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Abstract: A divisor B of a nonzero polynomial A, defined over the prime field of two elements, is
unitary (resp. bi-unitary) if gcd(B, A/B) = 1 (resp. gcd, (B, A/B) = 1), where gcd, (B, A/B) denotes
the greatest common unitary divisor of B and A/B. We denote by ¢**(A) the sum of all bi-unitary
monic divisors of A. A polynomial A is called a bi-unitary superperfect polynomial over I if the sum
of all bi-unitary monic divisors of ¢**(A) equals A. In this paper, we give all bi-unitary superperfect
polynomials divisible by one or two irreducible polynomials over F,. We prove the nonexistence of
odd bi-unitary superperfect polynomials over [F;.
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1. Introduction

Let n and k be positive integers, and let o(n) (resp. c*(n)) denote the sum of positive
(resp. unitary) divisors of the integer n. A divisor d of n is unitary if d and n/d are coprime.
We call the number 1 a k—superperfect number if c*(1n) = o(c(...(c(n)))) = 2n. When

~—_—
k-times

k =1, nis called a perfect number. An integer M = 27 — 1, where p is a prime number,
is called a Mersenne number. It is also well known that an even integer 7 is perfect if
and only if n = M(M + 1)/2 for some Mersenne prime number M. Suryanarayana [1]
considered k—superperfect numbers in the case k = 2. Numbers of the form 2P~ (p is
prime) are 2-superperfect if 27! — 1 is a Mersenne prime. It is not known if there are odd
k-superperfect numbers. Sitaramaiah and Subbarao [2] studied the unitary superperfect
numbers, with the integers n satisfying ¢*?(n) = o*(c*(n)) = 2n. They found all unitary
superperfect numbers below 108. The first unitary superperfect numbers are 2,9, 165, and
238. A positive integer n has a bi-unitary divisor, d, if the greatest common unitary divisor
of d and n/d is equal to 1. The arithmetic function ¢**(n) denotes the sum of positive
bi-unitary divisors of the integer n. Wall [3] proved that there are only three bi-unitary
perfect numbers (0**(n) = 2n), namely, 6, 60, and 90. Yamada [4] proved that 2 and 9 are
the only bi-unitary superperfect numbers, that is, c**2(n) = 2n if and only if n € {2,9}.

Here, let A be a nonzero polynomial over the prime field FF,. We say that A is a
splitting polynomial if it can be factored completely into linear factors over [F,. A divisor
B of A is unitary (resp. bi-unitary) if gcd(B, A/B) = 1 (resp. gcdy(B, A/B) = 1), where
ged, (A, A/B) denotes the greatest common unitary divisor of B and A/B. We denote
by ¢ the sum of the monic divisors B of A, thatis, 0(A) = Yz B. *(A) (resp. c**(A))
represents the sum of all unitary (resp. bi-unitary) monic divisors of A. Note that all the
functions o, ¢*, and ¢** are multiplicative and degree-preserving.

We say that a polynomial A is an even polynomial if it has a linear factor in F[x]; other-
wise, it is an odd polynomial. A polynomial M of the form 1 + x*(x 4 1)? is called Mersenne.
The first five Mersenne polynomials over Fp are M; = 1+ x+x2, My = 1+ x + x5,
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Mz =14x>+x3 My =1+x+x*+x3+x* and Ms = 1 + 2% + x*. Note that all these
polynomials are irreducible, so we call them Mersenne primes.

Notations: We use the following notations throughout the article:

e N (resp. N*) represents the set of non-negative (resp. positive) integers.

e deg(A) denotes the degree of the polynomial A.

e Aisthe polynomial obtained from A with x replaced by x + 1, thatis, A(x) = A(x+1).
*  Pand Q are distinct irreducible non-constant polynomials.

*  Pyand Q; are distinct odd irreducible non-constant polynomials.

Let w(A) denote the number of distinct irreducible monic polynomials that divide
A. The notion of a perfect polynomial over F, was introduced first by Canaday [5]. A
polynomial A is perfect if (A) = A. Canaday studied the case of even perfect polynomials
with w(A) < 3. In the past few years, Gallardo and Rahavandrainy [6-8] showed the non-
existence of odd perfect polynomials over [, with either w(A) = 3 or with w(A) < 9in the
case where all exponents of the irreducible factors of A are equal to 2. A polynomial A is said
to be a unitary (resp. a bi-unitary) perfect if c*(A) = A (resp. 0**(A) = A). Furthermore,
A is called a unitary (resp. a bi-unitary) superperfect if 0*2(A) = ¢*(c*(A)) = A (resp.
c*2(A) = 7 (0" (A)) = A).

Note that the function c**2 is degree-preserving but not multiplicative, and this is the
main challenge in this work. Thus, working on bi-unitary superperfect polynomials over
I, is not an easy task especially when A is divisible by more than two irreducible factors.

In this paper, we prove the non-existence of odd bi-unitary superperfect polynomials
A when A is divisible by at least two irreducible factors (Corollary 4). We give a complete
classification for all bi-unitary superperfect polynomials over I, that are divisible by at most
two distinct irreducible factors (Theorems 1 and 2). Bi-unitary superperfect polynomials
over I, that are neither unitary perfect nor bi-unitary perfect are found. The polynomials
A+ 1) O0(x+1)%,29(x+1)13, and 22(x +1)2' -1, dis a positive integer, are examples of
bi-unitary superperfect polynomials that are neither unitary perfect nor bi-unitary perfect.

Our main results are given in the following theorems:

Theorem 1. Let A be a bi-unitary superperfect over Fy such that w(A) = 1; then, A A €
{22,221}, where d € N*.

Theorem 2. Let A be a bi-unitary superperfect over Fy such that w(A) = 2; then, A, A €
(2(x + 12, x4 (x + D)5 0 (x +1)%, 20 (x + 1)1, x2(x + )21, 221 (x + 1)22-1Y, where
d,dy,dy € N*.

2. Previous Work

Many researchers studied the unitary perfect polynomials over [F,. In their works [7,8],
the authors listed the unitary perfect polynomials over F,, where w(A) does not exceed
4. They listed others that are divisible by x(x + 1) M, where M is a Mersenne polynomial,
raised to certain powers. They proved that the only unitary perfect polynomials over I,
of the form A = x%(x + 1)’ [[,_y M; and h; = 2", n; € N* are those of the form B?" or Ezn,
where

B(x+1)3M2, 23 (x +1)2My, x°(x + 1)* My ifw(A) <3,
B € ¢ x7(x+1)*MyM;z, x° (x + 1)° M2 My, x°(x + 1)°MyMs, 27 (x + 1)’ M3M2Z  if w(A) =4,
x7(x +1)° MMM, x7 (x 4+ 1)°Ma M3 Ms if w(A) =5.

In [9], Beard found many bi-unitary perfect polynomials over F,;, some of which

are neither perfect nor unitary perfect. Beard showed that the only bi-unitary perfect

on—1
7

polynomials over F, with exactly two prime factors are x2(x + 1)2 and x2"~' (x +1) for
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any n € N* (Theorem 5 in [9]). He conjectured a characterization of the bi-unitary perfect
polynomials, which splits over F,, when p > 2. Beard also gave examples of non-splitting
bi-unitary perfect polynomials over F,, when p € {2,3,5}. Rahavandrainy [10] gave all
bi-unitary perfect polynomials over the prime field IFp, with at most four irreducible factors
(Lemmas 7 and 8).

Gallardo and Rahavandrainy [11] classified some unitary superperfect polynomials
with a small number of prime divisors under some conditions on the number of prime
factors of *(A). They proved that A € F;[x] is a unitary superperfect polynomial if

Ac 2 (x+ 1), 23 (x +1)%2", 3 (x 4+ 15, x(x +1)%, 27 (x +1)7 ifw(A) =2,
2(x+1)3Mp, B (x+1)3MY, x(x +1)°M8, x(x +1)° (P + 22 +1) ifw(A) =3.

For some m, n € N*and a € {1,2}.

3. Preliminaries

The following two lemmas are helpful.

211

Lemma 1. Let A be a polynomial in F[x]; then, c* (A ) = (o* (A))Zn and n is a non-negative

integer.

Proof. The result follows since o* is multiplicative and o*(p?') = 1+ p?" = (1 +p)?" =
(e*(p)*. O

Lemma 2. If A is a unitary superperfect polynomial over Ty, then A%" is also a unitary superperfect
polynomial over F, for all non-negative integers n.

Proof. Let A be a unitary superperfect, and let B = ¢*(A). By Lemma 1, we have

o2 (A2"> = (a* (AZ”)) = (BZ”) = (0*(B))?" = (¢*(¢*(A)))¥ = AY". O

Lemma 3 (Lemma 2.4 in [11]). Let A be a polynomial in F[x].

(1) If P is an odd prime factor of A, then x(x + 1) divides o*(A).

(2)  Ifx(x+1) divides A, then x(x + 1) divides o*(A).

(3)  If A is unitary superperfect that has an odd prime factor, then x(x + 1) divides A.

The following results are needed, and they are a result of Beard’s [9] and Raha-
vandrainy’s [10] works.

Lemma 4 (Theorem 1 and its Corollary in [9]). If A is a non-constant bi-unitary perfect
polynomial, then x(x + 1) divides A and w(A) > 2.

Proposition 1 (Lemma 2.2 in [10]).

(1)
(2)

0.**(132:1+1) — 0'(P2”+1).
c**(P?) = (1+ P")o(P*1) = (1 + P)o(P*)o(P*1).

The table in Section 7 shows some values of 0**(A) when A is a power of the first five
Merssene primes.

Corollary 1. If a is a positive integer, then

(1) 1+x divides o**(x7).
(2)  xdivides c**((1 4 x)*).

Proof. An immediate result of Proposition 1. [
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Corollary 2 (Corollary 2.3 in [10]). Let T € Fy[x] be irreducible. Then,

(i) Ifa € {4r,4r + 2}, where 2r — 1 or 2r + 1 is of the form 2*u — 1, u odd, then ¢**(P*) =
(L+P)* - o(P¥) - (¢(P*"1))*, ged(a(P¥),o(P*" 1)) = 1. v

(i) Ifa = 2%u — 1is odd, with u odd, then **(P*) = (1+ P)* 1. (o(P*~1))?".

The proof of the below proposition follows from Proposition 1 and the binomial
formula.

Proposition 2. Let the polynomial M; be the Mersenne prime and Q; be an irreducible polynomial
over F5, and let a,c € N*, If(x]- € N, then

(1) x(x+1) divides o** (MY).

(3) o™ (M) = x(x + 1)211Q}.
]

(M7)

(M3)

4 o**(MS§) = 2 (x + 1)ﬂ1;1Q;‘f.

(5) (M) = x*(x + 1)3a1]1Qj‘f.
(Ms)

Proposition 3 (Corollary 2.4 in [10]).

(1)
(2)

o (x*) splits over Fy if and only ifa = 2 or a = 24 — 1, for some d € N*.
o** (P°) splits over I, if and only if P is Mersenne and ¢ = 2 or ¢ = 29 — 1 for some d € N*,
Lemma 5 summarizes key results taken from Canaday’s paper [5].

Lemma 5. Let T be irreducible in Fy[x] and let n,m € N.

(i) If T is a Mersenne prime and if T = T*, then T € {My, My}

(i) Ifo(x*") = PQand P = o((x +1)*"), then2n = 8,2m = 2, P = My, and Q = P(x®) =
1+ 3 4 x6.

(iii) If any irreducible factor of o(x*") is a Mersenne prime, then 2n < 6.

(iv) If o(x®") is a Mersenne prime, then 2n € {2,4}.

Lemma 6 (Lemma 2.6 in [12]). Let m € N* and M be a Mersenne prime. Then, o(x*™),
o((x+1)%"), and o(M?™) are all odd and square-free.

4. Bi-Unitary Superperfect Polynomials

Recall that A is a bi-unitary superperfect polynomial in F [x] if c**?(A) = ¢** (¢**(A)) =
A. The polynomial A = x*(1 + x)* is a bi-unitary superperfect polynomial over F,.

The following polynomials are considered over IF; :

C=1+x+x% By = x3(x +1)*My, By = x3(x +1)°M?,

B3 = x*(x +1)*Mj, By = x®(x +1)°M;3, Bs = x*(x +1)° M3,

Be = x7(x +1)8Ms, By = x"(x+1)°MZ, Bg = x8(x +1)8 M, M5,

By = x8(x +1)°MyM2, Bjg=x"(x+1)"M2Ms, By =x7(x+1)3M3M2Z,
4

By = x(x +1)°M3M2, Biz = x"(x+1)¥MIM3, Ry =x*(x+1)°MiC,
Ry = x*(x +1)°M3C2.

The proof of the following lemmas follow directly.
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Proposition 4. If A is a bi-unitary perfect polynomial over Fy, then A is also a bi-unitary super-
perfect polynomial.

Proposition 5. If A is a bi-unitary superperfect polynomial over F, then B = ¢**(A) is also a
bi-unitary superperfect polynomial.

Rahavandrainy (Lemma 2.6 in [10]) proved that if A is a bi-unitary perfect polynomial
over Fp, where A = AjAj; such that gcd(Aq, Ay) = 1, then A; is a bi-unitary perfect
polynomial if and only if A; is a bi-unitary perfect polynomial. Rahavandrainy’s previous
result is not valid in the case of bi-unitary superperfect polynomials because the bi-unitary
superperfect polynomial A = x?(1 + x)(1 + x + x?)? is a counterexample over Fy. In fact,
A1 = x%(1 + x)? is a bi-unitary superperfect, but Ay = (1 + x + x2)? is not a bi-unitary
superperfect.

Lemma 7 (Theorem 1.1 in [10]). Let A € Fp[x] be a bi-unitary perfect polynomial such that
w(A) =3. Then, A,A € {B;:j <7}

Lemma 8 (Theorem 1.2 in [10]). Let A € Fy[x| be a bi-unitary perfect polynomial such that
w(A) =4. Then A, A € {B;:8 <j <13} U{Ry, Rz}

Proposition 6. If A(x) is a bi-unitary superperfect polynomial over F, then so is A(x).

Lemma 9. x(x + 1) divides c**(P*), a is a positive integer.
Proof. Since P is odd, then P(0) = P(1) = 1. If a = 2n + 1, then o**(P?"*1)(0) =
14+ P(0)+...4+P>""1(0) = 14+2n+1 = 0. If a = 2#n, then 1 + P"*1(0) = 0. Thus, x

(2n+1)-times
divides c**(P?) for every a € N. Similarly, x 4+ 1 divides ¢**(P?). Hence, x(x + 1) divides
o (P"). O

Lemma 10. Let A be a polynomial in Fy[x].

(1) If P is an odd prime factor of A, then x(x + 1) divides 7**(A).
(2)  Ifx(x+1) divides A, then x(x + 1) divides **(A).

Proof.

(1) We write A = P?B, where a € N* and B € F;[x] such that gcd(P, B) = 1. However,
1+ P divides 0**(A), and the result follows since x(x + 1) divides 1 + P.
(2) In asimilar manner, we write A = x?(x + 1)b B, where a,b € N*.
O

Corollary 3. If A € Fy[x] and w(A) > 2, then x(x + 1) divides c** (A).

Proof. Let w(A) > 2. If x(x 4 1) divides A, then Corollary 1 is completed. If x(x + 1) does
not divide A, then A is divisible by an irreducible polynomial P #{x,1 + x}, and the result
follows using Lemma 9. [J

Corollary 4. Let A be a polynomial in Fp[x] with w(A) > 2. If A is a bi-unitary superperfect,
then x(x + 1) divides A.

Proof. Let A = 0**?(A) = c**(B), where B = ¢**(A). Since w(A) > 2, then either P or
x(x + 1) divides A. In both cases, x(x + 1) divides c**(A) = B (Lemma 10). Thus, x(x + 1)
divides ¢**(B) = ¢c**2(A). O

The below corollary follows directly from Corollary 4.
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Corollary 5. If A = P*QV and a,b € N*. is a bi-unitary superperfect polynomial over F,, then
A=x*(x+1)

The following lemma is similar to Proposition 3.

Lemma 11. Let a, b € N*, then

(1) Ifais even; then, o**%(x*) and o**2((x + 1)) splits over Fy if and only if a € {2,4,10,12}.

(2)  Ifaisodd, then o**?(x*) and o**?((x + 1)7) splits over Fy ifand only ifa € {5, 9,13,2¢ — 1}
for some d € N*.

Proof.

(1) If o**(x) splits, a = 2 (Proposition 3) and ¢**2(x") = (x + 1)2. Suppose that ¢** (x*)
does not split with a = 4r,2r — 1 = 2%u — 1, (resp. a = 4r +2,2r+1 = 2%u — 1),
uis odd, r > 1. However, ¢**2(x?) = U**((l +x)% o (k) - (U(xufl))2a>; thus,
o ((1 + x)2ﬂ> must split. Hence, « = 1, and since ¢(x?") is odd and square-free
(Lemma 6), then U(xzr) has a Mersenne factor. Thus, 2r < 6 and, hence, u < 3.

(2) Assumea = 2*u — 1, with u is odd. If o**(x?) splits, then a = 29 _1,dis positive
(Proposition 3). If ¢**(x*) does not split, then a # 2¢ — 1 and since c**?(x*) =
X2 g ((a(x”’l))za) splits, u > 1. Again, using Lemma 6, c(x*") has a Mersenne
factor. Thus, u —1 < 6 and, hence, u € {3,5,7}. For u = 3, c**2(x") = x2 -1,
o (((f(xz))za) = 21 g (M%a) Hence, & = 1 and the same result is obtained
when u € {5,7}.

The same proof is performed for ¢**2((x + 1)), and the proof is complete. [

Lemma 12. Let a and b have the form 2" — 1, where n € N*, and let the polynomial A =
14 x*(x + 1)? be Mersenne prime over Fy; then, o**2(A) = xb(x +1)“.

Proof. Leta = 2" —1and b = 2" — 1; then,
T2(A) = o2 (1 (x4 1)1’)
= (o(1+x"(x +1)")
=0 (x”(x + 1)’”)
=xP(x+1)"
O

5. Proof of Theorem 1

We consider the polynomial A = P? and a € N*. We prove that ¢**(A) cannot have
more than one prime factor when A is a prime power.

Proposition 7. If A € {x,x + 1} and c**2( A?) splits over F», then A is a bi-unitary superperfect
polynomial.

Proof. Follows from part (1) of Lemma 11. O

Proposition 8. Assume P is odd, then A = P* € F,[x] is not a bi-unitary superperfect polynomial.
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Proof. Assume A = P? is a bi-unitary superperfect. Since P divides A, then x(x + 1)
divides ¢**(A), and using Lemma 10, we have that x(x + 1) divides c**2(A) = P%, a con-
tradiction. O

In particular, if M is a Mersenne prime polynomial over F,, then M* (c is a positive
integer) is never a bi-unitary superperfect polynomial.

Corollary 6. Let a € N* and let A = P? be a bi-unitary superperfect polynomial over Iy, then,
Pe{xx+1}.

It is clear from the preceding two corollaries that a bi-unitary superperfect polynomial
must be even.

Lemma 13. Let A be a polynomial over Fy with w(A) = 1; then, A is a bi-unitary superperfect
polynomial if and only if A, A € {x2,x*'~1}, where d € N*.

Proof. Using Corollary 6, A = x* or (x+1)". Assume A = x* and a = 2m; then,
m_
U**Z(A) — o** ((xm+1 + 1) X 1

Py ) Both x"*! + 1 and x™ + 1 split over F, only when

2(m+1) _
m = 1. Thus, g’**z(A) = o** (xz + 1) = xz.Ile =2m+1, thentf**z(A) = g** xx_11> .

The expression ¥2"+1) 41 splits over F, when 2m +2 = 2%, d € N*. Then, 0**2(A) =

x—1

the result follows since if A is a bi-unitary superperfect, then sois A. O

2d
x- =1
o** < > = A = x?'~1. The sufficient condition follows via direct computation, and

6. Proof of Theorem 2

We consider the polynomial A = P* Q% and a,b € N*. Note that A = x%(1 + x)?
and A = x2"71(1 + x)>~1 are bi-unitary superperfect polynomials over F, as shown
Proposition 4 and Theorem 5 in [9].

Proposition 9 (Lemma 3.1 in [10]). If the polynomial o**(x*(x +1)?) does not split, then (a > 3
orb>3)and (a #2" —1orb # 2™ —1 forany n,m > 1).

Lemma 14. Let a,b,d € N*. The polynomial A = x°(x + 1)? is a bi-unitary superperfect over F,
if and only if one of the following is true.

(1) Ifaand b are odd and o**(x*(x + 1)?) splits, then a and b are of the form 27 — 1.
(2)  Ifaandbare odd and o** (x"(x + 1)) does not split, then (a,b) € {(9,9),(9,13), (13,9)}.
(3) Ifaandbareeven, thena =0b € {2,4}.

(4)  Ifaand b are of opposite parity, then (a,b) € { (2, 24 1), (2"’ - 1,2) }

Proof.

(1) Ifa=2m+1andb = 2n+1, then ¢**2(A) = o** (a**(x”)(l + x)b). However,

o**(x?"*1) and o** (x + 1)2"*1 split over F, when 2m + 1 and 21 + 1 are of the form
24 1 (Proposition 3).
(2) Ifa=2%—1landb = 2Pv—1,u,vareodd Wehaveu > 1and v > 1since o** (x*(x 4 1)?)

does not split. ** (x%(x + 1)) = ** ((1 +x)2 -1 (U(xu—l))z"‘xzﬂ—lg((x n 1)2;—1)2'5).

Using Proposition9 (u —1 > 3anda = 1) or (v —1 > 3 and B = 1). Furthermore,
o(x*~1) and U((X + 1)”71) does not split since o** (x?(x + 1)) does not split. Thus,

there exist Merssene primes M (resp. M) that divides o'(x*~1) (resp. 0’( (x+ 1)”71).
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®)

4)

O

Hence, (u —1 < 6) or (v—1 < 6), and we have that u,v € {5,7}. If u = v =5, then
a=b=9.lfu=5andv=7thena=9andb=13. Iffu =v=7,thena=0b =13 1is
dismissed.

If a, b even, then a € {4r,4r + 2} such that 2r — 1, 2r + 1 is of the form 2*u — 1, where
uis odd and b € {4/,4r' +2} such that 2r' — 1, 27/ + 1 is of the form 2f vs. —1, v odd.
Thus,

2 28

cH(A) = (1+ x)z"‘flU(XZr) (U(xu71)> x2ﬁ710<(x + 1)21'/) (0_<(x + 1)071))

If o(x%), U((x + 1)2”), o(x*~1), and a((x + 1)7’_1) are Mersenne, then 2r, 21/, u —
1L,v—1€ {2,4}. Thus,a = b =4.1f o (x*), o (x*"1), a((x + 1)2”) and (T((x + 1)”71)
are not Mersenne, then r,7/,u — 1,0 — 1 > 2 and w(c**?(A)) > 2, a contradiction. For
a = b = 2, A is bi-unitary perfect; hence, A is a bi-unitary superperfect.

Now, leta = 2m + 1 and b = 2n. Since c** ((x + 1)2n) splits over IF; only whenn =1,
then 0**2(A) = ¢** (o** (x>"T1)o** ((x + 1)) ). However, o**(x*"*1) splits over F,

if 2m + 1is of the form 29 — 1. Ifa = 2mand b = 2n + 1, thena =2 and b = 29 — 1.
The sufficient condition can be easily verified.

The proof of Theorem 2 is now complete.

7. Some Values of c**(A) and c**2(A)

For convenience of readers, we list the below table that consists of the values of c**(A)

and 0**2(A) for A € {x% (x+1)", M!}, where 1 < a < 13,1 < b < 7. We consider the
polynomials C; =xt4+x4+1,C=x04+"+x*+x24+1,C3=x4+x°+x*+x+1,and
Ca=x0 4+ x4 x> +x+1.

Table 1. A € {x7, (x+1)", M*}.

A a o o

x? 1 X x+1
2 x? (x+1)2
3 x3 (x+1)3
4 x> M, x(x+1)3
5 xM? x?(x+1)°
6 X4M1 X(X + 1)3M1
7 x7 (x+1)7
8 x*Ms x3(x+1)3M,
9 xM?2 x0(x+1)3
10 x2M?Ms (x+1)°
11 x3 M} x2(x +1)°C
12 x2M3i Mo M; xO(x +1)7
13 xM2M3 x6(x +1)7
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Table 1. Cont.

n . = 2
(1+x)" 1 x x+1

2 x? (x+1)2

3 x3 (x+1)3

4 x> M; x(x+1)3

5 xM? x?(x+1)3

6 x* My x(x+1)3M;

7 x7 (x+1)7

8 x*Ms 3 (x+1)3M;

9 xM2 x0(x+1)3

10 x2M2Ms O(x+1)°

11 M X (x +1)5C

12 x2M2 MM, x®(x+1)7

13 xM2ZM3 x0(x +1)7
M 1 x(x+1) x(x+1)

2 x?(x +1)2 X2 (x+1)2

3 x3(x+1)3 3(x+1)3

4 XZ(X + 1)2C1 x3(x + 1)3M1

5 x(x+1)C? (x+1)°M7

6 xHx+ 1) B(x+1)3M;

7 x7(x +1)7 x7(x +1)7
M;j 1 x(x+1)2 x2(x+1)

2 x?(x+1)* x2(x+1)2M,

3 x3(x+1)° A(x+1)3M

4 x?(x +1)*M; Ms x0(x +1)*My

5 x(x +1)2M3 M2 x10(x +1)°

6 x*(x +1)8M; Ms x8(x +1)*M; Ms

7 X (x+1)14 xB(x+1)"MyM;
M 1 x?(x+1) x(x +1)?

2 xt(x +1)? x2(x+1)2M,

3 x0(x +1)3 3 (x+1)4M,

4 x*(x +1)°M; My xHx+1)0M,

5 x?(x+1)M3M3 X (x +1)10

6 x8(x +1)*M My x(x +1)8M My

7 x4 (x+1)7 X7 (x +1)8MaM;
Mj 1 x(x+1)3 x3(x+1)

2 x2(x +1)° x*(x +1)2M;

3 3(x+1)° x(x +1)3(Ms)?

4 x?(x +1)°M;C, X7 (x +1)*M; M,

5 x(x+1)3M3C3 X (x+1)°M3

6 x*(x +1)12MCy XO(x+1)AM; M2 M;

7 X7 (x +1)2 x(x+1)7
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Table 1. Cont.

n . i s
(Ms)* 1 B3(x+1) x(x+1)3

2 x0(x +1)? x?(x+1)*My

3 x(x+1)3 x3(x+1)M?

4 x®(x +1)°M;C3 x*(x +1)" M M;

5 x3(x+1)M2C3 (x +1) M3

6 x12(x 4+ 1)*M;C3 x*(x +1)° M3 My M3

7 (x4 1)7 x7(x+1)(c7(x10))2

8. Conclusions

In conclusion, we proved the non-existence of odd bi-unitary superperfect polynomials
and provided a classification for bi-unitary superperfect polynomials over IF, based on their
irreducible factors. In particular, we showed that a non-constant bi-unitary superperfect
polynomial A over [F; can be divisible by one irreducible polynomial x or x + 1 with
exponent 2 or 2" — 1 for a positive integer n. Furthermore, we showed that the only bi-
unitary superperfect polynomials over F, with exactly two irreducible factors are of the
form x?(x 4+ 1)? witha,b € {2,4,9,13, 29 —1},disa positive integer.
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