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Abstract: In this paper, we suggest a modification for the residual power series method that is used
to solve fractional-order Helmholtz equations, which is called the Shehu-transform residual power
series method (ST-RPSM). This scheme uses a combination of the Shehu transform (ST) and the
residual power series method (RPSM). The fractional derivatives are taken with respect to Caputo
order. The novelty of this approach is that it does not restrict the fractional order and reduces the
need for heavy computational work. The results were obtained using an iterative series that led to an
exact solution. The 3D graphical plots for different values of fractional orders are shown to compare
ST-RPSM results with exact solutions.
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1. Introduction

The study of fractional calculus (FC) has become very interesting due to its various
applications in science and engineering. Recently, FC has been studied in many physical
phenomena, such as chemistry, physics, dynamics systems, engineering, and mathematical
biology [1,2]. Symmetry is an essential part of mathematical and physical sciences that
shows consistency under some modifications. During the study of differential problems,
multiple properties of symmetry can be found, such as time-verse , translation invariance,
or scale constancy. These symmetries are essential to understanding the behavior and
characteristics of equations because they make it possible to identify particular solutions,
conservation laws, and physical interpretations. In addition, if symmetries are present,
their mathematical formulations convey details regarding the connections between model
variables, which results in a loss of identification and observation. By defining one or more
of the variables involved in symmetry, it is possible to make use of these insights by making
the remaining parameters recognizable [3,4]. Due to computational difficulties in fractional
operators, finding the analytical solution for such fractional problems could be challeng-
ing. Recently, a variety of methods have been proposed for solving fractional problems
involving the homotopy perturbation approach [5], the differential transform scheme [6],
the Laplace homotopy method [7], the Shehu-transform decomposition strategy [8], the
variational scheme [9], the Jacobi collocation approach [10], q-homotopy Shehu-transform
approach [11], the Legendre wavelet scheme [12], the fractional natural decomposition
method [13], the reduced differential transform scheme [14], the residual power series
scheme [15], and the Chebyshev polynomial approach [16].

The Helmholtz equation is one of the most important in the fields of astronomy and
applied mathematics, and it is defined as follows:

∂α

∂ςα
ϑ(ς, τ)+

∂2

∂τ2 ϑ(ς, τ) + λϑ(ς, τ) = −Φ(ς, τ), 1 < α ≤ 2, (1)
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where ϑ(ς, τ) is a differentiable function and Φ(ς, τ) is a known function. If Φ(ς, τ) = 0,
then Equation (1) is said to be a homogeneous Helmholtz equation. This equation is also
known as the reduced wave equation, which originates directly from the wave model and
reflects time-independent mechanical growth within space. Many researchers developed
numerous techniques to derive analytical results of classical Helmholtz equations. Sayed
and Kaya [17] implemented Adomian’s decomposition method for solving the Helmholtz
equation. Momani and Abuasad [18] implemented He’s variational iteration method to
find an approximate solution of a Helmholtz equation. Gupta et al. [19] used a homotopy
perturbation scheme to obtain analytical results for multidimensional fractional Helmholtz
equations. Iqbal et al. [20] implemented a transformation scheme to obtain approximate
results for fractional Helmholtz equations. Alshammari and Abuasad [21] introduced
a reduced differential strategy and obtained results for a three-dimensional fractional
Helmholtz equation. Khater [22] proposed the Kudryashov method and obtained solitary
wave solutions for the cubic–quintic nonlinear Helmholtz model.

The residual power series method (RPSM) is employed to handle certain types of
fractional integral and differential equations of fractional order, and it depends on the
assumption that solutions of the problems can be extended as power series. The RPSM
is a simple and quick approach for deriving corresponding coefficients of a power series
solution. Arqub [23] utilized the RPSM for solutions of fuzzy differential equations. The
development of the RPSM does not require perturbation, linearization, or discretization
and produces iterations in the form of power series for differential problems. Over the past
few years, numerous examples of nonlinear ordinary and partial differential equations of
various types, orders, and classes have been solved using the residual power series method.
The RPSM provides an easy framework to ensure that a series solution will converge
by reducing the associated residual error. The RPSM uses less time and does not make
computational rounding errors.

In this study, we present the idea of the Shehu residual power series method (ST-
RPSM) for approximate results of time-fractional Helmholtz equations. The approach
was developed using a combination of the ST and the RPSM that produces iterations in
the sense of a fractional power series, since the ST converts fractional problems into their
differential forms without any restriction on variables. Now, this differential form can easily
be handled by using the RPSM. The ST-RPSM requires minimal time to demonstrate its
authenticity with less computational work. This paper is organized as follows. In Section 2,
we briefly explain the definition of fractional calculus and the Shehu transform. We present
the methodology of the ST-RPSM in Section 3. We provide some numerical applications
of Helmholtz equations to check the credibility of the suggested technique and discuss
their results in Sections 4 and 5, respectively. At the end, a brief conclusion is outlined in
Section 6.

2. Preliminary Concept of the Shehu Transform

This section provides some preliminary ideas on the Caputo fractional derivative and
the Shehu transform for the development of our proposed strategy.

Definition 1. The Riemann–Liouville integral under the fractional order [19] is expressed as

Jαϑ(τ) =
1

Γ(α)

∫ τ

0

ϑ(s)
(τ − s)1−s ds, α > 0, τ > 0.

Definition 2. The Caputo derivative of ϑ(τ) under the fractional order [19,20] is expressed as

Dαϑ(τ) =
1

Γ(n− α)

∫ τ

0
(τ − s)n−α−1ϑn(s) ds, n− 1 < α ≤ n, n ∈ N.
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Definition 3. The ST [24] is defined as

S[ϑ(τ)] = R(ς, u) =
∫ ∞

0
e
−

ςτ

u ϑ(τ)dτ.

If R(ς, u) is the ST of S[ϑ(τ)], then ϑ(τ) = S−1[R(ς, u)] is called the inverse ST.

Definition 4. The ST for the fractional order derivative [25,26] is given as

S[ϑα(τ)] =
sα

uα
S[ϑ(τ)]−

n−1

∑
k=0

( s
u

)α−k−1
ϑk(0), n ∈ N, 0 < α ≤ n.

Definition 5. The ST for nth derivatives [25,26] is defined as

S[ϑn(τ)] =
sn

un S[ϑ(τ)]−
n−1

∑
k=0

( s
u

)n−k−1
ϑk(0), 0 < α ≤ n.

Definition 6. A power series [27] is of the form

∞

∑
k=0

ak(τ − τ0)
kα = a0 + a1(τ − τ0)

α + a2(τ − τ0)
2α + · · · ,

where 0 ≤ n− 1 < α < n, τ ≤ τ0 and ak are known as the coefficients of the series. Let τ0 = 0,
then the expansion ∑∞

k=0 akτkα is called the fractional Maclaurin series.

Theorem 1. Suppose that ϑ(ς, τ) has a multiple fractional power series representation at τ = τ0 [28]
of the form

ϑ(ς, τ) =
∞

∑
m=0

ϑm(ς)(τ − τ0)
mα.

If Dmα
τ ϑ(ς, τ) are continuous on I× (τ0, τ0 +R), m = 0, 1, 2, · · · , then the coefficients ϑm(ς)

of the above equations are given as

ϑm(ς) =
Dmα

τ ϑ(ς, τ0)

Γ(mα + 1)
, m = 0, 1, 2, · · · ,

where Dmα
τ =

∂mα

∂τmα
=

∂α

∂τα
· ∂α

∂τα
· · · ∂α

∂τα
(m− times), and R = minc∈I Rc where Rc represents

the radius of convergence of the fractional power series ∑∞
m=0 fm(c)(τ − τ0)

mα. The conver-
gence of the classic RPSM states that there is a real number λ ∈ (0, 1) such that ‖ϑm(ς, τ)‖ ≤
λ‖ϑm−1(ς, τ)‖, τ ∈ (τ0, τ0 +R). For the proof, refer to [29].

3. The Basic Procedure of the ST-RPSM

This section presents the basic procedure of the ST-RPSM for approximate solutions of
two-dimensional Helmholtz equations with Caputo derivatives. We define this procedure
using easy steps to confirm the behaviors of the problems. This scheme was generated
using a combination of the Shehu transform and the RPSM. Let us consider the following
fractional differential problem:

Dα
τϑ(ς, τ) = Lϑ(ς, τ) + Nϑ(ς, τ) + g(ς, τ), (2)

with initial condition

ϑ(0, τ) = f (τ). (3)
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Step 1. Applying the ST on both sides of Equation (2), we obtain

S
[

Dα
τϑ(ς, τ)

]
= S

[
Lϑ(ς, τ) + Nϑ(ς, τ) + g(ς, τ)

]
.

According to the definition of the ST, we have

ςα

uα
R(ς, u)− ςα−1

uα−1 ϑ(0) = S
[

Lϑ(ς, τ) + Nϑ(ς, τ) + g(ς, τ)
]
.

This yields

R(ς, u) =
u
ς

ϑ(0) +
uα

ςα
S
[

Lϑ(ς, τ) + Nϑ(ς, τ) + g(ς, τ)
]
.

We can also write this as

R(ς, u) = F(ς, u) +
uα

ςα
S
[

Lϑ(ς, τ) + Nϑ(ς, τ)
]
, (4)

where

F(ς, u) =
u
ς

ϑ(0) +
uα

ςα
S[g(ς, τ)].

Step 2. The RPSM demonstrates the solution of Equation (4) as an expansion of fractional
power series, such as

R(ς, u) =
∞

∑
n=0

(u
ς

)nα+1
ϑn(ς). (5)

The truncated series in its kth form for Equation (5) is

Rk(ς, u) =
u
ς

ϑ0 +
k

∑
n=1

(u
ς

)nα+1
ϑn(ς). (6)

The kth Shehu residual functions of Equation (6) are

SRes Rk(ς, u) = Rk − F(ς, u) +
uα

ςα
S
[

Lϑ(ς, τ) + Nϑ(ς, τ)
]
. (7)

Step 3. we provide a few characteristics of a typical RPSM:

• SR(ς, u) = 0 and lim
k→∞

SRk(ς, τ) = SR(ς, u) for each u > 0,

• If lim
u→∞

SR(ς, u) = 0 then lim
u→∞

uSR(ς, u) = 0,

• lim
u→∞

ukα+1SR(ς, u) = lim
u→∞

ukα+1SRk(ς, u) = 0.

Step 4. We employ the inverse ST to Rk(u, ς) to obtain the kth approximations ϑ(ς, τ).

4. Numerical Applications

This section presents the ST-RPSM for analytical solutions of the Helmholtz equations
in the sense of Caputo fractional order. We consider two numerical applications to check
the authenticity of the ST-RPSM and observe that the derived iterations are expressed in the
form of fractional power series. Graphical visuals are displayed for the readers to check the
accuracy of the ST-RPSM, whereas the absolute error is computed to show the comparison
between the analytical and the exact results.
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4.1. Example 1

Consider the fractional Helmholtz equations in ς-space as follows,

∂αϑ

∂ςα
+

∂2ϑ

∂τ2 − ϑ = 0, 1 < α ≤ 2, (8)

with the initial condition

ϑ(0, τ) = τ, ϑς(0, τ) = 0. (9)

Using the ST on Equation (8) and solving it, we obtain

ςα

uα
S[ϑ(τ)]− ςα−1

uα−1 ϑ(0) = −S
[∂2ϑ

∂τ2 − ϑ
]
.

This yields

R(u, ς) =
u
ς

ϑ(0)− uα

ςα
S
[∂2ϑ

∂τ2 − ϑ
]
. (10)

The truncated series in its kth form for Equation (10) is

Rk =
u
ς

ϑ0 +
k

∑
n=1

(u
ς

)nα+1
ϑn(ς). (11)

The kth Shehu residual functions of (11) are

SRes Rk = Rk −
u
ς

ϑ(0) +
uα

ςα
S
[∂2ϑk

∂τ2 − ϑk

]
. (12)

Now, to determine ϑk , first, we substitute Equation (11) into Equation (12) and, then,

multiply its result by ςkα+1 using the fact that limς→∞

(
ςkα+1SRes R1

)
= 0, k = 1, 2, 3, · · · .

Thus, we obtain the following iterations:

ϑ1(ς, τ) = τ,

ϑ2(ς, τ) = τ,

ϑ3(ς, τ) = τ,

ϑ4(ς, τ) = τ,

....

Equation (11) is now of the form

R(u, ς) =
u
ς

ϑ0 +
(u

ς

)α+1
ϑ1(τ) +

(u
ς

)2α+1
ϑ2(τ) +

(u
ς

)3α+1
ϑ3(τ) +

(u
ς

)4α+1
ϑ4(τ) + · · ·

=τ
[u

ς
++

(u
ς

)α+1
+
(u

ς

)2α+1
+
(u

ς

)3α+1
+
(u

ς

)4α+1
+ · · ·

]
.

Using the inverse ST, we obtain

ϑ(ς, τ) = τ
[
1 +

ςα

Γ(α + 1)
+

ς2α

Γ(2α + 1)
+

ς3α

Γ(3α + 1)
+

ς4α

Γ(4α + 1)
+ · · ·

]
, (13)
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which yields,

ϑ(ς, τ) = τ
∞

∑
k=0

ςkα

Γ(1 + kα)
. (14)

Using the Mittag-Leffler function [30], the precise results yield the following:

ϑ(ς, τ) = τEα(ς
α),

where 1 < α ≤ 2 and Eα(ςα) is denoted as in the Mittag-Leffler function. For α = 2, the
Mittag-Leffler function yields

E2(ς
2) =

∞

∑
k=0

ς2k

Γ(1 + 2k)
=

∞

∑
k=0

ς2k

(2k)!
= cosh ς. (15)

Thus, using Equation (14), the exact result of Example 1 when α = 2 is

ϑ(ς, τ) = τ cosh ς. (16)

Similarly, consider the fractional Helmholtz equations in τ-space as follows,

∂αϑ

∂τα
+

∂2ϑ

∂ς2 − ϑ = 0, 1 < α ≤ 2, (17)

with the initial condition

ϑ(ς, 0) = ς. (18)

Thus, using Equation (17) we obtain

ϑ(ς, τ) = ϑ0(ς) + ϑ1(ς)
τα

Γ(α+1) + ϑ2(ς)
τ2α

Γ(2α+1) + ϑ3(ς)
τ3α

Γ(3α+1) + ϑ4(ς)
τ4α

Γ(4α+1) + · · ·

= ς
(

1 + τα

Γ(α+1) +
τ2α

Γ(2α+1) +
τ3α

Γ(3α+1) +
τ4α

Γ(4α+1) + · · ·
)

,

which yields

ϑ(ς, τ) = ς
∞

∑
k=0

τkα

Γ(1 + kα)
. (19)

According to a property of the Mittag-Leffler function, we obtain precise results in
Example 1 when α = 2 is

ϑ(ς, τ) = ς cosh τ. (20)

4.2. Example 2

Consider the fractional-order Helmholtz equations,

∂αϑ

∂ςα
+

∂2ϑ

∂τ2 + 5ϑ = 0, 1 < α ≤ 2, (21)

with the initial condition

ϑ(0, τ) = τ, ϑς(0, τ) = 0. (22)
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Using the ST on Equation (21) and solving it, we obtain

ςα

uα
S[ϑ(τ)]− ςα−1

uα−1 ϑ(0) = −S
[∂2ϑ

∂τ2 + 5ϑ
]
.

This yields

R(u, ς) =
u
ς

ϑ(0)− uα

ςα
S
[∂2ϑ

∂τ2 + 5ϑ
]
. (23)

The truncated series in its kth form for Equation (23) is

Rk =
u
ς

ϑ0 +
k

∑
n=1

(u
ς

)nα+1
ϑn(ς). (24)

The kth Shehu residual functions of (24) are

SRes Rk = Rk −
u
ς

ϑ(0) +
uα

ςα
S
[∂2ϑk

∂τ2 + 5ϑk

]
. (25)

Now, to determine ϑk , first, we substitute Equation (24) into Equation (25) and, then,

multiply its result by ςkα+1 using the fact limς→∞

(
ςkα+1SRes R1

)
= 0, k = 1, 2, 3, · · · .

Thus, we obtain the following iterations:

ϑ1(ς, τ) = −5τ,

ϑ2(ς, τ) = 25τ,

ϑ3(ς, τ) = −125τ,

ϑ4(ς, τ) = 625τ,

....

Equation (24) can now be written as

R(u, ς) =
u
ς

ϑ0 +
(u

ς

)α+1
ϑ1(τ) +

(u
ς

)2α+1
ϑ2(τ) +

(u
ς

)3α+1
ϑ3(τ) +

(u
ς

)4α+1
ϑ4(τ) + · · ·

=τ
[u

ς
− 5
(u

ς

)α+1
+ 25

(u
ς

)2α+1
− 125

(u
ς

)3α+1
+ 625

(u
ς

)4α+1
+ · · ·

]
.

Using the inverse ST, we obtain

ϑ(ς, τ) = τ
[
1− 5

ςα

Γ(α + 1)
+ 25

ς2α

Γ(2α + 1)
− 125

ς3α

Γ(3α + 1)
+ 625

ς4α

Γ(4α + 1)
+ · · ·

]
, (26)

which yields,

ϑ(ς, τ) = τ
∞

∑
k=0

(
− 5ςα

)k

Γ(1 + kα)
. (27)

Using the Mittag-Leffler function [30], the precise results are

ϑ(ς, τ) = τEα(−5ςα).
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For α = 2, the Mittag-Leffler function yields

ϑ(ς, τ) =
∞

∑
k=0

(
− 5ς2

)k

Γ(1 + 2k)
=

∞

∑
k=0

(−1)k
(√

5ς
)2k

(2k)!
= cos

√
5ς. (28)

Thus, using Equation (27), the exact result for Example 1 when α = 2 is

ϑ(ς, τ) = τ cos
√

5ς. (29)

Similarly, consider the fractional Helmholtz equations in τ-space as follows,

∂αϑ

∂τα
+

∂2ϑ

∂ς2 − ϑ = 0, 1 < α ≤ 2, (30)

with the initial condition

ϑ(ς, 0) = ς. (31)

Thus, we obtain Equation (30):

ϑ(ς, τ) =ϑ0(ς) + ϑ1(ς)
τα

Γ(α + 1)
+ ϑ2(ς)

τ2α

Γ(2α + 1)
+ ϑ3(ς)

τ3α

Γ(3α + 1)
+ ϑ4(ς)

τ4α

Γ(4α + 1)
+ · · ·

=ς
(

1− 5
τα

Γ(α + 1)
− 25

τ2α

Γ(2α + 1)
− 125

τ3α

Γ(3α + 1)
− 625

τ4α

Γ(4α + 1)
+ · · ·

)
,

which yields

ϑ(ς, τ) = ς
∞

∑
k=0

(−5τα)k

Γ(1 + kα)
. (32)

According to a property of the Mittag-Leffler function, we obtain precise results for
Example 2 when α = 2 is

ϑ(ς, τ) = ς cos
√

5τ. (33)

5. Description of Results

In this section, we explain the graphical results of fractional-order Helmholtz problems.
Figure 1 has been divided into four sections at different fractional orders and considers
the values 0 ≤ ς ≤ 3 and −1 ≤ τ ≤ 1. Figure 1a,b shows the solution of the ST-RPSM at
fractional orders α = 1 and 1.5, respectively. Figure 1c provides the solution of the ST-RPSM
at fractional order 2, whereas Figure 1d represents the graphical results of the exact solution.
We observed that the graphical results of the ST-RPSM and the exact solution strongly
agreed with each other. Table 1 provides the absolute error between the ST-RPSM and the
exact solution at α = 1, 1.5, 2. The results obtained by the ST-RPSM at fractional order α = 2
are in full agreement with the exact solution. We note that the absolute error decreased
with a decrease in the values of ς and τ.
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(a) (b)

(c) (d)

Figure 1. The 3D comparisons of ST-RPSM’s solutions of ϑ(ς, τ) in ς-space at various fractional
orders with the exact solution. (a) The 3D ST-RPSM solution of ϑ(ς, τ) in ς-space at α = 1; (b) the 3D
ST-RPSM solution of ϑ(ς, τ) in ς-space at α = 1.5; (c) the 3D ST-RPSM solution of ϑ(ς, τ) in ς-space
at α = 2; (d) the 3D exact solution of ϑ(ς, τ) in ς-space.

Table 1. Error estimates among the ST-RPSM’s results and the exact results of ϑ(ς, τ) in ς-space at
various fractional orders for Example 1.

(ς, τ)
ST-RPSM ST-RPSM ST-RPSM

Exact Results Absolute Error
α = 1 α = 1.5 α = 2

(0.05, 0.05) 0.0525636 0.504216 0.0500677 0.0500677 00000

(0.10, 0.10) 0.110517 0.102396 0.1005 0.1005 00000

(0.15, 0.15) 0.174275 0.15664 0.151691 0.151691 00000

(0.20, 0.20) 0.24428 0.213726 0.204013 0.204013 00000

(0.25, 0.25) 0.321004 0.274168 0.257853 0.257853 00000

(0.30, 0.30) 0.404951 0.338458 0.313602 0.313602 00000

(0.35, 0.35) 0.496657 0.407079 0.371657 0.371657 00000

(0.40, 0.40) 0.596693 0.480515 0.432429 0.432429 00000

(0.45, 0.45) 0.705666 0.559263 0.496337 0.496337 00000

(0.50, 0.50) 0.824219 0.64383 0.563813 0.563813 00000
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Similarly, Figure 2 has been divided into four sections at different fractional orders
and considers the values −1 ≤ ς ≤ 1 and 0 ≤ τ ≤ 5. Figure 2a,b shows the solution of the
ST-RPSM at fractional orders α = 1 and 1.5, respectively. Figure 2c shows the solution of
the ST-RPSM at fractional order 2, whereas Figure 2d represents the graphical results of
the exact solution. We observed that the graphical results of the ST-RPSM and the exact
solution strongly agreed with each other. Table 2 shows the absolute error between the
ST-RPSM and the exact solution at α = 1, 1.5, 2. The results obtained by th ST-RPSM at
fractional order α = 2 were in full agreement with the exact solution. We note that the
absolute error decreased with a decrease in the values of ς and τ.

(a) (b)

(c) (d)

Figure 2. The 3D comparisons of ST-RPSM’s solutions of ϑ(ς, τ) in ς-space at various fractional
orders with the exact solution. (a) The 3D ST-RPSM solution of ϑ(ς, τ) in ς-space at α = 1; (b) the 3D
ST-RPSM solution of ϑ(ς, τ) in ς-space at α = 1.5; (c) the 3D ST-RPSM solution of ϑ(ς, τ) in ς-space
at α = 2; (d) the 3D exact solution of ϑ(ς, τ) in ς-space.

Table 2. Error estimates among the ST-RPSM’s results and the exact results of ϑ(ς, τ) in ς-space at
various fractional orders for Example 2.

(ς, τ)
ST-RPSM ST-RPSM ST-RPSM

Exact Results Absolute Error
α = 1 α = 1.5 α = 2

(0.05, 0.05) 0.0389404 0.479233 0.0496878 0.0496878 00000

(0.10, 0.10) 0.0606771 0.088515 0.0975104 0.0975104 00000

(0.15, 0.15) 0.0711182 0.119264 0.141641 0.141641 00000

(0.20, 0.20) 0.075 0.139052 0.180331 0.180331 00000

(0.25, 0.25) 0.0768636 0.147623 0.211944 0.211944 00000
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Table 2. Cont.

(ς, τ)
ST-RPSM ST-RPSM ST-RPSM

Exact Results Absolute Error
α = 1 α = 1.5 α = 2

(0.30, 0.30) 0.0820313 0.14535 0.234994 0.234994 00000

(0.35, 0.35) 0.097583 0.133078 0.248173 0.248173 00000

(0.40, 0.40) 0.133333 0.1121 0.250386 0.250386 00000

(0.45, 0.45) 0.202808 0.0836075 0.240772 0.240772 00000

(0.50, 0.50) 0.324219 0.0495244 0.218726 0.218726 00000

6. Conclusions

In this work, we developed the idea of the ST-RPSM and obtained an approximate
solution for two-dimensional fractional Helmholtz problems. The obtained results were
independent of any assumption that led to the exact solution very rapidly. We presented some
graphical results in different fractional orders and computed the error estimate between the
ST-RPSM and the exact solution. These results demonstrated that the ST-RPSM is accurate
and valid for fractional order problems. We noticed that the ST-RPSM did not require much
computational work and was easier to implement than other schemes. We conclude that our
scheme is well developed and produces iterative series very swiftly. In the future, we plan to
implement this approach for fractal problems and show how this approach is applicable to
other nonlinear problems arising in science and engineering phenomena.
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