, . . . , p},
x2j+1 = p + j + 1, for j ∈ {0, 1, . . . , p− 1}.

For all j ∈ {0, 1, . . . , p}, |x2j − x2j+1|n = p 6∈ S. So, for all j ∈ {0, 1, . . . , p}, d(x2j, x2j+1)

= 2. Thus, t+(Cn(S)) ≥ ∑n−2
i=0 d(xi, xi+1) ≥ 2(n− 1). Moreover, we know that t+(Cn(S)) ≤

diam(Cn(S))(n− 1). As diam(Cn(S)) = 2, we conclude that t+(Cn(S)) = 2(n− 1).
Let n = 2p, where p ≥ 3, and i ∈ {0, 1, . . . , n

2 }. Assuming that there exist j, k ∈
{0, 1, . . . , n

2 } such that j 6≡ k (mod n), j 6≡ i (mod n), and i 6≡ k (mod n), while satisfying
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d(i, j) = 2 and d(i, k) = 2. So, |i − j|n 6∈ S and |i − k|n 6∈ S. It follows that |i − j|n =
|i− k|n = n

2 . Hence, |i− j| = |i− k| = n
2 , implying i− j = i− k = n

2 or i− j = k− i = n
2 .

From which, j = k or i − j + k − i = n. Thus, j = k (mod n) or k = j + n ≡ j
(mod n). However, this leads to a contradiction as j 6≡ k (mod n). Hence, for each vertex
i ∈ {0, 1, . . . , n

2 }, there exists a unique vertex j ∈ {0, 1, . . . , n
2 }, such that d(i, j) = 2. Let

{x0, x1, . . . , xn−1} be a permutation of V(Cn(S)). Without loss of generality, assuming
that d(x0, x1) = 2, it follows that d(x1, x2) = 1 and d(x2, x3) = 2. Consequently, given
d(x2, x3) = 2, we can deduce that d(x3, x4) = 1, and so on. To formally represent this
permutation of V(Cn(S)), we present the following:{

d(x2p, x2p+1) = 2, for p ∈ {0, 1, . . . , n
2 − 1},

d(x2p+1, x2p+2) = 1, for p ∈ {0, 1, . . . , n
2 − 2}.

(1)

Hence,

t+(Cn(S)) ≥
n
2−1

∑
p=0

d(x2p, x2p+1) +

n
2−2

∑
p=0

d(x2p+1, x2p+2)

=
n
2
× 2 + (

n
2
− 1)× 1

=
3n
2
− 1.

Let Q = {x0, x1, . . . , xn−1} be the permutation of V(Cn(S)), such that t+(Cn(S)) =

∑n−2
i=0 d(xi, xi+1). Let {0, 1, . . . , n− 1} = I ∪ J ∪ {n− 2, n− 1}where, I = {i ∈ {0, 1, . . . , n−

3} : d(xi, xi+1) = 2} and J = {i ∈ {0, 1, . . . , n − 3} : d(xi, xi+1) = 1}. It is evident
that I ∩ J = ∅ and |I| + |J| = n − 2, where |I| and |J| denoted the cardinality of set I
and J , respectively. Since diam(Cn(S)) = 2, d(xi, xi+1) ∈ {1, 2}. It is imperative that
d(xn−2, xn−1) = 2. Otherwise, t+(Cn(S)) would fail to attain its maximum. Furthermore,
as previously established in this proof, if i ∈ I, then i + 1 ∈ J. Thus, |I| ≤ |J|. If |I| = |J|
we obtain,

t+(Cn(S)) = ∑
i∈I

d(xi, xi+1) + ∑
i∈J

d(xi, xi+1) + 2

= 2|I|+ |J|+ 2

= 3|I|+ 2.

Nevertheless, given that |I| + |J| = n − 2, it follows that |I| = n−2
2 . Therefore,

t+(Cn(S)) = 3× n−2
2 + 2 = 3n

2 − 1.
If |I| < |J|, then there exists ε > 0, such that |I|+ ε = |J|. Furthermore, considering

that the sum |I|+ |J| = n− 2 is an even number, it implies that ε is even, specifically ε ≥ 2.
Thus,

t+(Cn(S)) = ∑
i∈I

d(xi, xi+1) + ∑
i∈J

d(xi, xi+1) + 2

= 2|I|+ |J|+ 2

= 2(|J| − ε) + |J|+ 2

= 3|J| − 2ε + 2.

Since |I|+ |J| = n− 2, we obtain |J| = n−2
2 + ε

2 . Therefore,
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t+(Cn(S)) = 3|J| − 2ε + 2

= 3(
n− 2

2
+

ε

2
)− 2ε + 2

= (
3n
2
− 1)− ε(2− 3

2
)

<
3n
2
− 1.

This leads to a contradiction with the fact that t+(Cn(S)) ≥ 3n
2 − 1. Hence, |I| = |J|

and t+(Cn(S)) = 3n
2 − 1.

An alternative approach to determine the exact span value for the L(2, 1)-labeling
of circulant graphs involves introducing another parameter known as path coverings.
Specifically, the path covering number c(G) of a graph G denotes the minimum number
of vertex-disjoint paths required to cover all vertices within the graph G. In the following
discussion, we provide a large study, presenting necessary and sufficient conditions that
provide exact values for λ(Cn(S)), involving the parameter c(Cn(S)), inspired by the work
of Georges and Mauro [20].

We will commence our investigation by directing our attention to the case where
c(Cn(S)) ≥ 2. Throughout the entirety of this paper, unless explicitly indicated otherwise,
we shall refer to the generating set as S = {s1, s2, . . . , st}, where s1, s2, . . . , st ∈ D represent
integers arranged in ascending order (1 ≤ s1 < s2 < . . . < st ≤ b n

2 c). To enhance the
clarity and coherence of our discussions, we opt to use the notation gcd(n, S) in place of
gcd(n, s1, s2, . . . , st).

Lemma 1. For any generating set S, c(Cn(S)) = gcd(n, S).

Proof. If gcd(n, S) = 1, then Cn(S) is Hamiltonian [21], thereby implying that c(Cn(S)) = 1.
Let us consider S = {s1, s2, . . . , st}. If gcd(n, S) ≥ 2, then Cn(S) consists of exactly
gcd(n, S) connected circulant graphs Ci

n
gcd(n,S)

( s1
gcd(n,S) , s2

gcd(n,S) , . . . , st
gcd(n,S) ) [22]. Notably,

it follows that

c(Cn(S)) ≤
gcd(n,S)−1

∑
i=0

c(Ci
n

gcd(n,S)
(

s1

gcd(n, S)
, . . . ,

st

gcd(n, S)
)) = gcd(n, S).

Let us assume, without loss of generality, that c(Cn(S)) = gcd(n, S)− 1, meaning that
there exists a path containing vertices from two of the gcd(n, S) connected circulant graphs.
Nevertheless, since gcd(n, S) ≥ 2, the graph Cn(S) is not connected [23]. Therefore, we
deduce that c(Cn(S)) = gcd(n, S).

Theorem 3. For any generating set S,

λ(Cn(S)) = n + gcd(n, S)− 2 if and only if gcd(n, S) ≥ 2.

Proof. Georges and Mauro [20] showed that for any graph G, λ(G) = n + c(G)− 2 if and
only if c(G) ≥ 2. Utilizing Lemma 1, we can establish that c(Cn(S)) = gcd(n, S), which
then leads us to the desired result.

Let a ∈ D. Mitra and Bhoumik [19] presented the upper bound for λ(Cn(S)) when S =
D\{a}. Specifically, when gcd(n, a) ≥ 2, they showed that λ(Cn(S)) ≤ n + gcd(n, a)− 2.
By applying Theorem 3, we provide the exact value:

Proposition 1. For any generating set S = D\{a},

λ(Cn(S)) = n + gcd(n, a)− 2 if and only if gcd(n, a) ≥ 2.
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Let a ∈ D. When gcd(n, a, n
2 ) ≥ 2, Mitra and Bhoumik [19] established that λ(Cn(D\{a,

n
2 })) ≤ n + gcd(n, a, n

2 )− 2 (for even n). In the following, we generalize their findings
by presenting the precise value for λ(Cn(D\{a, b})) for every value of n and each pair of
values a and b within the set D.

Proposition 2. For any generating set S = D\{a, b},

λ(Cn(S)) = n + gcd(n, a, b)− 2 if and only if gcd(n, a, b) ≥ 2.

Let us shift our focus to the situation in which c(Cn(S)) = 1 (i.e., gcd(n, S) = 1). Our
starting point involves introducing the following upper bound for λ(Cn(S)).

Corollary 2. λ(Cn(S)) ≤ n− 1 if and only if gcd(n, S) = 1.

Proof. Georges and Mauro proved in [20] that for any graph G, λ(G) ≤ n− 1 if and only
if c(G) = 1. Utilizing Lemma 1, we can establish the desired result.

As our objective is to determine the precise value for the span of L(2, 1)-labeling in
circulant graphs, our investigation revolves around identifying necessary and sufficient
conditions within circulant graphs where the upper bound in Corollary 2 is satisfied as an
equality. In light of our research, we have obtained the following result.

Theorem 4. Let Cn(S) be a circulant graph of diameter 2.

λ(Cn(S)) = n− 1 if and only if gcd(n, S) = 1.

Before proceeding with the proof of Theorem 4, it is essential to introduce an additional
result that will play a crucial role in establishing the proof of this theorem.

Lemma 2. Let G be a graph of order n and diameter 2.

t+(G) = 2(n− 1) if and only if G contains an Hamiltonian path.

Proof. Assuming that G = (EG, VG) contains an Hamiltonian path x0, x1, . . . , xn−1, for all
i ∈ {0, 1, . . . , n− 1}, we observe that (xi, xi+1) ∈ EG, which implies (xi, xi+1) 6∈ EG and
yields dG(xi, xi+1) = 2. Thus, t+(G) ≥ 2(n − 1). Moreover, we know that t+(G) ≤
diam(G)(n− 1). As a result, t+(G) = 2(n− 1).

If t+(G) = 2(n− 1), it implies the existence of a vertex permutation {x0, x1, . . . , xn−1}
such that ∑n−2

i=0 dG(xi, xi+1) = 2(n− 1). Now, let us assume that there exists i0 ∈ VG such
that (xi0 , xi0+1) ∈ EG. In this case, dG(xi0 , xi0+1) = 1, leading to t+(G) < 2(n− 1), which
contradicts our previous finding. Therefore, for all i ∈ VG, (xi, xi+1) 6∈ EG and subsequently,
for all i ∈ VG, (xi, xi+1) ∈ EG. Consequently, G contains an Hamiltonian path.

Proof of Theorem 4. If λ(Cn(S)) = n− 1, then according to Corollary 2, gcd(n, S)) = 1.
On the other hand, if gcd(n, S)) = 1, it follows that Cn(S) is Hamiltonian [21], implying
that Cn(S) contains an Hamiltonian path. Consequently, with the aid of Lemma 2, we
ascertain that t+(Cn(S)) = 2(n− 1). Furthermore, given that diam(Cn(S)) = 2, we deduce
from Corollary 1 that λ(Cn(S)) = 3(n− 1)− t+(Cn(S)) = n− 1.

Proposition 3. For any generating set S = D\{a},

λ(Cn(S)) = n− 1 if and only if gcd(n, a) = 1.

Proof. Given that S = {a}, if λ(Cn(S)) = n− 1, then according to Corollary 2, gcd(n, a) =
1. Moreover, if gcd(n, a) = 1, then by applying Theorem 4, λ(Cn(S)) = n− 1 under the
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condition that the diameter of Cn(S) is 2. This is the statement that will be established in
the upcoming claim.

Claim 3. For each integer n ≥ 6, diam(Cn(S)) = 2.

Proof.

• If i ∈ S, then |0− i|n = i ∈ S. Thus, (0, i) ∈ E(Cn(S)) and d(0, i) = 1.
• If i = a = 1, then |0− 1|n = 1 6∈ S, which implies that d(0, 1) ≥ 2. However, we

have 2 ≤ d(0, 1) ≤ d(0, b n
2 c − 1) + d(b n

2 c − 1, 1) ≤ 2. In fact, since b n
2 c − 1 ∈ S, we

have d(0, b n
2 c − 1) = 1. Furthermore, |(b n

2 c − 1)− 1|n = b n
2 c − 2 ∈ S, resulting that

d((b n
2 c − 1)− 1, 1) = 1. Consequently, d(0, 1) = 2.

• If i = a > 1, then |0− a|n = a 6∈ S. However, 2 ≤ d(0, a) ≤ d(0, a− 1) + d(a− 1, a) ≤
d(0, a− 1)+ 1. Moreover, |0− (a− 1)|n = a− 1 ∈ S, which implies that d(0, a− 1) = 1.
Thus, d(0, a) = 2.

Hence, for all i ∈ {1, 2, . . . , n
2 }, d(0, i) ≤ 2. Consequently, diam(Cn(S)) = 2.

Proposition 4. For any generating set S = D\{a, b},

λ(Cn(S)) = n− 1 if and only if gcd(n, a, b) = 1.

Proof. Given that S = {a, b}, if λ(Cn(S)) = n − 1, then according to Corollary 2, it
follows that gcd(n, a, b) = 1. Moreover, if gcd(n, a, b) = 1, then by applying Theorem 4,
λ(Cn(S)) = n− 1 under the condition that the diameter of Cn(S) is 2, which is the assertion
that will be proved in the following claim.

Claim 4. For each integer n ≥ 10, diam(Cn(S)) = 2.

Proof. Without loss of generality, we assume that a < b. We discuss the following cases:

Case 1. a > 1

When i = a, we have d(0, a) ≥ 2. Given that a 6= 1, it follows that 1, a− 1 ∈ S, which
implies that d(0, a− 1) = d(a− 1, a) = 1. Thus, 2 ≤ d(0, a) ≤ d(0, a− 1) + d(a− 1, a) ≤ 2.
Consequently, d(0, a) = 2. When i = b, we discuss the following cases:

• If i = b < b n
2 c, we observe that 2 ≤ d(0, b) ≤ d(0, b + 1) + d(b + 1, b) ≤ 2. Indeed,

considering that |0− (b+ 1)|n = b+ 1 ∈ S, it follows that d(0, b+ 1) = 1. Furthermore,
due to the fact that 1 ∈ S, we can also establish that d(b + 1, b) = 1.

• If i = b = b n
2 c and a 6= b − 1, then 2 ≤ d(0, b) ≤ d(0, 1) + d(1, b) ≤ 2. In fact,

since 1 ∈ S, we obtain d(0, 1) = 1. Moreover, given that a 6= b− 1, it follows that
|1− b|n = b− 1 ∈ S, which implies that d(1, b) = 1.

• If i = b = b n
2 c and a = b − 1, then 2 ≤ d(0, b) ≤ d(0, b − 2) + d(b − 2, b) ≤ 2.

Indeed, given that b− 2 6= a, we obtain |0− (b− 2)|n = b− 2 ∈ S, which implies that
d(0, b− 2) = 1. Moreover, since n ≥ 10, we have a ≥ 4 and b ≥ 5. Thus, 2 ∈ S. Hence,
d(b− 2, b) = 1.

Case 2. a = 1 and b ≥ 4

• In this case, we have 2, 3 ∈ S. Thus, d(0, 3) = d(3, a) = 1. Hence, if i = a = 1, then
2 ≤ d(0, a) ≤ d(0, 3) + d(3, a) ≤ 2.

• If i = b, we chose 2 ≤ d(0, b) ≤ d(0, b− 2) + d(b− 2, b) ≤ 2. In fact, given that a = 1
and b ≥ 4, it follows that b− 2 ∈ S. Thus, d(0, b− 2) = 1. Moreover, since 2 ∈ S, then
d(b− 2, b) = 1.

Case 3. a = 1 and 2 ≤ b ≤ 3

• If i = a = 1, we have 2 ≤ d(0, 1) ≤ d(0, 5) + d(5, 1) ≤ 2. In fact, since n ≥ 10 and
2 ≤ b ≤ 3, we obtain 4, 5 ∈ S.

• If i = b = 2, similarly we chose 2 ≤ d(0, 2) ≤ d(0, 5) + d(5, 2) ≤ 2 (3, 5 ∈ S).
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• If i = b = 3, we have 2 ≤ d(0, 3) ≤ d(0, 5) + d(5, 3) ≤ 2 (2, 5 ∈ S).

Hence, for all i ∈ {1, 2, . . . , n
2 }, d(0, i) ≤ 2. Consequently, diam(Cn(S)) = 2.

In summary, based on the findings we have established thus far in this paper, it
becomes evident that when gcd(n, S) ≥ 2, we can derive an exact value for the span of
L(2, 1)-labeling, which is given by λ(Cn(S)) = n + gcd(n, S) − 2. In the alternate case
when gcd(n, S) = 1, we proved that λ(Cn(S)) ≤ n − 1. Afterwords, we observed that
λ(Cn(S)) = n− 1 when diam(Cn(S)) = 2. Consequently, the remainder of this section is
dedicated to examining the characteristics of S such that diam(Cn(S)) = 2.

Notation 1.

1. Let i be a vertex of Cn(S), and let α and β be integers in Z. For any s, s′ ∈ S, the expression
i = αs + βs′ indicates the presence of a path leading from the vertex 0 to the vertex i in Cn(S)
with a length equal to |α|+ |β|. This path traverses through the chord s in the clockwise (+)
direction α times if α ≥ 0, or in the counterclockwise (−) direction α times if α ≤ 0. Similarly,
the path walks through the chord s′ in the clockwise (+) direction β times if β ≥ 0, or in the
counterclockwise (−) direction β times if β ≤ 0.

2. In Cn(S), we represent the connection between two vertices, denoted as i and j, linked by
a chord s ∈ S, either in the clockwise (+) or counterclockwise (−) direction, as follows:
i s± j.

Example 1. Consider the graph C24({3, 4, 5, 6}) represented in Figure 1. If we select an arbitrary
vertex, such as vertex 9, there are multiple paths that lead from 0 to 9. We provide a few examples in
Table 2.

Table 2. Examples of paths leading from the vertex 0 to the vertex 9 in C24({3, 4, 5, 6}).

Expressions of the Vertex 9 Representation Length

9 = (1× 4) + (1× 5) 0 4+ 4 5+ 9 2

9 = (2× 6) + ((−1)× 3) 0 6+ 6 6+ 12 3− 9 3

9 = 3× 3 0 3+ 3 3+ 6 3+ 9 3

Lemma 3. Let α, β ∈ Z, such that |α| + |β| ≤ 2, diam(Cn(S)) = 2 if and only if, for all i ∈
{1, . . . , b n

2 c}, i = αs + βs′, where s, s′ ∈ S.

Proof. The sufficient condition is evident. We will now proceed to assume that
diam(Cn(S)) = 2. Let i ∈ {1, . . . , b n

2 c}. If i ∈ S, then there exists s′′ ∈ S such that
i = s′′. Otherwise, if i 6∈ S, then there exist k ∈ {1, . . . , b n

2 c}, with i 6= k, such that (0, k)
and (k, i) are in E(Cn(S)). Moreover, since (0, k) ∈ E(Cn(S)), then |0− k|n ∈ S, which
implies the existence of s′ ∈ S and β ∈ {−1, 1} such that k = βs′. Similarly, given that
(k, i) ∈ E(Cn(S)), it follows that |i− k|n ∈ S. Thus, there exists s ∈ S and α ∈ {−1, 1} such
that i− k = αs. Hence, i = αs + βs′. This conclude the proof.

Example 2. Consider the graph C24({3, 4, 5, 6}) represented in Figure 1. For example, we have
1 = (1× 4) + ((−1)× 3);
2 = (1× 5) + ((−1)× 3);
3 = 1× 3;
4 = 1× 4;
5 = 1× 5;
6 = 1× 6;

7 = (1× 3) + (1× 4);
8 = (1× 3) + (1× 5);
9 = (1× 3) + (1× 6);
10 = 2× 5;
11 = (1× 5) + (1× 6);
12 = 2× 6;

Thus, for all i ∈ {1, . . . , 12}, i = αs + βs′, where s, s′ ∈ {3, 4, 5, 6} with |α|+ |β| ≤ 2.
Consequently, diam(C24({3, 4, 5, 6})) = 2.
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Lemma 4. If diam(Cn(S)) = 2, then for all generating sets S′ such that S′ ⊃ S, we have
diam(Cn(S′)) = 2.

Proof. Let i ∈ V(Cn(S′)). Since diam(Cn(S)) = 2, by applying Lemma 3, i = αs + βs′

where, s, s′ ∈ S and α, β ∈ Z, such that |α| + |β| ≤ 2. However, S′ ⊃ S. Thus, s, s′ ∈
S′. Consequently, i = αs + βs′ where, s, s′ ∈ S′ and α, β ∈ Z, such that |α| + |β| ≤ 2.
By applying Lemma 3, we conclude that diam(Cn(S′)) = 2.

Proposition 5. If diam(Cn(S)) ≥ 3, then diam(Cn(S)) = 2.

Proof. Let x, y ∈ V(Cn(S)). If (x, y) ∈ E(Cn(S)), then dCn(S)(x, y) = 1. Otherwise,
if (x, y) 6∈ E(Cn(S)) then (x, y) ∈ E(Cn(S)). Since the graph Cn(S) is vertex-transitive such
that diam(Cn(S)) ≥ 3, there exists z ∈ V(Cn(S)), with z 6= y, such that dCn(S)(x, z) ≥ 3,

i.e., (x, z) 6∈ E(Cn(S)). Hence, (x, z) ∈ E(Cn(S)). Similarly, (y, z) 6∈ E(Cn(S)) because oth-
erwise, dCn(S)(x, z) ≤ dCn(S)(x, y) + dCn(S)(x, y) = 2, a contradiction. So, (y, z) ∈ E(Cn(S)).
Hence, dCn(S)(x, y) = 2. Consequently, diam(Cn(S)) = 2.

Theorem 5. For all n ≥ 6, if |S| > d n
4 e, then diam(Cn(S)) = 2.

Proof. Let S be a generating set such that |S| > d n
4 e. Note that Cn(S) is r-regular with

r =

{
2|S| − 1, if n is even and n

2 ∈ S,
2|S|, otherwise.

Let i and j be two non-adjacent vertices of Cn(S) such that N(i) ∩ N(j) = ∅. We have
V ⊃ {i, j} ∪ N(i) ∪ N(j). Thus, n = |V| ≥ 2 + |N(i)|+ |N(j)|.

If n is even and n
2 ∈ S, then |N(i)| = |N(j)| = 2|S| − 1. So, n ≥ 2+ 2(2|S| − 1). Hence,

n ≥ 4|S| > 4d n
4 e ≥ n, a contradiction.

Otherwise, if n is odd, then |N(i)| = |N(j)| = 2|S|. Thus, n ≥ 2 + 4|S| > 2 + 4d n
4 e.

So, n > 2 + n, a contradiction.
Therefore, for any two non-adjacent vertices i and j in Cn(S), there exists a vertex k in

Cn(S), such that (i, k) and (k, j) are in E(Cn(S)). Consequently, diam(Cn(S)) = 2.

By combining all the previous results, we present the following theorem, which
describes the characteristics that S must possess in order for us to obtain a precise value for
the L(2, 1)-labeling number of Cn(S) when gcd(n, S) = 1.

Proposition 6. For each n ≥ 6,

1. if |S| > d n
4 e and gcd(n, S) = 1, then λ(Cn(S)) = n− 1.

2. if diam(Cn(S)) ≥ 3 and gcd(n, S) = 1, then λ(Cn(S)) = n− 1.

Observations

The greatest common divisor of two integers can be calculated by a simple algorithm,
yet there are situations (as mentioned below) where it is straightforward to establish that
gcd(n, S) = 1.

1. If n is a prime number, then gcd(n, S) = 1.
2. If 1 6∈ S, then gcd(n, S) = 1.
3. Consider a generating set S = {s1, s2, . . . , st}. If there exists i0 ∈ {1, 2, . . . , t}, such

that si0+1 − si0 ≥ 3, then gcd(n, S) = 1.

Subsequently, we investigate the case in which |S| < d n
4 e.

Proposition 7. For all n ≥ 6, if |S| < d n
4 e, then λ(Cn(S)) ≤ n− 1.

Proof. Note that Cn(S) is r-regular with r =

{
2|S| − 1, if n is even and n

2 ∈ S,
2|S|, otherwise.
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We discuss the following cases:

• If n is even and n
2 ∈ S, then n

2 6∈ S. Thus, the minimum degree of the graph Cn(S),
denoted by δ(Cn(S)), is equal to 2|S|. Given that |S| + |S| = b n

2 c, it follows that
δ(Cn(S)) = n− 2|S| > n− 2d n

4 e ≥
n
2 . According to Dirac’s theorem [24], we conclude

that Cn(S) is Hamiltonian, which implies that c(Cn(S)) = 1. Hence, with Lemma 1
and Corollary 2, we deduce that λ(Cn(S)) ≤ n− 1.

• If n is even and n
2 6∈ S, then n

2 ∈ S. Thus, δ(Cn(S)) = 2|S| − 1. Given that |S|+ |S| =
b n

2 c, it follows that δ(Cn(S)) = n − 2|S| − 1 > n − 2d n
4 e − 1 ≥ n

2 − 1. Similarly,
with Dirac’s theorem [24], we conclude that λ(Cn(S)) ≤ n− 1.

• If n is odd, then δ(Cn(S)) = 2|S| = n− 2|S| − 1 > n
2 − 1. Thus, λ(Cn(S)) ≤ n− 1.

At the outset of this section, we initiated by providing precise span values for circulants
with generating sets D\{b n

2 c} (for all n), D\{a}, and D\{a, b}, where a, b ∈ D. Our aim is
to determine the maximum number of elements we can remove from D while still achieving
an exact span value. In the subsequent result, we generalize these results to any set X ⊂ D,
by introducing conditions related to the cardinality of X, ensuring that the graph Cn(D\X)
possesses an exact span value.

Proposition 8. Let n ≥ 6 and X ⊂ D. If |X| < b n
2 c − d

n
4 e and gcd(n, X) = 1, then

λ(Cn(D\X)) = n− 1.

Proof. Let S = D\X. Given that |D| = b n
2 c and |X| < b n

2 c − d
n
4 e, it follows that |S| =

|D| − |X| > b n
2 c − (b n

2 c − d
n
4 e). Thus, |S| > d n

4 e. With Theorem 5, we conclude that
diam(Cn(S)) = 2. Moreover, given that gcd(n, X) = 1, it follows from Theorem 4 that
λ(Cn(S)) = n− 1.

Next, we present an illustrative example, where we introduce a highly distinctive
family, denoted as An, that generates a large number of generating sets. For each value of n,
we acquire a circulant graph Cn(An) such that λ(Cn(An)) = n− 1, and various additional
interesting properties.

Theorem 6. For each integer n ≥ 10, there exists a family An = {dm
2 e, . . . , m}, where m =

d b
n
2 c
2 e, such that the following assertions are verified:

1. Cn(An) is not a self-complementary graph.
2. Cn(An) and Cn(An) are Hamiltonian. (i.e., c(Cn(An)) = c(Cn(An)) = 1)
3. diam(Cn(An)) = diam(Cn(An)) = 2.
4. λ(Cn(An)) = λ(Cn(An)) = n− 1.
5. λ(Cn(An)) + λ(Cn(An)) = 2n− 2 (Nordhaus–Gaddum’s upper bound is reached [25]).

Proof. For each integer n ≥ 10, let An = {dm
2 e, . . . , m} be a family of integers where

m = d b
n
2 c
2 e.

1. It is evident that |An| 6= |An|. Consequently, Cn(An) and Cn(An) cannot be isomor-
phic. Therefore, Cn(An) is not a self-complementary graph.

2. As gcd(n, An) = 1, it follows that Cn(An) is Hamiltonian [21]. Indeed, as n ≥ 10, we
observe that 1 6∈ An, implying that 1 ∈ An. Therefore, gcd(n, An) = 1. Consequently,
Cn(An) and Cn(An) are Hamiltonian [21].

3. Through a straightforward calculation, considering the parity of n, it becomes evident
to see that |An| > d n

4 e. Hence, with Theorem 5, we deduce that diam(Cn(An)) = 2.
In the case of the set An, we employ Lemma 3 to demonstrate that diam(Cn(An)) = 2.
Specifically, we find suitable α, β ∈ Z with |α| + |β| ≤ 2, such that for all i ∈
{1, 2, . . . , b n

2 c}, i = αs + βs′, where s, s′ ∈ An. To accomplish this, we examine
the following cases:
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Case 1. n = 4p or n = 4p + 1, with p ≥ 3

In this case, we have b n
2 c = 2p and m = p. If p is odd, we obtain An = { p+1

2 , . . . , p}.
The proof’s concept involves partitioning the set {1, 2, . . . , 2p} into four distinct
subsets. In this particular case, these subsets are as follows: V1 = {1, 2, . . . , p+1

2 − 1},
V2 = { p+1

2 , p+1
2 + 1, . . . , p}, V3 = {p + 1, p + 2, . . . , p + p+1

2 } and V4 = {p + p+1
2 +

1, p + p+1
2 + 2, . . . , 2p}.

• If i ∈ V1, then i can be expressed as i = p+1
2 + i− p+1

2 . Thus, i = αs + βs′, where
s = p+1

2 + i ∈ An and s′ = p+1
2 ∈ An, α = 1, and β = −1.

• If i ∈ V2 = An, we have i = s ∈ An.
• If i ∈ V3, then i can be written as i = p + j = p+1

2 + ( p+1
2 − 1 + j) with j ∈

{1, . . . , p+1
2 }. So, i = s + s′, where s = p+1

2 ∈ An and s′ = p+1
2 − 1 + j ∈ An.

• If i ∈ V4, we have i = p + ( p+1
2 + j), with j ∈ {1, . . . , p+1

2 − 1} = s + s′, where
s = p ∈ An and s′ = p+1

2 + j ∈ An.

If p is even, then An = { p
2 , . . . , p}. In this case, we have {1, 2, . . . , 2p} = V1 ∪V2 ∪V3 ∪

V4, where V1 = {1, 2, . . . , p
2 − 1}, V2 = { p

2 , p
2 + 1, . . . , p}, V3 = {p+ 1, p+ 2, . . . , p+ p

2 }
and V4 = {p + p

2 + 1, p + p
2 + 2, . . . , 2p}.

• If i ∈ V1, then i = p
2 + i − p

2 . Thus, i = αs + βs′, where s = p
2 + i ∈ An and

s′ = p
2 ∈ An, α = 1, and β = −1.

• If i ∈ V2 = An, it is evident.
• If i ∈ V3, then i = p + j = p

2 + ( p
2 + j) with j ∈ {1, . . . , p

2 }. So, i = s + s′, where
s = p

2 ∈ An and s′ = p
2 + j ∈ An.

• If i ∈ V4, we have i = p + p
2 + j, with j ∈ {1, . . . , p

2 }. So, i = s + s′, where
s = p ∈ An and s′ = p

2 + j ∈ An.

Case 2. n = 4p + 2 or n = 4p + 3, with p ≥ 3

In this case, we have b n
2 c = 2p + 1 and m = p + 1. We employ the same technique

as for Case 1 but with a distinct partition of {1, 2, . . . , 2p + 1}. If p is odd, then An =

{ p+1
2 , . . . , p + 1}. The new partition is defined as follows: V1 = {1, 2, . . . , p+1

2 − 1},
V2 = { p+1

2 , p+1
2 + 1, . . . , p + 1}, V3 = {p + 2, p + 3, . . . , p + 1 + p+1

2 } and V4 = {p +

1 + p+1
2 + 1, p + 1 + p+1

2 + 2, . . . , 2p + 1}.
Otherwise, if p is even, then An = { p+2

2 , . . . , p + 1}. The subsets are as follows:
V1 = {1, 2, . . . , p+2

2 − 1}, V2 = { p+2
2 , p+2

2 + 1, . . . , p + 1}, V3 = {p + 2, p + 3, . . . , p +

1 + p+2
2 } and V4 = {p + 1 + p+2

2 + 1, p + 1 + p+2
2 + 2, . . . , 2p + 1}.

For example, consider the graph C24({3, 4, 5, 6}) represented in Figure 1. In this
case, we have b 24

2 c = 12, m = 6 and A24 = {3, 4, 5, 6}. Since p = 6 is even,
the set {1, 2, . . . , 12} = V1 ∪V2 ∪V3 ∪V4, where V1 = {1, 2}, V2 = A24 = {3, 4, 5, 6},
V3 = {7, 8, 9} and V4 = {10, 11, 12}.
• If i ∈ V1, we have 1 = 4− 3 and 2 = 5− 3.
• If i ∈ V2 = A24, it is evident.
• If i ∈ V3, then 7 = 3 + 4, 8 = 3 + 5, and 9 = 3 + 6.
• If i ∈ V4, we have 10 = 6 + 4, 11 = 6 + 5, and 12 = 6 + 6.

Thus, for all i ∈ {1, . . . , 12}, d(0, i) ≤ 2.
4. With assertion 2, Lemma 1, and assertion 3, we observe that the conditions mentioned

in Theorem 4 are satisfied for both graphs Cn(An) and Cn(An). Thus, λ(Cn(An)) =
λ(Cn(An) = n− 1. In this context, it becomes evident that the upper bound set by
Nordhaus–Gaddum [25] has been achieved: λ(Cn(An)) + λ(Cn(An) = 2n− 2.

Remark 1. In 1985, Harary and Robinson [26] established a significant result stating that every
nontrivial self-complementary graph G has a diameter equal to 2 or 3. In the previous theorem,
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the class of graphs Cn(An) that we have identified possess a diameter of 2, although they are not
self-complementary. Thus, it becomes evident that the family An is of a distinct nature. Remarkably,
this family has the capability to generate a substantial number of generating sets that satisfy the
conditions presented in the previous theorem. Moreover, based on the result mentioned in Lemma 4,
we can generate even more generating sets S ⊃ An that will also fulfill the conditions laid out in
Theorem 6.

3. Conclusions and Future Explorations

For this paper, we have undertaken a comprehensive study of the L(2, 1)-labeling for
circulant graphs with large generating sets. We have extended Mitra and Bhoumik’s results,
for any set X ⊂ D, by introducing conditions related to the cardinality of X, ensuring that
the graph Cn(D\X) possesses exact span values of the L(2, 1)-labeling.

When gcd(n, S) ≥ 2, we have successfully derived the exact span value for the L(2, 1)-
labeling, given by λ(Cn(S)) = n + gcd(n, S)− 2. In the other case when gcd(n, S) = 1, we
have established that λ(Cn(S)) = n− 1 if and only if diam(Cn(S)) = 2. This discovery led
us to provide the characteristics of S such that diam(Cn(S)) = 2.

Our current research opens up various avenues for future exploration. For instance, it
is possible to determine the necessary and sufficient conditions on S to guarantee that Cn(S)
has a diameter of 2. Additionally, one can verify whether, in the case of λ(Cn(S)) = n− 1,
diam(Cn(S)) = 2.

It is worth noting that as ∆ = 2|S| and |S| ≤ n
2 , the conjecture of Griggs and Yeh [6]

(λ(G) ≤ ∆2 for any graph G) simplifies, in the context of circulant graphs, to λ(Cn(S)) ≤
O(n2). Nevertheless, based on the entirety of the results we have established in this
paper, it is evident that λ(Cn(S)) ≤ O(n). Therefore, this conjecture is verified for any
circulant graph.
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