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Abstract: This article introduces the novel concept of an extended parametric Sb-metric space, which
is a generalization of both Sb-metric spaces and parametric Sb-metric spaces. Within this extended
framework, we first establish an analog version of the Banach fixed-point theorem for self-maps.
We then prove an improved version of the Banach contraction principle for symmetric extended
parametric Sb-metric spaces, using an auxiliary function to establish the desired result. Finally, we
provide illustrative examples and an application for determining solutions to Fredholm integral
equations, demonstrating the practical implications of our work.
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1. Introduction

The study of the metric fixed point theory is only a little over a century old, but its
applicability is relevant in all the branches of science and engineering. Within the context
of an axiomatic framework, it is justifiable to attribute the genesis of the notion of distance
to Euclid, and conceivably even to a period preceding him. Frechet [1] proposed the
introduction of systematic and standardized measures for distance in the realm of abstract
mathematics. The concept of metric space has been employed not only in the field of
mathematics but also in the qualitative sciences. For example, one notable generalization
of metrics, known as partial metrics, was introduced by Matthews [2] to address specific
challenges in the field of domain theory in computer science. In addition to these abstract
formulations, the concept of metrics has been expanded and diversified through numerous
diverse approaches. Among the various concepts, it is important to draw attention to
some of the generalizations that are widely recognized and particularly captivating (refer
to [3–9]).

One of the earliest generalizations is the quasi-metric one, which is produced by elimi-
nating the standard metric’s symmetry property. Another notion that was presented early
on is the concept of semi-metric (proposed by [10]). This type of metric satisfies only the
properties of self-distance and symmetry, which are characteristic of the Euclidean metric.

An alternative formulation of the metric concept was derived by substituting the
triangle inequality with a modified version. The concept under consideration is referred to
as quasi-metric in certain references [11], and as a b-metric in other references [12,13].

Definition 1 ([13]). Let W be a nonempty set, define a real-valued function ρ : W×W→ [0, ∞)
such that for a given b (real number) ≥ 1, it satisfies the following conditions:
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I. ρ(g, e) = 0 if and only if g = e;
II. ρ(g, e) = ρ(e, g);
III. ρ(g, e) ≤ b[ρ(g, h) + ρ(h, e)], for all g, e, h ∈W.

Then, ρ is said to be b-metric and the pair (W, ρ) is said to be b-metric space.

It is imperative to note that, in a broad context, the b-metric does not exhibit continuity.
Moreover, it is important to note that not every b-metric space may be considered a metric
space. In an alternative scenario, assuming the value of b to be equal to 1, one can see that
every b-metric space would therefore be considered as metric space.

Branciari [14] proposes a novel approach by altering the triangular inequality in metric
spaces to a quadrilateral inequality.

Definition 2 ([14]). Let W be a non-empty set, define a real-valued function ρ : W×W→ [0, ∞)
such that for all g, e ∈ W and all distinct h, σ ∈ W, where h and σ are different from g and e,
which satisfies

I. ρ(g, e) = 0 if and only if g = e;
II. ρ(g, e) = ρ(e, g);
III. ρ(g, e) ≤ ρ(g, h) + ρ(h, σ) + ρ(σ, e).

Then ρ is called a generalized metric (a Branciari distance), and the pair (W, ρ) is known as GMS
(generalized metric space) in the sense of Branciari.

Remark 1. In general, a Branciari distance may not be continuous. The topologies of Branciari
distance space and metric space are incompatible. Furthermore, every metric is a Branciari distance
but the converse does not need to be true.

Example 1. Let U = {0, 2}, V = { 1
n : n ≥ 1} and W = U ∪V. Define ρ : W2 → [0, ∞) by

ρ(g, e) =


0 if g = e,
1 if g 6= e and either g, e ∈ U or g, e 6= V,
e if g ∈ U and e ∈ V,
g if g ∈ V and e ∈ U.

Then, ρ is a Branciari distance on W but not a metric.

In the last three decades, another emerging technique in the field of metric extension
involves the utilization of the geometric properties of three points, as opposed to the
conventional approach which relies on only two points, such as D : W×W×W→ [0,+∞).
The idea of D-metric [15] and G-metric [16] are the most famous examples of this trend. All
the authors have derived the analogue version of the most celebrated result in the history
of fixed point theory, precisely known as Banach contraction principle (BCP) [17] in such
spaces (see [18–20]). This theory only began to emerge as a distinct field in the late 19th
century and early 20th century, when important developments took place, and several new
metrics were introduced.Some of them are new, and a few are the generalization of the
existence of previous spaces.

Sedghi et al. [21] introduced a new type of generalized metric space, by relaxing the
symmetry property, known as S-metric space.

Definition 3 ([21]). Let W be a non-empty set. Then, a function S : W3 → [0, ∞) is said to be
S-metric on W if for each g, e, h, t ∈W the following conditions hold:

(i). S(g, e, h) ≥ 0;
(ii). S(g, e, h) = 0 if and only if g = e = h;
(iii). S(g, e, h) ≤ S(g, g, t) + S(e, e, t) + S(h, h, t).

The pair (W, S) is called an S-metric space.
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Example 2. Let W = Rn and ‖.‖ be a norm on W; then, S(g, e, h) = ‖e + h− 2g‖+ ‖e− h‖ is
an S-metric space.

Sedghi and Dung [22] made the observation that every S-metric space can be con-
sidered topologically equal to a metric space. Several researchers have studied the S-
metric space as well as developed a number of results pertaining the presence of fixed
points [23–25].

On taking motivation from the research conducted by Bakhtin [12] and Sedghi et al. [21],
Souayah and Mlaiki [26] initially proposed the notion of an Sb-metric space. Subsequently,
Rohen et al. [27] made modifications to the definition of Sb-metric spaces as follows:

Definition 4 ([27]). Let W be a non-empty set and b be a real number ≥ 1. A function Sb : W3 →
[0, ∞) be such that for all g, e, h, t ∈W, it satisfies the following conditions:

(i). Sb(g, e, h) = 0 if and only if g = e = h;
(ii). Sb(g, e, h) ≤ b[Sb(g, g, t) + Sb(e, e, t) + Sb(h, h, t)].

Then, Sb is said to be Sb-metric on W and the pair (W, Sb) is said to be Sb-metric spaces.

Hussain et al. [28] gave a definition and analysis of parametric spaces. Subsequently,
a year later, the authors extended their study by introducing the concept of parametric
b-metric space [29]. In another incremental advancement, Taş and Ozgür [30] proposed
the concept of a parametric S-metric space as an extension of the parametric metric space,
as follows:

Definition 5 ([30]). Let W be a non-empty set. Define a function Pr : W3 × (0, ∞) → [0, ∞)
such that for all g, e, h, σ ∈W and λ > 0, it satisfies the following conditions:

(i). Pr(g, e, h, λ) = 0 if and only if g = e = h;
(ii). Pr(g, e, h, λ) ≤ Pr(g, g, σ, λ) + Pr(e, e, σ, λ) + Pr(h, h, σ, λ).

Then, the function Pr is said to be parametric S-metric on W and the pair (W, Pr) is called parametric
S-metric space.

Moreover, Taş and Özgür [31] improved their own idea and introduced the concept of
parametric Sb-metric space in 2018.

Definition 6 ([31]). Let W be a non-empty set and let b ≥ 1 be a given real number. Define a
function N : W3 × (0, ∞) → [0, ∞) such that for all g, e, h, σ ∈ W and λ > 0, it satisfies the
following conditions:

(i). N(g, e, h, λ) = 0 if and only if g = e = h;
(ii). N(g, e, h, λ) ≤ b[N(g, g, σ, λ) + N(e, e, σ, λ) + N(h, h, σ, λ)].

Then, the function N is said to be parametric Sb-metric on W and the pair (W, N) is called
parametric Sb-metric space.

Example 3. Let W = {ν | ν : (0, ∞)→ R is a function}. Define a function N : W3 × (0, ∞)→
[0, ∞) by

N(ν, e, r, σ) =
1
9
(|ν(σ)− e(σ)|+ |ν(σ)− r(σ)|+ |e(σ)− r(σ)|)2

for each σ > 0 and for all ν, e, r ∈ W. If b = 4, then (X, N) is a parametric Sb-metric space;
nonetheless, it is not a parametric S-metric space.

Mlaiki [32] followed the work of Rohen et al. [27] to introduce the concept of extended
Sb-metric space as follows:
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Definition 7 ([32]). Let W be a non-empty set and N : W3 → [1, ∞) be a positive real-valued
function. Define a function RN : W3 → [1, ∞) such that for all g, e, h, σ ∈ W, it satisfies the
following conditions:

(i). RN(g, e, h) = 0 if and only if g = e = h;
(ii). RN(g, e, h) ≤ N(g, e, h)[RN(g, g, σ) + RN(e, e, σ) + RN(h, h, σ)].

Then, the function RN is said to be extended Sb-metric on W and the pair (W, RN) is called extended
Sb-metric space.

Remark 2. Every Sb-metric space is an extended Sb-metric space (N(g, e, h) = b ≥ 1), but the
converse not always true.

Furthermore, counter-examples and associated findings regarding the aforementioned
spaces are available in [33–39].

As an expansion of the parametric metric space and the Sb-metric space, we present in
this article a novel metric space called the extended parametric Sb-metric space. Section 2
contains the definition of an extended parametric Sb-metric space, proof of two Lemma’s
along with two illustrative examples. In Section 3, analogues of the some well-known fixed
point theorems are proved in both extended parametric Sb-metric spaces and in symmetric
extended parametric Sb-metric spaces. At last, in Section 4, we make use of our result in
order to find the existence of a solution to a Fredholm integral equation.

2. Extended Parametric Sb-Metric Space

This section commences with the definition of the extended parametric Sb-metric
space.

Definition 8. Let W be a non-empty set and N : W3 → [1, ∞) be a positive real-valued function.
Define a function RN : W3 × (0, ∞) → [0, ∞) such that for all g, e, h, σ ∈ W and λ > 0, it
satisfies the following conditions:

RN-1.RN(g, e, h, λ) = 0 if and only if g = e = h;
RN-2.RN(g, e, h, λ) ≤ N(g, e, h)[RN(g, g, σ, λ) + RN(e, e, σ, λ) + RN(h, h, σ, λ)].

Then, the function RN is said to be extended parametric Sb-metric (EPSb) on W and the pair
(W, RN) is called extended parametric Sb-metric space.

Example 4. Let W = R. Define function N : W3 → [1, ∞) by

N(g, e, h) = 1+ | g | + | e |

and a function RN : W3 × (0, ∞)→ [0, ∞) by

RN(g, e, h, λ) = λ2[| g− e | + | e− h | + | g− h |]

for each g, e, h ∈ R and λ > 0. Then, RN is an extended parametric Sb-metric space.

Example 5. Let W = C[a, b] be the set of all continuous real-valued functions on [a, b]. Define
function N : W3 → [1, ∞) by

N(g(σ), e(σ), h(σ)) = max{| g(σ) |, | e(σ) |}+ | h(σ) | +2

and function RN : W3 × (0, ∞)→ [0, ∞) by

RN(g(σ), e(σ), h(σ), λ) = P(λ) sup
σ∈[a,b]

| max{g(σ), e(σ)} − h(σ) |2

for each g, e, h ∈ R, where P : (0, ∞)→ (0, ∞) is defined as P(λ) = λ.
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Then, the pair (W, RN) is a complete extended parametric Sb-metric space.

Definition 9. Let (W, RN) be a extended parametric Sb-metric space and let {tn} be a sequence
in W. Then,

(i). {tn} converges to g if and only if there exists n0 ∈ N such that RN(tn, tn, g, λ) < ε for all
n ≥ n0 and λ > 0;

(ii). {tn} is called a Cauchy sequence if limn,m→∞ RN(tn, tn, tm, λ) = 0. for all λ > 0;
(iii). (W, RN) is called complete if every Cauchy sequence is convergent in W.

Lemma 1. Let (W, RN) be a extended parametric Sb-metric space. Then, for each g, e ∈W and
for all λ > 0,

RN(g, g, e, λ) ≤ NRN(e, e, g, λ) and RN(e, e, g, λ) ≤ NRN(g, g, e, λ)

Proof. Using the condition (RN-2) of Definition 8, we obtain

RN(g, g, e, λ) ≤ N[RN(g, g, g, λ) + RN(g, g, g, λ) + RN(e, e, g, λ)]

≤ N[2RN(g, g, g, λ) + RN(e, e, g, λ)]

≤ NRN(e, e, g, λ)

and
RN(e, e, g, λ) ≤ N[RN(e, e, e, λ) + RN(e, e, e, λ) + RN(g, g, e, λ)],

≤ N[2RN(e, e, e, λ) + RN(g, g, e, λ)]

≤ NRN(g, g, e, λ)

Hence, the proof.

Lemma 2. Let (W, RN) be a extended parametric Sb-metric space. If {tn} converges to g, then g
is unique.

Proof. Since {tn} converges to g, limn→∞ tn = g. On the contrary, assume that the limit
g is not unique. Therefore, there exists some e ∈ W such that limn→∞ tn = e, with g 6= e.
Thus, for each ε > 0 and for all λ > 0, we can choose n1, n2 ∈ N and n ≥ {n1, n2} such that

RN(tn, tn, g, λ) <
ε

4N
and RN(tn, tn, e, λ) <

ε

2N
(1)

Let us set n0 = max{n1, n2}, and the condition (RN-2) of Definition 8 and Lemma 1
implies that

RN(g, g, e, λ) ≤ N[2RN(g, g, tn, λ) + RN(e, e, tn, λ)]

≤ N[2RN(tn, tn, g, λ) + RN(tn, tn, e, λ)]

< N[2
ε

4N
+

ε

2N
] [on using (1)]

< N[
ε

2N
+

ε

2N
] = ε.

which implies that RN(g, g, e, λ) = 0. Thus, we have g = e.

This leads to the following important result.

Lemma 3. Let (W, RN) be a extended parametric Sb-metric space. If {tn} converges to g, then
{tn} is Cauchy.

Definition 10. Let (W, RN) be a extended parametric Sb-metric space. Then,

(i). The diameter of a subset Y of W is defined as

diam(Y) := sup{RN(g, e, h, λ) | g, e, h ∈W, λ > 0}.
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(ii). For g ∈W and ε > 0, we can define a ball B(g, ε) as follows:

B(g, ε) = {e ∈ X | RN(g, g, e, λ) ≤ ε, λ > 0}.

3. Main Results

In this discussion, we will begin by presenting and demonstrating the analogous form
of the Banach fixed point theorem in the context of extended parametric Sb-metric space.

Theorem 1. Consider a complete extended parametric Sb-metric space (W, RN), where RN is
a continuous function. Let f be a self-mapping on W satisfying the following condition: for all
g, e, h ∈W and λ > 0

RN( f g, f e, f h, λ) ≤ θRN(g, e, h, λ), (2)

where 0 ≤ θ < 1
2 and for any g0 ∈W, we have

lim
n,m→∞

N( f ng0, f ng0, f mg0) <
1
2θ

. (3)

Then, f has a unique fixed point ν ∈W. Moreover, for every h ∈W, we have limn→∞ f nh = ν.

Proof. Since W is a non-empty set and f is a self-map on W, we can choose a g0 ∈W such
that f g0 = g1. Continuing like this, we can define a sequence {gn} of iterates as follows:

g1 = f g0,

g2 = f g1 = f 2g0,
...

gn = f gn−1 = f ng0. (4)

Let us substitute g = gn−1, e = gn−1 and h = gn in Equation (2), and we have

RN(gn, gn, gn+1, λ) = RN( f gn−1, f gn−1, f gn, λ)

≤ θRN(gn−1, gn−1, gn, λ).

Again, from Equation (2), we have

RN(gn−1, gn−1, gn, λ) = RN( f gn−2, f gn−2, f gn−1, λ)

≤ θRN(gn−2, gn−2, gn−1, λ).

Combining the above two inequalities and repeating the process n times, we obtain

RN(gn, gn, gn+1, λ) ≤ θ2RN(gn−2, gn−2, gn−1, λ) ≤ · · · ≤ θnRN(g0, g0, g1, λ)

This implies that
RN(gn, gn, gn+1, λ) ≤ θnRN(g0, g0, g1, λ) (5)

This proves that the sequence {gn} is a Cauchy sequence in W. Indeed, for all m > n,
m, n ∈ N, and when using inequality (2), condition (RN-2) of Definition 8; we obtain

RN(gn, gn, gm, λ) ≤ N(gn, gn, gm)(2θ)nRN(g0, g0, g1, λ)

+ N(gn, gn, gm)N(gn+1, gn+1, gm)(2θ)n+1RN(g0, g0, g1, λ)

...

+ N(gn, gn, gm)N(gn+1, gn+1, gm) · · ·N(gm−1, gm−1, gm)

(2θ)m−1RN(g0, g0, g1, λ).

Consequently, we obtain
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RN(gn, gn, gm, λ)

≤ RN(g0, g0, g1, λ)



N(g1, g1, gm)N(g2, g2, gm) · · ·
N(gn−1, gn−1, gm)N(gn, gn, gm)(2θ)n

+ N(g1, g1, gm)N(g2, g2, gm) · · ·
N(gn, gn, gm)N(gn+1, gn+1, gm)(2θ)n+1

...
+ N(g1, g1, gm)N(g2, g2, gm) · · ·

N(gm−2, gm−2, gm)N(gm−1, gm−1, gm)(2θ)m−1


(6)

≤ RN(g0, g0, g1, λ)
m−1

∑
j=n

(2θ)j
j

∏
i=1

N(gi, gi, gm)

Suppose we have a series

B =
∞

∑
n=1

(2θ)n
n

∏
i=1

N(gi, gi, gm)

and its partial sum

Bn =
n

∑
j=1

(2θ)j
j

∏
i=1

N(gi, gi, gm).

When using Equation (3) and when applying ratio test, we obtain that the series

n

∑
n=1

(2θ)n
n

∏
i=1

N(gi, gi, gm)

converges. Hence, from (6), for m > n we have

RN(gn, gn, gm, λ) ≤ RN(g0, g0, g1, λ)[Bm−1 −Bn].

Thus, RN(gn, gn, gm, λ)→ 0 as n, m→ ∞. The completeness of W implies that there
exist some ν ∈W such that

lim
n→∞

gn = ν = f gn−1. (7)

Next, we prove that ν is a fixed point of f . Again, from Equation (2) and when using
condition (RN-2) of Definition 8, we obtain

RN(ν, ν, f ν, λ) ≤ N(ν, ν, f ν)[2RN(ν, ν, gn+1, λ) + RN( f ν, f ν, gn+1, λ)]

≤ N(ν, ν, f ν)[2RN(ν, ν, gn+1, λ) + RN( f ν, f ν, f gn, λ)] (8)

≤ N(ν, ν, f ν)[2RN(ν, ν, gn+1, λ) + KRN(ν, ν, gn, λ)].

Taking the limit as n→ ∞, we obtain

RN(ν, ν, f ν, λ) = 0.

This is possible only if f ν = ν. Hence, ν is a fixed point of f .

Further, assume that there exist e, ν ∈W, with e 6= ν such that f ν = ν and f e = e and
we claim that e = ν. Then, suppose not.
Therefore, from Equation (2) for all λ > 0, we have

0 < RN(ν, ν, e, λ) = RN( f ν, f ν, f e, λ)

≤ θRN(ν, ν, e, λ)

< RN(ν, ν, e, λ)
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which leads to a contradiction. Hence, e = ν. This establishes the uniqueness of fixed point
and hence the result.

Example 6. In continuation with Example 5, let us define a self-map f on W by

f g =
g√
5

for all g ∈W. Then, f satisfies the inequality (2) with θ = 1/5.
Moreover, we define for every g ∈W

f ng =
g

5
n
2

.

Thus,

lim
n,m→∞

N( f ng, f ng, f mg) = lim
n,m→∞

(
g

2n +
g

2m + 2) <
5
2

.

Thus, all the conditions of Theorem 1 are satisfied. Also, 0 is the unique fixed point of f .

Example 7. Let W = [0, 1). Define function N : W3 → [1, ∞) by

N(g, e, h) = max{g, e}+ h + 1

and a function RN : W3 × (0, ∞)→ [0, ∞) by

RN(g, e, h, λ) = λ(max{g, e} − h)2

for each g, e, h ∈ R and λ > 0. Then, RN is an extended parametric Sb-metric space. Define a
self-map f on X, by

f g = g3.

Note that

RN( f g, f e, f h, λ) = λ(max{g3, e3} − h3)2 ≤ 1
3

RN(g, e, h).

On the other hand, for every g ∈ X, define

f n = g3n

Thus,

lim
n,m→∞

θ( f ng, f ng, f mg) <
3
2

.

Therefore, all the conditions of Theorem 1, are satisfied. Here, 0 is the fixed point of f , which
is unique.

3.1. Symmetric Extended Parametric Sb-Metric Space

Let us first start with the definition of symmetric extended parametric Sb-metric space
as follows:

Definition 11. An extended parametric Sb-metric space (X, RN) is said to be symmetric if it
satisfies the following condition:

RN(g, g, e, λ) = RN(e, e, g, λ) for all g, e ∈ X, λ > 0. (9)

We next present a nice refinement of the Banach contraction principle in symmetric
extended parametric Sb-metric space with the help of an auxiliary function φ.

Theorem 2. Consider a symmetric complete extended parametric Sb-metric space (W, RN), where
RN is a continuous function. Let f be a self-mapping on W that satisfies the following condition:

RN( f g, f e, f h, λ) ≤ φ[RN(g, e, h, λ)] (10)
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for all g, e, h ∈W and λ > 0, where φ : [0,+∞)→ [0,+∞) is an increasing function such that
for each fixed σ > 0, limn→∞ φn(σ) = 0.

Furthermore, assume that there exist r > 1 such that for every g, g0 ∈W, we have

lim
n→∞

N(gn, gn, g) <
r
2

.

Then, f has a unique fixed point in W.

Proof. Assume g ∈W. For ε > 0 and n ∈ N, let φn(ε) < ε
2r .

Furthermore, for l ∈ N, let G = f n and gl = Gl(g). Clearly, G is continuous. Then, for
any g, e,∈W and α = φn, we have

RN(Gg, Gg, Ge, λ) = RN( f ng, f ng, f ne, λ)

≤ φn(RN(g, g, e, λ))

= α(RN(g, g, e, λ).

Thus, as l tends to infinity, this implies that RN(gl+1, gl+1, gl , λ) tends to zero. There-
fore, assume that l such that

RN(gl+1, gl+1, gl , λ) <
ε

2r
. (11)

Also, gl ∈ B(gl , ε) implies that, B(gl , ε) 6= φ. Therefore, for all h ∈ B(gl , ε), we have

RN(Gh, Gh, Ggl , λ) ≤ α(RN(h, h, gl , λ))

≤ α(RN(gl , gl , h, λ)) (12)

≤ α(ε) = φn(ε) <
ε

2r
<

ε

r
.

Thus,

RN(gl , gl , Gh, λ) ≤ N(gl , gl , Gh)

 RN(gl , gl , gl+1, λ)
+RN(gl , gl , gl+1, λ)
+RN(Gh, Gh, gl+1, λ)


= N(gl , gl , Gh)[2RN(gl , gl , gl+1, λ) + RN(Gh, Gh, gl+1, λ)]

≤ N(gl , gl , Gh)[2
ε

2r
+

ε

r
].

When taking the limit in the above inequality as l → ∞, we obtain

RN(gl , gl , Gh, λ) ≤ ε

Hence, G maps B(gl , ε) to itself.

Since gl ∈ B(gl , ε), this implies that Ggl ∈ B(gl , ε).
Consequently, for all m ∈ N, we obtain

Gmgn ∈ B(gl , ε)

Therefore for all p ≥ l, gp ∈ B(gl , ε). Hence, RN(gm, gm, gl , λ) < ε for all m, p > l.
This results in gn being a Cauchy sequence. When using the completeness of W, we can
find ν ∈W such that gl → ν as l → ∞.
Since G is continuous,

ν = lim
l→∞

gl+1 = lim
l→∞

gl = G(ν).

Furthermore, assume that ν and ν1 are two distinct points of W such that G(ν) = ν
and G(ν1) = ν1. Since α(σ) = φn(σ) for all σ > 0, from (10)
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RN(ν, ν, ν1, λ) = RN(Gν, Gν, Gν1, λ)

≤ φnRN(ν, ν, ν1, λ)

= α(RN(ν, ν, ν1, λ))

< RN(ν, ν, ν1, λ).

Thus, RN(ν, ν, ν, λ) = 0 that is ν = ν1. Alternatively, f nl+r(g) = Gl( f r(g)) → ν as
l → ∞, and so f mg → ν as m → ∞ for every g. That is, ν = limn→∞ f gm = f (ν). Hence,
the proof.

3.2. Fixed Point Result for Orbitally Lower Semi-Continuous Function

Definition 12. Let f be a self-map defined on non-empty set W and g0 ∈W. Define the orbit of
g0 as

O(g0) = g0, f g0, f 2g0, · · ·.

A function P : W → R is said to be f -orbitally lower semi-continuous at σ ∈ W if
< gn >⊂ O(g0) and gn → σ as n→ ∞ implies P(σ) ≤ limn→∞ if P(gn).

Theorem 3. Consider a complete extended parametric Sb-metric space (W, RN), where RN is a
continuous function. Let f be a self-mapping on W satisfying the following assumptions:

RN( f g, f e, f 2h, λ) ≤ θ[RN(g, e, f h, λ)] (13)

for all g, e, h ∈W; λ > 0, where 0 ≤ θ < 1
2 and for every g0 ∈W we have

lim
n,m→∞

N(gn, gn, gm) <
1
2θ

.

Then, the sequence { f n(g0)} converges to some ν ∈W.

Moreover, ν is a fixed point of f if and only if P(g) = RN(g, g, f g) is f -orbitally lower
semi-continuous at ν.

Proof. Since W is a non empty set and f is a self-map on W, we can therefore choose a
g0 ∈W such that f g0 = g1. Continuing like this, we can define a sequence {gn} of iterates
as follows:

g1 = f g0,

g2 = f g1 = f 2g0,
...

gn = f gn−1 = f ng0.

Building upon the previous argument presented in the proof of Theorem 1, it can be
derived that the sequence {gn} is a Cauchy sequence. The completeness property of W
means that < gn > converges to some ν ∈W.
P is f -orbitally lower semi-continuous at ν. Therefore,

RN(ν, ν, f ν, λ) = P(ν) ≤ lim
n→∞

inf P(gn)

= lim
n→∞

RN(gn, gn, gn+1, λ)

≤ lim
n→∞

inf θnRN(g0, g0, g1, λ) = 0.

Thus, f ν = ν.



Symmetry 2023, 15, 2136 11 of 13

Conversely, assume that f ν = ν and < gn > ⊂ O(g0) with gn → ν as n → ∞.
Therefore,

P(ν) = RN(ν, ν, f ν, λ) = 0 ≤ RN(gn, gn, gn+1, λ) = lim
n→∞

P(gn).

This completes the proof of the Theorem 3.

Remark 3. Our following proved results should be noted:

1. Theorem 1 is a generalization of the result of Banach [17] in extended parametric Sb-metric
space.

2. Theorem 2 and Theorem 3 are the extension of the result obtained by Boyd and Wong [40] and
Mlaiki [32] in extended parametric Sb-metric space.

4. Application: Existence of the Solution of Fredholm Integral Equations

In this section, we examine the presence of a solution for a Fredholm integral equation
utilizing the outcomes established in Section 3.

Let W denote the set C[a, b] consisting of all real-valued continuous functions defined
on the closed and bounded interval [a, b] in the real number systemR.

For a real no λ > 0 and for all g, e, h ∈ [a, b], define RN : W3 × (0, ∞)→ [0, ∞) by

RN(g(σ), e(σ), h(σ), λ) = λ sup
σ∈[a,b]

| max{g(σ), e(σ)} − h(σ) |2

and N : W3 → [1, ∞) by

N(g(σ), e(σ), h(σ)) = max{| g(σ) |, | e(σ) |}+ h(σ) + 1.

It is evident that (W, RN) is a complete extended parametric Sb-metric space. We
apply Theorem 1 to establish the existence of the solution of Fredholm type defined by

g(σ) = P(σ) +
∫ b

a
L(σ, r, g(r)) (14)

for all σ, r ∈ [a, b]. Function g(σ) ∈ [a, b] is a solution of Equation (14).

Theorem 4. The integral equation defined in (14) has a unique solution g(σ) ∈ [a, b], if it satisfies
the following assumptions:

(i). P : [a, b]→ R is continuous;
(ii). L : [a, b]× [a, b]×R→ R is continuous;
(iii). for every σ, r ∈ [a, b],

| L(σ, r, g(r))− L(σ, r, f g(r)) |≤ 1
2
| g(r)− f g(r) | .

Proof. W = C[a, b] consists of all real-valued continuous functions defined on the closed
and bounded interval [a, b] in the real number systemR.
Define a map f : W→W, for all σ, r ∈ [a, b] by

f g(σ) =
∫ b

a
L(σ, r, g(r))dr + P(σ)

Also,

f ( f g(σ)) =
∫ b

a
L(σ, r, f g(r))dr + P(σ)

Therefore,
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f g(σ)− f ( f g(σ)) =
∫ b

a
L(σ, r, g(r))dr + P(σ)−

∫ b

a
L(σ, r, f g(r))dr− P(σ)

=
∫ b

a
[L(σ, r, g(r))dr− L(σ, r, f g(r))]dr. (15)

Consider

RN( f g(σ), f g(σ), f 2x(σ), λ) = λ | f g(σ)− f ( f g(σ)) |2

≤ λ(
∫ b

a
| L(σ, r, g(r))− L(σ, r, f g(r)) |)2

= λ(
1
2
| g(r)− f g(r) |)2

≤ λ

4
RN(g(σ), g(σ), f g(σ), λ).

For every λ, 0 < λ < 4, λ/4 < 1 and hence all the conditions of Theorem 1 are
satisfied. Therefore, map f has a unique fixed point. Thus, there exists a unique solution
for (14).

5. Conclusions

In the present study, we started with the novel concept of extended parametric Sb-
metric space, supported by suitable examples. Furthermore, three lemmas were proven in
order to establish the convergence, uniqueness, and Cauchy behavior of sequences in these
spaces. Additionally, we proved three theorems. Theorem 1 is the analogous counterpart
of the Banach fixed point result, Theorem 2 is a refined form of the Banach fixed point
result in symmetric extended parametric Sb-metric space, and Theorem 3 is derived for
orbitally lower semi-continuous maps. Lastly, the obtained results are utilized to establish
the existence and uniqueness of a solution for an integral equation.
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