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Abstract: Wireless electroencephalography (EEG) has emerged as a critical interface between human
cognitive processes and machine learning technologies in the burgeoning field of sensor communica-
tions. This paper presents a comprehensive review of advancements in wireless EEG communication
and analysis, with an emphasis on their role in next-generation green wireless networks and industrial
IoT. The review explores the efficacy of modulation techniques, such as amplitude-shift keying (ASK)
and frequency-shift keying (FSK) in EEG data transmission, and emphasizes the transformative role
of deep learning in the joint transmission and restoration of EEG signals. In addition, we propose a
novel, energy-efficient approach to deep learning-based EEG analytics, designed to enhance wireless
information transfer for industrial IoT applications. By applying an autoencoder to sample the EEG
data and incorporating a hidden layer to simulate a noisy communication channel, we assessed the
energy efficiency and reliability of the transmission. Our results demonstrate that the chosen network
topology and parameters significantly affect not only data fidelity but also energy consumption,
thus providing valuable insights for the development of sustainable and efficient wireless EEG
systems in industrial IoT environments. A key aspect of our study is related to symmetry. Our
results demonstrate that the chosen network topology and parameters significantly impact not only
data fidelity but also energy fidelity and energy consumption, thus providing valuable insights for
the development of sustainable and efficient wireless EEG systems in industrial IoT environments.
Furthermore, we realized that the EEG data showed mildly marked symmetry. Neural networks
must also exhibit asymmetric behavior for better performance.

Keywords: EEG; deep learning; WBAN; machine to machine; wireless sensor networks

1. Introduction

In today’s digital age, enhancing quality of life through context-aware solutions
and biological monitoring is paramount. As wearable and implantable wireless sensors
have become increasingly integrated with next-generation green wireless networks and
industrial IoT applications, there is an urgent need for energy-efficient and context-aware
solutions. This paper aims to explore how deep neural networks (DNNs) can contribute
to this evolving landscape, with a focus on electroencephalography (EEG)-based brain-
computer interfaces (BCIs).

BCIs have already demonstrated immense potential for a wide range of applica-
tions, from the intuitive control of smart devices and industrial automation to advanced
healthcare diagnostics. Unlike other brain-monitoring techniques, such as magnetoen-
cephalography, EEG has emerged as a particularly mobile and non-invasive method that
can seamlessly integrate with industrial IoT applications [1].
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Wireless body area networks (WBANs) serve as the foundation for these innovations,
particularly when connected via machine-to-machine (M2M) connectivity. WBANs have
shown their utility in both medical and non-medical domains, including, but not limited to,
healthcare, environmental monitoring, industrial applications, entertainment, security, and
fitness. This not only reduces the financial burden of in-hospital patient monitoring but
also promises a more sustainable approach by leveraging energy-efficient technologies [2].

Within the scope of WBANs, this paper highlights the challenges and opportunities
associated with EEG data transmission and processing in next-generation green wireless
networks [3]. Given the limited energy resources available for wireless transmission in
WBANs, it is imperative to explore efficient methods of EEG data communication. One
notable challenge is the potential for increased noise levels during the mobile collection of
EEG data [4].

To address these challenges, we propose an innovative approach using deep learning-
based autoencoders designed to simulate wireless channel conditions. Our aim is to
explore how DNNs can be leveraged to improve the fidelity of EEG signal transmission
and significantly reduce the energy consumption and overall data transmission volume.
Various architectures and parameters are tested to identify the most energy-efficient and
reliable methods for EEG data processing and transmission in industrial IoT scenarios.

In summary, this study shifted the focus from the traditional Fourier domain analysis
to a machine-learned feature extraction and reduction approach for EEG signals. This
new methodology not only offers significant advancements in feature extraction and noise
reduction but also presents a sustainable solution that aligns perfectly with the objectives of
next-generation green wireless networks and industrial IoT. Next, we provide the roadmap
for the paper to benefit the audience. We begin with a discussion of how EEG is used in
modern systems, particularly in machine-to-machine (M2M) communications, wearable
IoT systems, and wireless body area networks (WBANs). We detail how aspects such as
heterogeneity, energy, and quality of service (QoS) play critical roles. This is followed by
detailing the key aspects of signal communications related to wireless EEG, namely power
management, MAC and network topologies, and spectrum usage. Next, we survey the
research gaps in the current state-of-the-art of EEG signal processing and review recent
works that aim to overcome these gaps in Section 3. The gaps consist of how to best collect
the data for EEG applications via the channel selection nature of the application. This
is followed by a study on the distributed collection and processing of signals captured
at separate locations. Finally, Section 4 details how disruptive the technology is: Deep
Learning. We demonstrate the novelty we carried out in this regard and compare the work
to another existing approach. This is followed by the conclusion section, which summarizes
our review and contributions to this paper. We demonstrate that network topology and
parameters significantly influence not only data fidelity but also energy consumption,
thus providing valuable insights into the development of wireless EEG systems that are
sustainable and energy-efficient. Figure 1 shows the structure of the proposed work.
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Figure 1. Structure of the proposed work.

2. Current Technologies

In this section, we offer an analysis of essential factors in this field, covering topics such
as the latest advancements in EEG technology, machine-to-machine communication proto-
cols, pivotal considerations, and prevailing standards governing brain-machine interface
communications.

2.1. EEG in Recent Use

In the past decade, electroencephalography (EEG) has undergone a remarkable trans-
formation, evolving from large, precise, yet cumbersome devices to compact, wirelessly
enabled, wearable systems. Traditional EEG setups, characterized by their intricate config-
urations and time-consuming application procedures, often result in user discomfort [5].
On the other hand, wearable EEG devices, although limited in sensitivity and spectral
range owing to cost considerations, offer the advantage of data collection in non-medical
settings. This versatility has expanded their application scope to include cognition studies,
brain-computer interfaces, educational research, and gaming [6].

Despite its emergent status, the field is primarily propelled by the continuous in-
novation of new devices that act as crucial links in the development chain. In line with
contemporary advancements in WBANs, this study undertakes an exploratory examination
of wireless EEG sensor networks, with an emphasis on decentralized signal processing. A
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wireless encephalography sensor network (WESN) serves as a modular neuromonitoring
platform featuring high-density EEG recordings across multiple nodes equipped with
electrode arrays, signal processing units, and wireless communication functionalities [7].

We explore the merits of such a modular setup, particularly highlighting how de-
centralized signal processing algorithms can mitigate power consumption by avoiding
centralized data accumulation. One practical application involves a wireless multi-channel
EEG system that employs lossless or near-lossless compression algorithms. This creates
a low-power platform that is conducive to the development and testing of efficient, low-
complexity compression techniques. Publicly accessible EEG databases often act as testing
grounds for these algorithms, allowing for comparisons of the compression rates reported
in the extant literature.

For instance, consider a 59-channel EEG signal sampled at a rate of 500 Hz and bit
depth of 16 bits per sample. These data can be efficiently encoded and transmitted via our
proposed platform in the lossless mode, requiring only a current draw of 337A per channel.
Importantly, the decompressed signal retains complete fidelity to the original recording,
and the experimental section of this paper elaborates on the similar settings employed to
generate our results.

Subsequently, we examine core principles of communication technology that enable
seamless connectivity in BCI applications. It is worth noting that EEG data are susceptible
to various noise interferences such as

• Signal from the heart (ECG, EKG, or electrocardiogram);
• EMG artifacts caused by muscle contractions;
• An electrooculogram (EOG) is a signal produced by eyeball movement;
• Lines of AC power, electronics, etc.

In the context of data processing, employing an encoder-decoder framework effectively
mitigates most of these noise components by projecting them into a reduced-dimensional
space.

2.2. Digital Modulation for BCI

In the design and development of implantable devices for BCIs, a range of indepen-
dent metrics, such as spatial distance, information content, dependency, and consistency
are employed to assess the suitability of the channel subsets generated through search
algorithms. This section emphasizes the significance of achieving high data rates, energy
efficiency, and low power consumption in BCIs. We delve into various digital modulation
schemes, such as amplitude shift keying (ASK), frequency shift keying (FSK), and phase
shift keying (PSK), which are specifically tailored for wireless applications.

A comparative analysis featuring tables summarizing the data rates, CMOS sizes,
and other pertinent parameters is presented to highlight the efficacy of these modulation
schemes in implantable devices. the thoughtful selection of modulation techniques, cou-
pled with optimized modulator and demodulator designs, can effectively mitigate power
consumption and minimize electromagnetic interference with surrounding electronics.

An extensive review of the literature revealed that ASK, FSK, and PSK are commonly
employed in wireless implantable devices. Despite these advancements, there are still a
myriad of challenges affecting communication systems in contemporary devices. The realm
of low-power wireless electronics is a burgeoning field with a significant body of research
addressing areas such as biomedical sensing [8], implants [9], wireless sensor networks [8],
intelligent biomedical devices [10], and body sensors [11].

A focused analysis of the literature published between 2000 and 2011 revealed develop-
ments in low-power transmitters that utilize digital bandpass modulations in implantable
devices. For instance, CMOS-based ASK demodulators have been designed to extract and
decode digital data from current signals featuring discrete amplitude levels ranging from
four to four, with an exceedingly narrow modulation depth of 250 kHz.
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In the following sections, we discuss the integration of EEG-inspired technologies
into machine-type communication systems, shedding light on both the possibilities and
challenges that lie ahead.

2.2.1. M2M Technologies with Application to BCI and EEG

The proliferation of smart interconnected devices has accelerated since the rise of
ubiquitous connectivity. Machine-to-machine (M2M) technology is a burgeoning field
that facilitates autonomous machine communication and circumvents the need for human
involvement. This technology is especially pertinent to mobile health (mHealth) applica-
tions, benefiting both healthcare providers and patients. However, M2M presents several
challenges and complexities.

As the demand for mHealth solutions continues to escalate, wireless communication
remains a central focus, with an emphasis on overcoming the challenges specific to the
mHealth and M2M paradigms. Research in this area has recently gained traction, owing to
its broad range of applications, benefits, and market potential. Notable works include those
by Chi and Cauwenberghs [12], who provide an overview of standardization initiatives and
M2M applications, and Nandyala and Kim [13], who explore intriguing network-related
challenges.

Additional areas of research include medical sensor design [14–18], body area net-
works [19,20], and WBANs [21–23]. This paper’s unique contribution lies in a compre-
hensive review of physical layer (PHY) technologies in WBANs, highlighting testbed
implementations, and providing an end-to-end overview of M2M systems within mHealth
contexts.

EEG is being increasingly employed in BCI systems. Machine learning algorithms
applied to EEG data are particularly effective for real-time BCI applications, owing to their
capability to learn flexible, nonlinear functions with constant latency. Despite the sensitivity
of EEG signals to electromagnetic noise, efforts are ongoing to minimize system jitter and
enhance overall reliability.

The Robot Operating System (ROS) offers intriguing parallels to BCI systems; both
rely on concurrent communication processes. For example, Beraldo et al. [24] successfully
integrated ROS with a BCI for mental control of a telepresence robot. The ROS-Neuro
framework capitalizes on the modularity and reliability of ROS, facilitating synergies
between bio-systems and robotic systems.

A comprehensive review of the key technological attributes and advancements will
follow.

2.2.2. Key Aspects to Consider for M2M and WBAN

This section discusses the pivotal factors to be considered when integrating machine-
type applications within wireless brain interface networks. These aspects span traffic types,
energy consumption, service quality, system reliability, and user considerations, which are
elaborated as follows.

1. Device and Traffic Heterogeneity: M2M devices in mHealth often comprise various
medical sensors situated on or within the human body. These sensors wirelessly
transmit real-time data for continuous patient monitoring by healthcare professionals.
Sensors can measure various physiological parameters such as heart rate, muscle
activity, and brain signals, whereas actuators act on commands from sensors or
manual input to perform specific tasks, such as insulin delivery.

2. Energy Efficiency: Given the compact size requirements for body sensors, battery
size and life become critical. Replacing batteries, particularly in implantable devices,
is highly inconvenient and requires energy-efficient designs. Therefore, low-power
transceiver architectures and energy-aware communication protocols are required.

3. Quality of Service (QoS): M2M mHealth systems exhibit a broad range of traffic
patterns, from low-rate monitoring to high-bandwidth, real-time applications. End-
to-end delay is often the most stringent QoS requirement, particularly in real-time
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monitoring scenarios. Medical applications typically require support for bit error
rates ranging from milli to micro levels with a maximum allowable delay of 125 ms.
Alert mechanisms that trigger warnings based on preset thresholds are also integral
to the system.

4. Reliability: In mHealth applications, reliable data transmission from patients to
the medical staff is imperative. WBANs, particularly on the patient’s side, are the
most vulnerable components of the M2M architecture because of the inherently error-
prone nature of biological channels. Consequently, these networks must be designed
considering factors such as patient mobility, specific absorption rates (SAR), and the
interference environment.

5. User posture and context: Although body posture can affect sensor readings, our
study assumes that the user is in a sitting position and does not incorporate specific
variables in the experiment.

Beyond the previously discussed performance metrics, additional factors such as
network topology, transmission protocols, and technology integration must be scrutinized,
which are detailed as follows.

1. Network topology: In most WBAN setups, star topology is prevalent, where all
sensor devices connect directly to a central WBAN coordinator. However, network
reliability and energy efficiency can be enhanced by using sensors as relays [25–29]. In
M2M communication, point-to-point medium to long-range connections between the
gateway and core network are typically assumed (e.g., via WLAN or LTE). Advanced
topologies that exploit multiple Wireless Sensor Networks [30] or ambient sensor
networks [31] can be considered for efficient routing and cooperation.

2. Transmission and data retrieval: mHealth applications necessitate secure wireless
transmission and storage of sensitive medical data. Therefore, a robust strategy is
imperative to safeguard M2M communications [32]. New schemes must be developed
to cater to the unique characteristics of various technologies to create interoperable
and technology-agnostic security protocols.

3. Technology integration: The wireless technologies employed across different layers
of the M2M system have unique challenges and must be meticulously integrated
for effective mHealth applications. Access technologies such as LTE, WiMAX, and
IEEE 802.11 WLAN must be tailored to meet the specific requirements of WBANs.
Customization is crucial for achieving end-to-end quality of service (QoS), scalability,
and ubiquitous connectivity. The subsequent section in this chapter will delve deeper
into current communication standards, emphasizing the importance of technology
integration in machine-type brain interfaces.

2.2.3. Communication Standards for EEG

References discuss recent work on wearable and machine-linked EEG systems and
provide current developments in this domain, particularly when they are operated in a
wireless environment [33,34].

The IEEE 802.15.6 standard was recently introduced for short-range wireless commu-
nications near or within the human body. This standard is particularly suitable for EEG
applications for several reasons.

• Power management: To extend battery life and comply with safety regulations con-
cerning SAR, IEEE 802.15.6 employs both macroscopic and microscopic power man-
agement strategies, including hibernation and sleep modes.

• Security and privacy: This standard ensures the timely delivery of alarms in emer-
gency situations and incorporates robust security measures to safeguard patient
privacy and data confidentiality.

• Physical layer technologies: Three distinct technologies are supported at the PHY
layer-ultra-wideband (UWB) PHY, which leverages a wide bandwidth for high perfor-
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mance, robustness, low complexity, and ultra-low power; and human body communi-
cation (HBC) PHY, which utilizes the human body as a transmission medium.

• Frequency bands: The standard accommodates multiple frequency bands, from the
unlicensed 2.4 GHz range to the 402–405 MHz Medical Implant Communications
Service (MICS) band reserved for medical implants.

• MAC layer priorities: IEEE 802.15.6 defines eight user priorities at the MAC layer,
where 0 represents the lowest and 7 represents the highest priority, typically used for
medical emergencies or implant-related events.

• Network topology: WBANs operating under this standard typically use an extended
star topology, where all nodes connect directly to a hub or through a single relay node.

• Access protocols: Both contention-free and contention-based channels are considered.
For the latter, two random access protocols are specified: slotted Aloha and carrier-
sense multiple access with collision avoidance (CSMA/CA).

• Integration with M2M systems: To enable end-to-end M2M communication, sensors
must connect to the Internet via an M2M gateway, typically using WLAN/WMAN
standards such as WLAN (802.11), WiMAX (802.16), and LTE/LTE-A.

3. Recent Advanced Methods

Although the previous section offered a comprehensive overview of the underlying
technologies employed in machine-type brain interface solutions, the field is in a constant
state of evolution. Recent innovations have significantly enriched this domain by intro-
ducing novel methods and optimizing existing processes. In this section, we provide an
elaborative study of three such advancements in this field, namely, the use of channel
selection when utilizing BCI for analysis, the use of compressive sensing to optimize the
computational needs of the systems, and finally the use of distributed processing to take
advantage of the distributed nature of signal collection and processing.

3.1. Channel Selection for BCI

Channel selection is a critical aspect in the realm of EEG data processing given its role
in computational efficiency, overfitting mitigation, and setup time reduction. The principal
objectives of channel selection can be summarized as follows: (i) Minimizing the com-
putational complexity by selecting pertinent channels and crucial features, (ii) Curtailing
overfitting by excluding superfluous channels; and (iii) Accelerating the setup process.
Various algorithms employ signal processing techniques such as time-domain analysis,
power spectral estimation, and wavelet transform for feature extraction. Various evaluation
methods—filtering, wrapping, embedding, hybrid, and human-were applied to assess the
selected channel subset. This subsection aims to categorize and expound on the current
advancements in EEG channel selection methodologies.

• Scalp EEG acquisition: Typically chosen for its cost-effectiveness, ease of use, porta-
bility, and excellent temporal resolution. Two primary modes, bipolar and unipolar,
exist for the recording of scalp EEG signals. The International 10–20 system, recom-
mended by the International Federation of Societies for Electroencephalography and
Clinical Neurophysiology (IFSECN), guides electrode placement on the scalp.

• Identification of brain waves: Frequency bands such as beta, alpha, theta, and gamma
encapsulate the most significant data related to human cognitive states. These bands
provide invaluable information for diagnosing various mental states and disorders.

• EEG correlation and extraction: Channel reduction becomes indispensable when
many channels introduce complexity and setup time. Channel reduction is particu-
larly relevant in the development of portable medical systems, where computational
efficiency and early seizure detection are crucial [35,36].

• Developments in EEG-based processing: Advances in low-cost interfaces have fos-
tered the development of channel selection algorithms. These algorithms target en-
hancing the model performance, speeding up processing, and enabling dimensionality
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reduction. Multiple evaluation methods, such as filtering, wrapping, embedding, and
hybrid approaches, have been employed for this purpose.

• Filtering approach: Known for its speed and classifier independence, it often requires
additional refinement for accuracy [37].

• Wrapper approach: Involves using a classification algorithm to evaluate channel
subsets, adding an extra layer of scrutiny [38].

• Embedded approach: Integrates channel selection and classification, reducing the
likelihood of overfitting.

• Hybrid approach: A combination of filtering and wrapping techniques was designed
to circumvent the need for a stopping criterion [39].

• Human-guided approach: This approach utilizes expert judgment in certain appli-
cations, such as seizure detection, offering the advantage of reduced computational
requirements.

Among the key works in this area are studies on removing channel noise via channel
selection, channel selection, and transformation-based signal decoding. According to the
reference, (1) noises that are irrelevant to the task should be removed rather than compli-
cated; (2) EEG encodings that are subject-invariant by taking functional connectivity into
account. They constructed a task-adaptive graph representation of the brain network based
on topological functional connectivity rather than distance-based connections. Additionally,
only functional regions relevant to the corresponding intention were selected to exclude
non-contributory EEG channels [40].

A brain-decoding model called AdaEEGNet is presented in this study [41]. A reduction
in computational costs can be achieved by adaptively controlling the number of input
channels, and an improvement in classification accuracy can be achieved by reducing
over-fitting. Specifically, a lightweight policy module analyzes which channel is required
for decoding current EEG trials.

3.2. Secure Wireless Communications Based on Compressive Sensing

Compressive sensing (CS) has garnered substantial attention across multiple domains,
such as wireless communications, image processing, and medical imaging, mainly because
of its dual capability of concurrently sampling and encrypting data concurrently. In recent
advancements, the secure wireless communications leveraged by CS have necessitated
both sparsity and incoherence. To satisfy the sparsity criterion, a signal needs to be sparse
or compressible. Concurrently, an incoherence condition mandates a sparse basis and
measurement matrix.

Notably, CS significantly outperformed the traditional Shannon–Nyquist sampling
theorem in terms of the required sample size for equivalent data recovery. For instance,
conventional ECG sampling at 256 samples per second can be drastically reduced in CS, as
only the non-zero coefficients in the wavelet or Gabor basis carry pertinent information [42],
which translates into a reduced number of required measurements, thereby enhancing the
computational efficiency and speed of data recovery.

In the context of BCI and artificial intelligence, five stages delineate the process of
identifying specific brain signal patterns.

• Signal capture: Brain-measuring hardware captures EEG data, which are subse-
quently visualized and recorded using SDK or API software.

• Preprocessing: This stage entails the removal of electrical interference and muscu-
loskeletal noise to prepare raw signals for further analysis.

• Feature Extraction: At this juncture, the most relevant brain patterns are isolated and
used as input variables for classifiers [42,43].

• Classification: Segregated patterns are classified into discernible categories, serving
as a basis for subsequent control interface commands.

• Control Interface: Finally, these classified patterns are translated into actionable BCI
commands, such as the control of a wheelchair, robotic arm, or drone [44–46].
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This subsection underscores the transformative potential of CS in secure wireless
communication and BCI, elucidating how its superior sampling capabilities can pave the
way for efficient and secure communication channels. In [47], the authors applied the
optimized Walsh–Hadamard transform (OWHT) to compress EEG and ECG signals. In
addition, local binary patterns (LBPs) are applied to enhance the classification accuracy in
signal compression. Using this technique, compressed signals were analyzed for discrim-
inative features. A residual learning algorithm is then used to classify the features. The
authors in [48] applied a BCI based on EEG with a customizable configuration for use with
cloud architectures to control robotic wheelchairs. Canonical correlation analysis (CCA)
and compressive sensing (CS) were applied as novelties, as well as free calibration and a
calibration stage for steady-state visual evoked potential (SSVEP)-based BCIs. In TSMC’s
65nm CMOS technology, CS-Audio provided the first CS-based compression with a DWT
sparsifier on-chip in [49].

3.3. Distributed Signal Processing

This section provides an in-depth investigation of WESNs, specifically focusing on the
advancements in distributed signal processing in conjunction with WBANs. Each node
within a WESN is equipped with an electrode array, a signal processing unit, and wireless
communication capabilities, thereby enabling high-density EEG recordings. We discuss
the modular architecture and its benefits, followed by an exploration of how distributed
signal-processing algorithms enhance the energy efficiency of WESNs by negating the need
for data centralization.

The WBAN comprises various sensing nodes, each integrated with a physiological
sensor, a signal processing unit, and wireless communication modules. These networks
are often multimodal, allowing the real-time joint analysis of data from different sensor
types to improve medical diagnostics. High-density sensing modalities, such as HD-EEG,
HD-sEMG, and HD-ECG, are often deployed in mini-scale homogeneous WBANs, which
can act as sub-networks within larger heterogeneous WBAN systems. Such systems are
particularly useful for long-term neuromonitoring of diseases such as epilepsy, Parkinson’s,
and Alzheimer’s, owing to their low power consumption and potential for miniaturiza-
tion [50–53].

The most promising technique for long-term neuromonitoring is EEG, owing to its
wireless and wearable nature. Despite investments from both academia and industry,
current systems still largely depend on bulky headsets and offer limited autonomy. The
cost metrics for modern EEG systems are approximately 25 per channel for front-end
systems and around 120 for wireless transmission of a single EEG signal [54].

Energy-efficient WESNs have been poised for a paradigm shift using distributed signal-
processing algorithms. These algorithms not only reduce the data that each node must
transmit but also facilitate short-distance, nearest-neighbor communications, obviating
the need for data relays over multiple hops. Previous work has skimmed the advantages
of per-channel processing advantages for wireless EEG systems [55,56]. The design of
distributed neural network architectures that can perform efficient inference within sensor
networks with limited communication bandwidth is shown in [57]. Data are exchanged
over bandwidth-limited communication channels between multiple sensor devices to
perform a classification task. Starting with a centralized neural network, they transformed
it into a distributed architecture where different nodes distribute channels.

Various topologies exist for WESN deployment, each with its merits and drawbacks.
Networks with numerous short-range communication links are resilient but may require
complex routing owing to their cyclic paths. On the other hand, tree-like topologies are
less robust against link failures but facilitate cycle-free distributed signal estimation.

The critical takeaway is that the future of WESNs hinges on the adaptability of dis-
tributed signal processing algorithms. By localizing the signal processing, these networks
can achieve massive parallelization and low-power operation. Furthermore, these algo-
rithms are entirely scalable, offering a promising avenue for the development of power-
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efficient long-term neuromonitoring solutions. Case-based electroencephalography (EEG)
learning involves presenting real-life examples to enhance the understanding of EEG
data interpretation and analysis. These include seizure diagnosis and classification, sleep
disorders assessment, epilepsy monitoring unit, neonatal EEG for seizure detection, and
drug-induced EEG changes. Using these scenario-based learning tools allows students to
gain hands-on experience in interpreting EEG data and making clinical decisions based on
real-world situations in educational settings, such as medical schools and neurology resi-
dency programs. In our case, we consider populations that are not ridden and have mobility
as well as operate in a dynamic and mobile environment or use dynamic equipment.

4. Deep Learning for EEG

In light of recent advancements in machine-brain interface technologies, our research
shifts its focus towards a groundbreaking approach utilizing deep learning for both com-
pressed data communication and in-depth data analysis. Specifically, we explore the
application of autoencoder techniques for noise reduction in EEG signals. Although au-
toencoders have previously been employed for noise mitigation in simulated channels,
our approach is novel in terms of its integration with EEG data. In this section, we detail
our innovative methodology and follow it with experimental evidence demonstrating the
efficacy of deep learning in both the compression and analysis of EEG signals.

4.1. Deep Learning and EEG

In this subsection, we discuss how deep autoencoders (AEs) are employed to di-
mensionally reduce raw EEG channels in real time, thereby yielding a more streamlined
and cleaner signal. Our study elaborates on how these AE-based deep learning models
can be effectively applied to BCIs. In subsequent experimental discussions, we obtained
quantitative results demonstrating the efficacy of our model for signal compression. This
compressed signal allows efficient downstream processing with a negligible time lag.

A considerable amount of existing research aims to enhance traditional machine
learning classifiers by incorporating various pre-trained AEs. Pioneering work in this area,
such as that by Hassani et al. [56], integrated machine learning with BCI systems using deep
belief networks and denoising AEs. This paper also covers the complexity of classifying
motor imagery data, especially when tainted by artifacts, through classifiers that combine
Lomb-Scargle periodograms with denoising AEs and Support Vector Machines (SVMs).

A major challenge facing BCI systems is the variability in their performance across
different subjects. Various techniques have been explored to enforce subject-invariant
feature representations. Yao et al. [58] approximately 75% accuracy in multi-subject motor
imagery classification by employing AEs in feature learning and gradient-boosted decision
trees in classification tasks. Furthermore, deep learning has shown promising results in
recognizing P300 components, even outperforming standard machine learning classifiers
through the use of sparse AEs.

Advancements in computing capabilities have enabled the development of large
and complex models. For example, attention-based neural networks have been applied to
classify briefly heard musical snippets with approximately 37% accuracy [59]. Moreover, ad-
versarial networks have been deployed to induce domain-invariant feature representations,
leading to accuracies greater than 60% [60]. Studies have also explored the categorization
of motor imagery activities using more intricate models that combine motor execution and
motor imagery EEG data [61,62].

Convolutional neural network (CNN) autoencoders serve as efficient tools for captur-
ing the spatial and structural characteristics of data. Generally, they are composed of two
main types of layers:

• Convolutional layers: Specialized in feature extraction.
• Pooling layers: Focused on reducing the dimensionality of the data.

This architecture allows CNN autoencoders to perform various tasks related to EEG
signal analysis.
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A convolutional layer employs filters, kl
ij, which are generally much smaller than the

dimensions of the input data and constitute a locally connected structure. Each filter in
layer l generates feature maps Xl

j by convolving with input Xl=1
i and adding biases bl

j.
Subsequently, these features undergo a nonlinear transformation f (·), formulated as:

Xl
j = f

M(l−1)

∑
i=1

X(l−1)
i ∗ kl

ij + bl
j


Here, M(l−1) signifies the number of feature maps in the preceding layer l − 1, and ∗

represents the convolution operation.
The pooling layer considers the roles of the feature selection and data filtration. Both

max and average pooling are frequently employed pooling operations. Max pooling selects
the maximum value within a given sub-region, whereas average pooling calculates the
mean value. Typically, a fully connected layer precedes the output layer, which is often a
softmax layer, thereby transforming the features into a long 1D vector.

4.2. EEG Signal Compression with Deep Convolutional Autoencoders Integrated into Real-Time
BCIs

EEG-based BCI applications require the computation of intricate functions over noisy
EEG channels. In online BCI settings, deep learning algorithms have the advantage of
constant processing latency, allowing them to learn nonlinear functions directly from the
data. Minimizing system jitter is crucial to avoid unpredictable behavior. We introduce
a novel encoding algorithm based on deep convolutional autoencoders, integrated into a
ROS-Neuro node. This enables seamless integration of ROS-based BCI and robotic systems
for practical applications. The experimental results confirm that our system can generate
compressed yet informative encodings from raw input data.

Deep learning (DL) algorithms have proven to be effective for processing physiological
data, making them an ideal fit for the ROS-Neuro framework. We introduce a ROS-Neuro
node capable of efficiently encoding EEG-based BCI signals in real time using DL models.
Raw EEG channels undergo real-time dimensional reduction via a deep autoencoder (AE),
leading to a cleaner and more compact input representation.

First, we detail the AE model employed before discussing its practical deployment.
Quantitative results for signal compression tasks illustrate the model’s efficacy in generating
an efficient, easily manipulable representation of the raw input with minimal time jitter.

Earlier research primarily aimed to enhance the accuracy of traditional, non-deep
classifiers using various unsupervised trained AEs. Spatially, many matrix elements in
the input are zeroed out, offering no information to the downstream processes. Moreover,
much of the input is redundant because of the high correlation between the remaining
channels. Given that the most meaningful EEG information arises from the slow temporal
evolution of channels rather than localized nuances, high-frequency sampling is generally
not required. To retain the essential information of the input while potentially discarding
noise, it is advantageous to encode a segment of the input into a compact representation.
The AE comprises two sub-models: a decoder x = g(z) and an encoder x = f (x), trained
using gradient descent to minimize the loss function LAE = ‖x− g( f (x))‖. The resulting
latent code z serves as a compressed representation of x.

For the AE, the input was passed through convolutional layers with ReLU activation,
followed by batch normalization layers. Max-pooling is applied post-convolution to
improve the spatiotemporal invariance of the representation. The output was then flattened
into a 1D vector and passed through a layer of 128 neurons to generate the final code. In the
decoder, 3D deconvolutions replace convolutions to reverse the effects of max-pooling. This
design enables faster computation by downstream nodes, making the model well-suited for
real-time data-processing tasks. Regarding the hyperparameters, an empirically optimized
network architecture was adopted, and 5-fold cross-validation was performed to select the
optimal model.
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4.3. Current Works in EEG Deep Learning

In this subsection, we review the current key works that utilize deep learning in a
wireless wearable EEG setting.

In [63], using a single-channel EEG, a lightweight deep learning (DL) model for
classifying sleep stages was presented. It was designed to operate on energy- and memory-
constrained devices for real-time processing at the edge. Four convolutional filters reduce
the data to manageable dimensions, and time-variant features are extracted using trans-
formers. A publicly available dataset (sleep-EDF) was used to train and test the model.
In [64], behind-the-ear (BTE) EEG together with TinyML was used to measure the driver’s
drowsiness in an alight wireless manner. However, such a system may not be able to
capture all variations occurring in scalp EEG and is only limited to detecting eye move-
ments. Using anisotropic diffusion properties in electrical circuits and a neural network
architecture, Ref. [65] introduced a novel all-analog convolutional processing unit (CvPU).
Compared with current digital architectures and hybrid analog-digital approaches, the
proposed architecture consumes one to three orders of magnitude less power. Although
it is a novel approach for neural processing, the hardware size has increased significantly
which makes such systems incompatible for wearables. According to [66] a BCI interface
identifies and controls seven wheelchair movements: forward, backward, left, right, up,
and downstairs. Filtered raw signal data were collected by electroencephalography (EEG)
from healthy volunteers and then classified using deep and shallow learning. Such noise
removal may not be efficient and may result in data loss. Three classification algorithms
were used to evaluate our approach: CNN (CNN), support vector machines (SVMs), and
random forest classifiers in [67], which used a convolutional neural network (CNN) and
bidirectional long short-term memory (BLSTM) model on collected EEG data to understand
whether students were confused. In such cases, the novel but heavy workload of machine
learning makes its use in wearable devices challenging.

5. Experiments

A specialized command for training autoencoders exists within MATLAB’s deep
learning toolbox. Although it is straightforward to simply employ input data as a cell array,
this method proved incompatible with the project early on. The issue lies in the nature
of the output, which is formatted as an object file. While most networks in MATLAB’s
version 2016. toolbox are constructed as Directed Acyclic Graphs (DAG), which can be
easily modified, the output from the autoencoder command is an unmodifiable object.
Given the need for customizable architecture, this built-in option is not viable.

The drive behind developing a network that can auto-encode EEG signals lies in
achieving signal compression that is resilient to noise. All subsequent networks were devel-
oped with this objective. Identifying the patterns in EEG signals for effective compression
remains a challenging task.

5.1. Prototype Network One

The initial network served as a proof-of-concept and did not incorporate any noise
input. It successfully encoded the EEG signals with a root mean square error (RMSE) output
of one. Once this preliminary stage was completed, the second network was designed,
the architecture of which is shown in Figure 2. This network features two fully connected
layers equipped with ReLU (rectified linear unit) activation functions on the encoder side,
whereas the decoder side consists of a single fully connected layer.
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Figure 2. Prototype one architecture.

It is noteworthy that the majority of the outputs tended to be zero when testing only
the encoding portion of the autoencoder with the input data. This can be attributed to
the ReLU layer, which filters out the negative values. Intriguingly, these zeroed nodes
remained consistent across the various training examples, suggesting that the network did
not utilize them. This leads to two conclusions: the network has built-in redundancy, even
without noise, and the hidden layer size can likely be reduced because not all nodes are
active. If these zero neurons were to toggle randomly, it could mimic the effect of a dropout
layer. In any case, the presence of these inactive nodes reduces the likelihood that added
noise will corrupt significant data, thereby enhancing the redundancy of the encoding,
which is a promising development for the experiment.

As for data formatting, using raw EEG data as input led to scaling issues, often result-
ing in NaN values. This is primarily because when a large-scale input passes through a
sigmoid layer, it is almost inevitably converted to either one or zero. To address this, we
normalized the signal by subtracting its lowest value and then dividing it by its highest
value. This process effectively scales the signal to a range between zero and one without
losing any information. The signal retains its original shape, and all values remain propor-
tional to each other. The transformation is linear, involving only additive and multiplicative
operations, which allows for easy processing by the autoencoder and straightforward
reversal, as long as the maximum and minimum values are preserved.

5.2. Prototype Network Two

The second network introduces a noise channel by incorporating a second input filled
entirely with random noise. This noise input is combined with the hidden layer via an
additional layer. During training, the network rapidly adapted to this configuration and
effectively compensated for introduced noise. The architecture of the second prototype
network is illustrated in Figure 3.
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Figure 3. Prototype two architecture.
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Upon completing the training for both networks, a program separates the autoencoder
into distinct encoder and decoder components. This allowed for the independent study
of each section. Although it is possible to input data into either the encoder or decoder
for analysis, obtaining meaningful output from the decoder using random input data
is challenging. This is due to the fact that the encoder and decoder were co-developed;
although the decoder can produce weakly accurate outputs, truly meaningful results require
input data that has passed through the encoder. Figures 4 and 5 present the architectures of
the encoder and decoder sides, respectively, where the EEG channels are treated as image
data for the network input.

Figure 4. Prototype two encoder architecture.

Figure 5. Prototype two decoder architecture.

5.3. Noise Simulation Network

The third network introduced a helper layer as a substitute for directly adding noise
to the central layer of the network. There were several reasons for this adjustment. Initially,
noise was added to the center layer to mimic the behavior of digitally modulated channels.
However, the previous method of simulating additive noise did not accurately reflect the
nature of noise in digital systems. In these prior experiments, both the channels and added
noise behaved as if they were part of an analog system. In this scenario, the noise slightly
distorts the original signal, which can still be separated. However, in digital systems, the
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added noise can flip the bits in a channel, resulting in a nonlinear effect that cannot be
easily simulated by simply adding noise. This is where the specialized helper AEW layer
proves to be useful.

Another advantage of the helper AEW layer is its ability to emulate the characteristics
of a digital channel. The layer comes with editable parameters, such as NoiseMethod,
EbNo, SNR, BitsPerSymbol, and SignalPower, all of which contribute to a more accurate
simulation of a noisy digital environment. Figure 6 depicts the architecture of the network.
It is worth noting that calculating the area under the curve, taking its square root, and
dividing by the length yields the RMSE.

Figure 6. Noise simulation network architecture.

An important consideration for the third network is that high precision may not be
necessary, and rounding the values to the nearest digit may be beneficial. Digitizing the
input in this manner simplifies the training process for the autoencoder. This concept forms
the basis for subsequent network configurations. Because this setup is essentially the same
design but with a different data format, it is not categorized as a fourth network but rather
as a variation of the third.

5.4. Network Results

A notable issue with the original network is its relative “weakness”, which means
that subsequent versions outperformed it by a significant margin. It also produced “fuzzy”
outputs at certain points; it seemed to align well with the input initially, but then started
to oscillate, failing to closely match the input. Given that these autoencoders are gener-
ated using a standard command rather than a custom-designed architecture, options for
improvement are limited, necessitating the development of a new network.
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The first network served primarily as a proof of concept and an introduction to how
MATLAB autoencoders functioned. Its performance was reasonably good, maintaining a
low output cost. The hidden layer may even be further reducible, considering the presence
of redundant zeros.

In contrast, Network 2 achieved a similar RMSE to Network 1 by the end of training,
even with added noise interference. This is encouraging, but it appears that the RMSE does
not drop below 1, regardless of the training duration. Several factors could account for this
plateau, such as inherent noise in the sample data or diminishing gradients towards the
end of the training process.

5.5. Troubleshooting

This section provides an overview of the problem-solving steps undertaken to bring a
network to a functional state.

5.5.1. Variations in Experiment

The experiments were conducted under two distinct categories. The first involves
altering the network architecture and its parameters. This includes modifications to the
architecture’s topology, adjustments to the ReLUs, and variations in the operating condi-
tions of the network. Each architectural modification aimed to assess the effectiveness of
different structural configurations. Tweaks to ReLUs focus on examining how changes in
a network’s nonlinear components affect its performance. Altering parameters aimed to
study how the network responds under various wireless channel conditions.

The second category pertains to manipulations of the input or output data prior to
training. Two sub-categories within this are moving averages and reduced sample sizes.
The moving average experiments seek to determine if noise can be filtered out while
minimally affecting the input data, thereby improving network performance. The reduced
sample size experiments aimed to gauge the network’s efficiency when it was trained on
smaller sets of input data. Table 1 provides a comprehensive summary of the performance
metrics for the various architectural and experimental variations measured in terms of
the root mean square error for mini-batches. Additionally, the table incorporates testing
data, albeit not to scale drawn from four test runs based on the original dataset to facilitate
comparative analysis.

Table 1. Experiment variant results.

Default Architecture 2 Architecture 3 Architecture 4

Training Loss after 200
epochs (Mini Batch
RMSE)

3.65 2.33 2.29 3.61

(Mini Batch MSE) 13.3225 5.4289 5.2441 13.0321

Testing RMSE 0.639 0.6529 0.427 0.3744
Testing MSE 0.408 0.426 0.182 0.14

Different ReLUs Moving Average Changed Parameters Smaller Sample Size

Training Loss after 200
epochs (Mini Batch
RMSE)

3.65 3.72 3.67 3.52

(Mini Batch MSE) 13.32 13.83 13.46 12.39

Testing RMSE
(Four test samples) 0.6365 0.632 0.6378 0.6458

Testing MSE 0.405 0.399 0.406 0.417

In the majority of the experiments, the RMSE for the test data remained consistent,
indicating that overfitting is not an issue in these tests.
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5.5.2. Change in Architecture

Various architectural changes were tested to evaluate this system. In both experiments,
additional layers were incorporated into the network, increasing the training time and
enhancing the overall performance. The second architecture expands the size of the existing
layers, featuring 10,000 neurons in the first encoding layer instead of the default 2500 and
5000 neurons in the hidden layer as opposed to 1000, and maintains the final layer size at
13,500. Although this resulted in a reduced final RMSE of approximately 2.33, the test data
did not show similar improvements, suggesting the onset of overfitting. Simply increasing
network size does not necessarily yield an effective model.

The third architecture modifies the default setup by maintaining the layer sizes, but
adding another layer of equal size to the hidden layer, directly following the channel
layer. This change specifically aimed to augment the decoder’s capabilities, substantially
improving the overall performance of the network. The training results were comparable
to those of the second architecture, but with superior testing scores and fewer neurons,
demonstrating the advantage of a “deep” network over a “wide” network.

Architecture 4 evolves from the third model by adding a connected layer and ReLU
layer before the hidden layer, while also reducing the size of the hidden layer to 2500. This
setup was designed to explore the ability of the network to manage further bottle-necking
before the channel layer. The results were mixed: the training data remained relatively
constant, but the testing data showed improvement. Given more training iterations and
data, this architecture may present a viable alternative to the existing models.

5.5.3. Smaller Channel Sample

In this experiment, the input data consisted of 27 channels, of which a select number
was used. Specifically, ten channels were chosen for the test. A random permutation dictates
the channels selected for the input. Using fewer channels allows us to test the network’s
performance with scaled-down inputs while maintaining their relational structure. The
resulting output was found to be on par with the original architecture. It should be noted
that the displayed figures feature a different dataset as the datasets were randomly selected
for this experiment.

5.5.4. Leaky ReLUs

In all of these experiments, ReLUs were employed following the fully connected layer
to introduce nonlinearity to the function. Without ReLUs, the network performs a series of
sequential matrix operations. A standard ReLU allows only positive input values to pass
through, setting all other values to zero. A leaky ReLU, however, differs in that it permits a
minor fraction of negative values to “leak” through, scaled down by a predefined factor. In
this experiment, the scaling factor was set to 0.05.

5.5.5. Moving Average

A challenge specific to EEG data is the difficulty of distinguishing noise from actual
electrical signals. Although these networks are designed to address this issue, preprocessing
the data can still make them more manageable for the network. In this experiment, a moving
average operation was applied to the input data. This allows for clearer retention of the
signal in contrast to the noise. However, this approach presents its own set of challenges.
For instance, it effectively incorporates future values into the earlier parts of the function,
meaning that some segments of the function may contain information about future events
without a clear understanding of the inherent structure. Additionally, the performance
metrics indicate that this method slightly underperforms compared with the default setup.
One possible explanation for this could be the dampening of high frequencies during the
moving average process, which may result in the loss of crucial information.
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5.5.6. Changed Noise Characteristics

The last variation focuses on altering the characteristics of the noise channel, known
as the helperAEWAWGN, which mimics a radio channel using various parameters. The
parameters relevant to our study include EsNo (error ratio), SNR (signal-to-noise ratio),
BitsPerChannel, and SignalPower. Adjusting these parameters allowed us to simulate the
varying levels of noise. For this experiment, we updated the default settings to new values,
as detailed in Table 2. In both scenarios, the noise method employed was EsNo.

Table 2. Parameters.

EbNo EsNo SNR BitsPerSymbol SignalPower

Default Parameters 10 10 10 1 1
New Parameters 20 20 20 2 1

5.6. Advantages of the Use of Deep Learning Approach

Through the use of deep learning, sensor communication systems can be enhanced to
more accurately interpret and act on brain signals. This advancement paves the way for
the development of more sophisticated sensory substitution systems. By examining EEG
signals, researchers can rapidly develop a comprehensive understanding of brain sensory
processing. Overall, deep learning in the context of EEG holds the promise of transforming
sensor communications, facilitating the creation of advanced brain-computer interfaces
and state-of-the-art sensory substitution systems.

5.7. Complexity

The following formula generates the model computational complexity: |w|+ |dw|+
(n + 1)kp bytes, where w and its gradient size correspond to the number of elements in
the weight matrix, number of neurons, and bias connections. We see from the complexity
analysis that our deep learning complexity is adjustable and malleable to accommodate
system resources and, thus, is not a limitation for wearable devices.

5.8. Study of Symmetry

The study of EEG data shows that it is mild to markedly asymmetric in nature. This
implies that neural networks are efficient enough to capture and understand asymmetry.
The following aspects were considered to ensure the performance of the neural network:
An asymmetric network results if it is initiated at a constant weight. The bias can be
kept constant while the weight is randomly initialized. Even with this, more is needed
because too small a weight leads to vanishing gradients, whereas too large a weight leads
to exploding gradients. Set a specific range for the weight. Table 3 presents comparative
results.

Table 3. Comparison with relevant works.

Parameters [63] [64] [65] [66] [67] Our Work

Lightweight algorithm 3 3 7 7 7 3

Multiple channel data 3 7 7 3 3 3

Location Invariant data capture 7 7 3 3 3 3

Lossless data reduction 7 7 7 7 7 3

Novel deep learning 7 7 3 3 3 3

Hardware complexity 3 7 7 7 7 3

6. Discussion and Conclusions

Although numerous studies have explored the application of deep learning to EEG
signal analysis, our work introduces a novel approach: the incorporation of noise into
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the hidden layer of autoencoders. This enhancement substantially broadens the potential
of applications involving multiple small sensors that transmit data concurrently. The
flexibility of our approach opens avenues for further optimization and expansion in future
research.

Our study has not only focused on the introduction of integrated management across
energy hubs but has also provided a thorough evaluation of the transition towards smart
energy systems. However, it is important to note the limitations of the current network,
particularly its ineffectiveness as a compression method compared to a baseline EEG signal.
This suggests that while the network has room for improvement, increasing its size or
depth could make it applicable in practical settings. Among the variables affecting network
performance, the architecture of the network appears to be the most critical, outweighing
other factors such as preset parameters and data preprocessing techniques.

Our experiments have shown that various adaptations of the autoencoder network
yield similar performances, with the most significant performance boost stemming from
adding extra layers rather than increasing the number of neurons in the existing layers.
Moreover, the network seems to perform optimally around the central part of the EEG
signal, facing challenges towards the end of the signal. Future studies should consider
conducting experiments with a deeper network architecture as a new standard to examine
its efficacy.

Although we have demonstrated significant improvements in the processing and
transmission of EEG signals using machine learning, several challenges remain. These
include refining data collection methods, simplifying the complexities inherent in machine
learning algorithms, and addressing ethical and privacy concerns related to the applica-
tion of machine learning in healthcare settings. Future developments and advancements
in wireless EEG (Electroencephalography) are anticipated. For the wireless EEG land-
scape, several trends and possibilities emerge as technology evolves: miniaturization and
wearability, improved signal quality, increased mobility and accessibility, IoT integration,
cloud computing and big data analytics, advanced signal processing and machine learning,
closed-loop neurofeedback systems, and ethical and privacy considerations. Wireless EEG
technology will have a profound impact on neuroscience research, clinical diagnostics, and
everyday applications. Innovative solutions to brain function and neurological disorders
are likely to emerge as these devices become more accessible.
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