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Abstract: Multi-camera video surveillance has been widely applied in crowd statistics and analysis
in smart city scenarios. Most existing studies rely on appearance or motion features for cross-camera
trajectory tracking, due to the changing asymmetric perspectives of multiple cameras and occlusions
in crowded scenes, resulting in low accuracy and poor tracking performance. This paper proposes
a tracking method that fuses appearance and motion features. An implicit social model is used to
obtain motion features containing spatio-temporal information and social relations for trajectory
prediction. The TransReID model is used to obtain appearance features for re-identification. Fused
features are derived by integrating appearance features, spatio-temporal information and social
relations. Based on the fused features, multi-round clustering is adopted to associate cross-camera
objects. Exclusively employing robust pedestrian reidentification and trajectory prediction models,
coupled with the real-time detector YOLOX, without any reliance on supplementary information, an
IDF1 score of 70.64% is attained on typical datasets derived from AiCity2023.

Keywords: multi-camera tracking; trajectory prediction; appearance features; spectral clustering

1. Introduction

Multi-camera surveillance systems have found extensive applications in various do-
mains such as urban traffic regulation, public safety monitoring and crowd behavior
analysis. Nevertheless, there are considerable challenges that remain to be addressed. Most
importantly, the task of manually monitoring the voluminous target data from multiple
cameras is considerably immense. Subsequently, due to factors such as different asym-
metric perspectives of cameras, lighting conditions and obstructions, achieving accurate
multi-target multi-camera tracking continues to confront formidable challenges.

Multi-target multi-camera tracking consists of the following steps:

1. Pedestrian detection;
2. Single-camera tracking;
3. Pedestrian Re-ID feature extraction;
4. Cross-camera association.

First, the pedestrians are located in each frame of the surveillance video, then the ob-
jects are tracked to obtain short-term trajectories. Then, reidentification (Re-ID) features are
extracted using the Re-ID model for cross-camera trajectory association. In theory, accurate
pedestrians Re-ID can solve the whole task. However, the actual tracking performance is
affected by various environmental factors such as ambiguity due to object occlusion.

In recent years, cross-camera tracking methods based on occluded Re-ID models have
become the subject of increased attention among researchers. Such methods introduce
auxiliary modules such as human body analysis and pose estimation on the basis of
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occluded Re-ID models [1–4]. This strategy allows the system to perform more accurate
feature matching in the non-occluded core area, thereby reducing the matching error caused
by occlusion and further improving the matching accuracy. Although substantial progress
has been made in the development of these methods, the introduced auxiliary modules
undoubtedly increase the amount of computation and model complexity, which poses
some challenges for actual deployment. In addition, Re-ID models themselves still have
some inherent limitations in actual surveillance systems:

In the overhead view of surveillance, different objects with similar clothing may have
high similarity in appearance information, and the Re-ID model does not perform well in
distinguishing objects with similar appearances.

Due to the different angles of cameras and different backgrounds, the appearance
information of the same object may vary greatly in different surveillance views, making it
difficult for the Re-ID model to match the same object across views.

In crowded public places, there may be situations where objects overlap with each
other or are partially occluded by obstacles, resulting in incomplete or distorted appearance
features, which affects the matching accuracy of the model.

To address the above issues, this paper proposes an efficient cross-camera tracking
model with multi-feature fusion. In this method, the implicit social model [5] predicts the
position of objects in future frames based on their motion features in previous frames and
the behavior patterns between objects, which helps to compensate for trajectory interrup-
tions and ID switching issues caused by occlusion. To further enhance feature robustness, a
Transformer-based Re-ID model is integrated to capture the relative positional relationships
between objects more carefully. The trajectory prediction and Re-ID model output features
are weighted and summed to obtain a fused feature representation. This feature is first
used for temporal association within a single camera, and object association across different
views is completed by a multi-round clustering strategy based on single-camera tracking
results.

The main contributions of this paper include

• An implicit social model-based trajectory prediction is introduced to achieve trajectory
prediction by simulating the interactions and motion patterns between objects, instead
of traditional linear prediction models, making it more suitable for object tracking in
crowded public scenes;

• A single-camera tracking model based on multi-feature fusion is proposed, which
achieves more accurate associations between detection and trajectory by comparing
the Intersection over Union of trajectory predictions and calculating the Euclidean
distance similarity of Re-ID;

• A cross-camera association strategy is proposed which associates objects across cam-
eras using spectral clustering based on single-camera tracking results, and validates
the clustering results using appearance features to reduce incorrect associations.

2. Relevant Works
2.1. Trajectory Prediction

Trajectory prediction is an important component in a variety of real-world applications
such as autonomous driving, robotics and smart cities. In these applications, a generative
model is utilized to predict the future trajectory of an agent. Trajectory prediction models
can be classified into two categories on the basis of the output that they produce. In the first
category, the approach taken is to explicitly model the future as a continuous or discrete
parameter distribution, e.g., S-LSTM [6] and S-STGCNN [7] use Gaussian distributions
for modelling. Since the Gaussian distribution is unimodal, it cannot capture multimodal
future trajectories. In contrast, PRECOG [8] and AgentFormer [9] can support discrete or
continuous multimodal information by learning the object latent behavior distribution. In
these studies, Gaussian distributions for trajectory prediction were generated based on the
sampling of latent information. In the second category, the approach is to implicitly model
the future as a non-parametric distribution, e.g., S-GAN [10], SoPhie [11] and S-BiGAT [12]
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use a GAN architecture with inputs added to randomly sampled noise and trained by an
adversarial loss mechanism to output deterministic trajectory predictions.

We use an implicit social trajectory prediction model based on convolutional neural
networks to obtain an efficient trajectory prediction model by integrating both the personal
information of the object’s individual and social context into the model. The social context
helps the model focus on the global object movement, dynamic relationships between
objects and group behavior information, which enables more accurate prediction of the
object’s future actions.

2.2. Pedestrian Re-Identification

Pedestrian re-identification reduces tracking errors caused by occlusion and person-ID
switching by comparing appearance information between objects. In order to solve the
problem of occlusion resistance, methods for occlusion resistant pedestrian re-recognition
can be basically classified into three categories: manual segmentation-based methods, addi-
tional cue-based methods and Transformer-based methods [2]. Manual segmentation-based
methods chunk pedestrians into different regions and compare the different regions for
similarity. Additional cue-based methods use additional auxiliary models to localize body
parts, such as segmentation, pose estimation or body resolution. Although convolutional
neural networks (CNNs) currently dominate the field of pedestrian re-recognition, their
receptive field regions are small and downsampling operations reduce the spatial resolu-
tion of the output feature maps, which reduces the ability to discriminate between similar
looking objects. In contrast, it is more appropriate to embed the attention mechanism of
transformers in a deep network, since deep networks are more suitable for dealing with
larger continuous regions and difficult to extract detailed features. The Transformer-based
approaches introduce multi-head attention modules, remove convolution and downsam-
pling and perform multi-scale feature fusion at different layers, which can better capture
the details and global information of the image, with powerful feature extraction and global
context capture.

In this paper, the TransReID-SSL [13] pedestrian re-identification model is chosen,
because it extracts robust and discriminative Re-ID features.

2.3. Single-Camera Multi-Object Tracking

Single-camera multi-object tracking methods can be classified into separate detection
and embedding (SDE) and joint detection and embedding (JDE). SDE first detects all the
objects in a single frame and extracts their Re-ID features and then uses an association
algorithm to associate the objects between the previous frames. This approach splits
object tracking into two independent steps of detection and association, e.g., SORT [14]
and DeepSORT [15]. JDE obtains both detection and embedding information, and then
joins the appearance features or motion prediction to the detection frame by association
matching, which achieves better tracking performance through lower computational cost,
e.g., FairMOT [16] and ByteTrack [17]. ByteTrack uses only motion features for association
matching, which has better real-time performance, but is prone to identity switching
problems due to occlusion and does not track well in crowded public scenes.

Recently, Bot-SORT [18], which utilizes appearance and motion information, surpassed
ByteTrack in tracking accuracy. In this paper, we replace the Kalman filtered trajectory
prediction algorithm with a deep learning-based trajectory prediction model on the basis
of ByteTrack, add Re-ID features for secondary matching and contribute to the model’s
improved tracking speed through Intersection over Union matching, as well as achieving
high accuracy in similarity matching.

2.4. Multi-Target Multi-Camera Tracking

Multi-target multi-camera tracking (MTMCT) involves object detection, decentralized
consensus estimation, appearance feature extraction via re-ID models, trajectory prediction
and cross-camera trajectory association. Decentralized consensus-based estimation offers
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a decentralized approach to target estimation that enhances the collaborative aspects of
cross-camera tracking systems [19]. But the main problem of multi-target multi-camera
tracking is the trajectory association problem between different views, which focus on how
to reduce the search space and time for the same object association of different views.

Data fusion techniques among various sensors are typically categorized into two
research streams: centralized tracking methods [20] and single-view tracking methods [21].
Centralized tracking methods combine data from various views to facilitate detection
and tracking, specifically by composing a global occupancy graph for tracking based on
the detection nodes of each time frame [22]. Its benefit is that it can utilize the multi-
view information of the scene and reduce the effect of occlusion and noise in crowded
environments. The limitation is that it requires accurate camera synchronization and
geometrical relationships between cameras, and since the position of the tracked object
is transmitted continuously every few frames, it requires the camera to cover the full
field of view, and the amount of data transmitted is relatively large, which affects real-
time performance. The single-view tracking method first detects and tracks each view
individually, and then obtains the final object trajectory through data correlation and
trajectory fusion, and does not rely on limited information sharing between different
views [23]. The advantages of the single-view tracking method are that it does not require
camera synchronization and precise geometrical relationships between cameras and is
more suitable for real-time tracking; the disadvantages are that it cannot solve the serious
occlusion problem, and its performance relies on the effect of single-camera detection. In
this paper, we use the single view method to represent multi-view trajectories via a graph
model and obtain cross-camera trajectory matching through spectral clustering.

3. Overall Framework for Cross-Camera Tracking

The overall framework diagram of cross-camera multi-object tracking based on fused
features is shown in Figure 1, and the process of specific cross-camera tracking is as follows:
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Firstly, camera self-calibration is performed to obtain the geometrical relationship
between camera network viewpoints to get the homography matrix. The images from
different camera viewpoints can be mapped to a common reference coordinate system
through the homography matrix. In this paper, the homography matrix is used to integrate
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the single-camera tracking trajectories obtained from different cameras into the same
ground plane, which facilitates cross-camera multi-object tracking.

Next, single-camera tracking is performed. Tracking is done in an occlusion situation
where the detection frames may fail, but the key points provide some important information
which helps to maintain continuous tracking of the object. Person detection and key-
point detection are first performed on consecutive frames to obtain spatial information
about the object’s location and temporal information between consecutive frames, while
combining social information between different persons to obtain motion features. After
person detection, the appearance features of the persons are obtained by the Re-ID module,
followed by weighted fusion of the appearance and motion features. The implicit social
model realizes the prediction of person trajectory through motion features and the temporal
correlation of single-camera tracking through the Intersection over Union between the
detection box and the trajectory prediction box of the next frame, while the appearance
features are temporally correlated through the similarity comparison.

Eventually, the single-camera tracking trajectories obtained from different cameras
are mapped onto the same plane by the projection of a homography matrix. Subsequently,
all the trajectories on this plane are clustered and stacked based on the motion informa-
tion to obtain the association of trajectories on different views. Finally, the cross-camera
tracking results are obtained by verifying whether the matching is successful through
appearance features.

The proposed model in this study reduces the frequency of appearance feature match-
ing and eliminates reliance on additional auxiliary models, thereby reducing the overall
complexity of the model. Target association through multiple rounds of clustering enhances
the accuracy of the model in object tracking.

4. Cross-Camera Association Technique Based on Fused Features

The cross-camera tracking technology is based on a single view tracking method and
incorporates camera calibration technology. This model uses a multi-feature extraction
module for single-camera tracking and uses the Re-ID model based on Transformer to
divide images into blocks, so as to extract more fine-grained appearance features with
context connection. The trajectory prediction technology based on the implicit social model
is also introduced to combine spatio-temporal information and social information according
to the motion features to predict the position of the object in the next frame. Two feature
weighting yields single-camera tracking results through the cost matrix.

In the cross-camera tracking phase, the homography matrix obtained by the camera
calibration technology is used to project all the tracks onto a common plane for cluster
matching. The matching results are then verified and re-matched using appearance features,
and finally we get the cross-camera tracking results.

4.1. Implicit Social Modelling Based on Motion Information

ByteTrack introduces a two-step matching algorithm grounded in object detection
frame thresholds, employed to track individual objects by harnessing trajectory prediction
information. In this investigation, the ByteTrack framework replaces the conventional
Kalman filter model with an implicit social model. The object’s prospective positions in
forthcoming frames are prognosticated through the implicit social model, and subsequently,
the Intersection over Union between the predicted bounding box and the real detection box
in successive frames are computed to ascertain correlation.

The implicit social model adopts implicit maximum likelihood estimation (IMLE) as its
trajectory prediction mechanism [24]. IMLE, through a straightforward mechanism, trains
the model by introducing additional noise into the model to predict multiple samples, se-
lecting the sample closest to the real value in the distribution, and utilizing this sample for
backpropagation during training. IMLE minimizes the model based on distance optimization.

The implicit social model clusters pedestrian trajectories based on the maximum speed
changes observed in the trajectories. The training mechanism of the model, as depicted
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in Algorithm 1, relies on the motion information of objects in the spatial domain between
consecutive frames, framing it as a regression task with sequences as input and output.
The motion state of an object, monitored from frame t1 to frame tobs, is represented as
mt1:tobs = {mt|t ∈ [t1, . . . , tobs]}, where mt ∈ RD∗obs, with D signifying the dimension of
the input motion state. In the context of this study, the model takes the (x, y) coordinates of
an object’s position as input, resulting in D = 2 dimensions. Neglecting to distinguish and
collectively train pedestrians with disparate velocities may engender a bias towards swifter
pedestrians in trajectory prediction, potentially misclassifying stationary individuals as
mobile entities. To surmount this challenge, this research adopts a strategy of segregating
social domains characterized by varying speeds.

Algorithm 1: Implicit social modelling algorithm

Input: Model θ(·) and parameters α1, α2, α3
Output: Model θ with a distribution similar to the real samples

1 Initialize model parameters, dataset D =
(

di
o, di

p

)n

i=1
2 Perform clustering on D to obtain Z
3 Initialize the loss function L(·)
4 for e = 1 to Epochs do
5 Select a random batch

(
do, dp

)
from D

6 Predicting independent identically distributed samples d
1
p, . . . , d

m
p from θ(do)

7 Compute the loss function values Ltriplet,LG−distance,LG−angle
8 L(·) = ‖ dp − d1

p ‖1
+ α1Ltriplet + α2LG−distance + α3LG−angle

9 σ(i)← argminiL
(

dp − d
i
p

)
, ∀i ∈ m

10 θ ← θ − η∇θσ(i)
11 end for
12 return θ

As shown in Figure 2, clustering pedestrians based on the maximum speed changes
yields multiple social regions. With these social regions, a better understanding of social
relationships between different pedestrians can be achieved. Each social unit deals with
one social region, taking input as P ∗ T0 ∗N and producing output as P ∗ TP ∗N, where P
represents observed positions, T0 and TP are the lengths of the observation and prediction
steps and N is the number of individuals within the social region. Training for pedestrian
trajectory prediction is performed using maximum likelihood estimation.
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The trajectory prediction process is as follows: Firstly, clustering is performed based
on the maximum speed change of pedestrians to obtain the position information of each
pedestrian. Subsequently, this positional information is entered into the social unit, which
is divided into two parts. One locally handles the trajectory of an individual and the
other globally handles the trajectory relationships among all pedestrians in the social
area. Both parts obtain spatio-temporal information via the employment of consecutive
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residual-connected convolutional neural network (CNN) layers. Ultimately, the outcomes
of trajectory prediction are realized through implicit maximum likelihood estimation:

V = wg ∗ vg + wl ∗ vl (1)

where wg and wl represent the respective global and local weighting factors, while vg and
vl embody the global and local spatio-temporal information. The resulting V signifies the
anticipated future positional data of the object as predicted by the trajectory analysis.

4.2. Representation of Fusion Features

Within the context of single-camera tracking, the imperative task is to derive the
corresponding trajectory information by means of associating the detection frames within
the video sequence. In this research endeavor, we employ ByteTrack as our chosen tracking
algorithm and adopt the implicit social model as our trajectory prediction model. To
enrich the feature representation of the objects using the appearance features, we employ
TransReID-SSL as the re-identification (Re-ID) model, which is dedicated to the extraction
of said appearance features. The model is trained on a composite datasets encompassing
Market-1501 [25], MSMT17 [26], CUHK-SYSU [27] and the AiCity2023. The model’s weight
initialization is founded upon the TransReID-SSL pre-training model and subsequently
fine-tuned using input images sized at 256 × 128 pixels. The optimization process is
orchestrated through the amalgamation of cross-entropy loss and ternary loss, with the
cross-entropy loss function formulated as follows:

Lce = − 1
N

N

∑
i=1

yilog(ŷi) (2)

yi denotes the identification tag corresponding to the ith image, while N signifies the
total number of images in the composite datasets. The formulation for the ternary loss is as
follows:

Ltri =
N

∑
i=1

(
max

(
m + d( f a

i , f n
i )− d

(
f a
i , f p

i

)
, 0
))

(3)

In the given equation, the variable d represents the L2 distance, while f p
i signifies

the positive samples and f n
i denotes the negative sample. The parameter m represents the

difference between ternary losses.
The fusion feature was adopted to integrate motion features with appearance features

to enhance the tracking process. The motion features are used for nonlinear trajectory
prediction, while the re-identification (Re-ID) model serves as a means for comparing
appearance similarities. The synthesis of these two distinct feature sets yields a more precise
approach to object tracking. To balance the weights of motion features and appearance
features, the computation of the cost matrix for both is carried out by means of weighting.
This total cost matrix, denoted as C, is expressed as follows:

C = αAmotion + (1− α)Aappearance (4)

In this equation, Amotion represents the motion cost matrix, Aappearance represents the
appearance cost matrix and α is a weighting parameter constrained within the range of
0 to 1. α plays a pivotal role in determining the relative significance of appearance and
motion costs when computing the overall cost. More specifically, as α approaches 1, the
influence of motion costs becomes more pronounced, whereas as α approaches 0, the impact
of appearance costs becomes more dominant.

The formula for the Intersection over Union related to motion costs can be expressed
as

IoU(A, B) =
area(A ∩ B)
area(A ∪ B)

(5)
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A and B in the above formula are the prediction and detection bounding boxes,
respectively. In the total cost formula, the Euclidean formula for the appearance cost is
expressed as follows:

dis(a, b) =

√
n

∑
i=1

(ai − bi)
2 (6)

a and b represent the appearance feature vectors associated with two distinct objects
and n signifies the dimensionality of the feature vector.

To complete the tracking process within a single-camera system, a Hungarian al-
gorithm is applied to the cost matrix C. This algorithm effectively addresses the linear
assignment problem, determining the optimal matching configuration, thereby facilitating
single-camera trajectory tracking.

4.3. Cross-Camera Object Matching Based on Fused Features

Firstly, calibrating each camera determines the internal and external parameters of the
cameras. Subsequently, the homography matrix for each camera was calculated using the
calibration information. The homography matrix is used to establish the mapping between
the camera coordinate and the global map. The method presented in this paper is to further
realize across-camera multi-object tracking based on the single-camera tracking results.
Trajectories of all persons were extracted from each camera view and then projected onto
the global map using the homography matrix. The homography matrix H was calculated
for the corresponding coordinate transformation by using the P′1 point in the given frame
and the corresponding P′2 point in the global map:

P′2 = H
[
cx by 1

]
(7)

Here, cx and by represent the center and bottom coordinates of the detection frame,
respectively. The ensuing step involves the normalization of the global map coordinates for
P′2 points to derive the trajectory positions within the global map:

P2 =
P′2
P′2z

(8)

The projection of trajectories onto the global map facilitates a comprehensive analysis
of object motion within a standardized coordinate system. Subsequently, an affinity graph
is constructed on the global map, denoted as G = (V, E), where V signifies the set of
trajectories, E signifies the set of feature-weighted edges connecting trajectories and the
affinity matrix A can be formally defined as

Aij = exp

(
−
∣∣ fi − f j

∣∣2
σ2

)
(9)

Here, fi and f j signify the motion features associated with trajectories i and j, respec-
tively, while σ represents the scaling factor.

The subsequent step involves the application of spectral clustering on the graph to
partition trajectories into distinct clusters. This process requires the computation of the
graph Laplacian matrix L, which is expressed as

L = D− A (10)

D represents the degree matrix, where Dii = ∑j Aij. Subsequently, the k smallest
eigenvectors of L are extracted to form the matrix U ∈ Rn∗k, with n denoting the number
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of trajectories. To achieve relative weightings within matrix U, row normalization is
performed, resulting in the formation of matrix T:

Tij =
Uij

|Ui|
(11)

The rows of matrix T are then subjected to K-means clustering into k clusters. Each
cluster corresponds to a distinct global object. To enhance the precision of tracking results,
the trajectories are subjected to appearance feature verification, as depicted in Equation (3).
Subsequently, objects that do not meet the appearance-matching criterion are subjected to
re-clustering and re-matching procedures. This approach contributes to the attainment of
accurate and efficient trajectory associations across various views, ultimately enhancing
tracking performance.

5. Experimental Validation and Analysis
5.1. Experimental Data Set

The AI City Challenge 2023 Track 1 dataset is used in this paper, which contains both
real and virtual synthetic data. This cross-camera multi-object tracking dataset includes a
total of 130 cameras covering 1491 min of high-resolution (1920 × 1080) 30FPS video. The
dataset is divided into 22 subsets, of which 10 are used for training, 5 for validation and 7
for testing. In addition, three publicly available Re-ID datasets (Market-1501, MTMC17,
and CUHK-SYSU) were used to train the Re-ID model.

5.2. Evaluation Metrics

We use IDF1, IDP and IDR as evaluation metrics for cross-camera tracking. The IDF1
score is a metric employed to assess the performance of an object detection model. It
quantifies the ratio of the average number of correct identifications to real objects and
computed detections in a detection, which is formulated as follows:

IDF1 =
2× IDTP

2× IDTP + IDFP + IDFN
(12)

IDP =
IDTP

IDTP + IDFP
(13)

IDR =
IDTP

IDTP + IDFN
(14)

where IDTP is the number of true positive identities, IDFP is the number of false positive
identities and IDFN is the total number of false negative identities. A higher IDF1 value
signifies superior algorithmic performance in the context of multi-object tracking.

5.3. Experimental Details

The experimental operating system is Ubuntu 20.04.1, 64-bit OS, the graphics card
is NVIDIA GTX3090Ti, the compiler setting is Python 3.8, Pytorch 1.11.0 deep learning
framework is used as the experimental platform, YOLOX is used to generate the bounding
box for object detection. The model is pre-trained using the COCO with a threshold
value of 0.1. Image dimensions were consistently standardized to 1333 × 800 pixels, and
the training process involved 300 epochs with a learning rate of 0.001 and a batch size
of 8. The experiments were conducted using MMDetction toolbox to train the models
and YOLOv7 pose estimation model and pre-trained model for key point estimation. An
implicit social model is used for the trajectory prediction part, a TransReID model is used for
the pedestrian re-identification module and a modified ByteTrack is used for single-camera
tracking; based on this result, cross-camera tracking is performed.
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5.4. Experimental Results and Analyses

We validate the proposed cross-camera tracking system on the 2023 AI City Challenge
test dataset. As demonstrated in Table 1, a higher IDF1 score indicates better tracking perfor-
mance, the system successfully achieves an IDF1 score of 0.7064. Compared to the ByteTrack
baseline model, the IDF1 score is significantly improved by 11.88% by using an implicit
social model for trajectory prediction. This result demonstrates that a nonlinear trajectory
prediction model provides more accurate predictions for pedestrian tracking in public
scenes compared to Kalman filtering in the baseline model. In addition, AI2023Team20 [28]
further improved the IDF1 score by 2.31% by employing an FFT component to eliminate
noise and extract key motion information.

Table 1. Performance comparison of different network models.

Network Models IDF1 ↑ IDP ↑ IDR ↑
Baseline 0.4752 0.4989 0.4537

Baseline + TP 0.5940 0.6156 0.5738
AI2023Team20 0.6171 0.6392 0.5965
Our network 0.7064 0.6923 0.6532

To solve the occlusion problem, we introduce a fused feature-based strategy. The
core of this strategy is cross-camera tracking assistance by incorporating appearance fea-
tures embedded by Re-ID. As shown in Figure 3, the pedestrian reappears after complete
occlusion, and the model is still able to accurately recognize the object with correct ID
assignment. This approach effectively improves the accuracy of cross-camera tracking and
significantly reduces the tracking error caused by identity switching. Ultimately, our model
achieves 70.64% accuracy on the IDF1 evaluation metric.
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A major advantage of the method proposed in this paper is its ability to address the
problem of person occlusion without the need for high computational cost. The person
occlusion problem is effectively dealt with by predicting the object’s trajectory, and the
accuracy of occluded tracking is verified through appearance similarity comparison while
keeping the computational cost relatively low. Table 1 proves that the technical route of
this paper is able to solve the problems in the baseline model.

6. Conclusions

In this study, we design a cross-camera tracking model based on fused features. To
address common occlusion issues in cross-camera tracking, we introduced implicit social
models and Re-ID techniques. Meanwhile, to reduce identity confusion errors caused by
tracking mismatches in multi-pedestrian scenarios, we proposed a specific cross-camera
tracking strategy. This strategy first performs preliminary clustering matching based
on fused features, and further verifies using appearance features to reduce probability
of clustering mismatches. Extensive experiments were conducted on complex scenes to
validate the model. The experimental results demonstrate the superior performance of the
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proposed model in handling occlusions, reducing identity switching errors and lowering
computational costs. This indicates that our method not only enhances the accuracy and
stability of multi-object tracking, but also provides an efficient and practical solution for
real-world multi-object tracking applications.
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