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Abstract: In this paper, a point cloud coarse–fine registration method based on a new improved
version of the whale optimization algorithm (NIWOA) and iterative closest point (ICP) algorithm is
proposed; we use three strategies to improve the whale optimization algorithm (WOA). Firstly, circle
chaotic mapping is used to initialize the whale population to increase the diversity of the population
and make the search space more comprehensively explored. In addition, a Newton inertia weight is
proposed to flexibly adjust the proportion of global exploration and local optimization in order to
achieve the balance between the exploitation performance and exploration ability of the algorithm.
At the same time, we introduce the nonlinear convergence factor that can adjust the size adaptively
so that the algorithm can find the global optimal solution faster and more accurately, allowing it to
avoid falling into the local optimal solution to a certain extent. The NIWOA algorithm is used to
optimize the objective function of point cloud coarse registration to obtain the optimal coordinate
transformation, and the rotation and translation operation is carried out on the registered point cloud.
The obtained position is used as the initial pose of the ICP fine registration, and the final registration
is achieved through ICP iteration. We conduct coarse registration experiments on multiple model
point clouds and scene point clouds using the Stanford 3D Scanning Repository dataset and Princeton
3Dmatch dataset, respectively. The experimental results confirm that the NIWOA algorithm can not
only find the initial position that is closer to the target point cloud, but also provide reliable initial
values for the ICP algorithm. Meanwhile, the NIWOA algorithm combined with ICP experiment
results show that the method has a higher registration accuracy and operation efficiency.

Keywords: point cloud registration; whale optimization algorithm; iterative closest point algorithm

1. Introduction

Reverse engineering technology is widely used in modern industrial design, material
production processes, product modeling and analysis, and other advanced manufacturing
fields [1–3]. Three-dimensional (3D) reconstruction is an important research topic in reverse
engineering technology [4,5]. In order to improve the accuracy of reconstruction and
improve the operation efficiency of algorithms, many researchers have conducted in-depth
exploration and research on 3D laser scanning systems [6], and point cloud registration
technology, as an important part of 3D reconstruction and laser scanning, has become a hot
topic for many scholars [7,8].

Due to the influence of the point cloud acquisition environment and target self-
occlusion, the establishment of a complete 3D model of an object needs to measure multiple
sets of point cloud data from multiple angles and accurately splice these point cloud data.
The splicing process can usually be divided into registration problems of multiple two
point cloud data, so it is of great significance to conduct in-depth research on registration
problems of two point cloud data. The purpose of point cloud registration is to unify
the overlapping point cloud data into the same coordinate system through coordinate
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transformation so as to obtain the complete 3D point cloud model of the target object.
Point cloud registration is one of the key steps in 3D laser scanning, and the quality of
registration directly determines the effect of 3D model reconstruction. At present, the
most widely used point cloud registration method is the classical ICP algorithm [9], which
calculates the optimal coordinate transformation between the two point cloud data through
multiple iterations. However, the ICP algorithm needs to calculate all corresponding points
between two point cloud data in each iteration, which adds a lot of computational burden
to the algorithm, resulting in slow convergence and making it easy to fall into the local
optimal solution when solving the optimal objective function value. To address these issues,
researchers usually perform a coarse registration of the point cloud data before executing
the ICP algorithm so that the two sets of point clouds have closer initial positions.

In recent years, with the popularization and wide application of artificial intelligence
technology in various disciplines, swarm intelligence optimization algorithms have been
receiving attention more and more by scholars and have been applied to the field of 3D
imaging technology. Swarm intelligence is a class of algorithms inspired by the combi-
nation of natural intelligence and human intelligence, and the proposed algorithms only
involve some basic mathematical calculations, which have the advantages of being easy
to implement and being adaptable to various types of complex optimization problems.
Representative algorithms in the field of swarm intelligence research include the genetic
algorithm (GA) [10], particle swarm optimization (PSO) [11], bat algorithm (BA) [12], ant
lion optimizer (ALO) [13], cuckoo search (CS) [14], invasive weed optimization (IWO) [15],
etc. These classical algorithms and various forms of improved algorithms can achieve
excellent results in different engineering optimization problems.

• Optimization problems and related research in point cloud registration

The process of 3D point cloud registration is employed to solve the spatial coordinate
transformation so that the distance between the corresponding points of the source point
cloud and the target point cloud is zero. However, the measured point cloud in the real
scene is affected by noise, error, and other factors, and the actual registration result cannot
reach the ideal value after the coordinate transformation. Therefore, the essence of point
cloud registration can be transformed into solving the global optimization problem, that
is, solving the rigid body transformation matrix that minimizes the Euclidean distance
between all corresponding points of two sets of point clouds in 3D space. Because the
swarm intelligence optimization algorithm has good optimization performance for solving
optimization problems, and because this kind of algorithm has a good global search and
local optimization ability for complex spatial optimization problems, it has full research
value and broad application prospects for optimizing the objective function of point cloud
registration to achieve fast and accurate global registration. In this study, Shi et al. [16]
proposed a point cloud coarse registration method by combining the filtering and adap-
tive fireworks algorithm [17], which showed a good performance in error analysis and
stability analysis. Zhan et al. [18] proposed a 3D point cloud registration method based
on entropy and the PSO algorithm and proved through experiments that their method
can effectively improve the registration accuracy. Feng et al. [19] used the grey wolf opti-
mizer (GWO) [20] algorithm to solve various parameters in the rotation matrix, which has
great potential to improve the calculation speed and registration accuracy compared with
other traditional registration methods. Liu et al. [21] used GA to optimize the HSV color
information of a point cloud and applied it to point cloud registration to reduce registra-
tion errors. Chen et al. [22] introduced a new search equation and enhanced artificial bee
colony (ABC) [23] algorithm to alternately search for the optimal solution, which effectively
shortened the calculation time of registration.

• Research on the whale optimization algorithm (WOA) and related improvements

The whale optimization algorithm is a novel optimization algorithm proposed in
recent years by Mirjalili et al. [24] inspired by the hunting behavior of humpback whales.
This algorithm simulates the “spiral bubble net”, the contraction enveloping mechanism,
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and the spiral position updating mechanism of humpback whales for foraging and has the
characteristics of a simple structure, few adjustment parameters, and easy implementation.
However, it was later found that the algorithm still has problems such as falling into local
optimal and slow convergence. Therefore, many scholars have proposed various forms
of improved WOA algorithms to overcome these shortcomings. Chakraborty et al. [25]
introduced a unique selection parameter to balance the global and local search process of
the algorithm, improved the adjustment vector, and introduced inertia weights in the ex-
ploitation stage, which greatly improved the search performance of the original algorithm.
Liu et al. [26] introduced differential evolution operators to adjust the method of whale
location update in the exploration and exploitation stages and improved the global explo-
ration and local exploitation capabilities of the algorithm. Luo et al. [27] proposed a hybrid
WOA named MDE-WOA, which not only improved the diversity of the population, but
also made the algorithm easily jump out of the local optimal by embedding an improved
differential evolution operator. Li et al. [28] added a tent chaos graph to the original WOA
algorithm and adopted a tournament selection strategy to improve the optimization accu-
racy of the algorithm during the algorithm execution. Anitha et al. [29] proposed modified
WOA (MWOA), which controls the position of the whale by adjusting the cosine function
and introduces a correction factor to adjust the position update of the search agent during
the motion process, effectively balancing the exploration and exploitation capabilities of the
algorithm. Lin et al. [30] proposed a niching hybrid heuristic WOA (NHWOA), which in-
troduced niche technology in the initialization to improve population diversity and inhibit
premature convergence. Meanwhile, it flexibly adjusted algorithm parameters and carried
out design disturbances on all search agents to improve the search performance of the
algorithm and avoid falling into local optimum. Saha et al. [31] proposed cosine adapted
modified WOA (CamWOA) with cosine adaptive correction. They adjusted the control
parameters and used correction factors to reduce the step size. Yang et al. [32] improved
WOA by introducing four strategies: chaotic mapping, adaptive weight and dynamic
convergence factor, Levy flight mechanism, and evolutionary population dynamics, which
showed certain advantages in benchmark test functions and actual optimization problems.
Chakraborty et al. [33] proposed hunger search-based WOA (HSWOA) in 2022, which
combined the hunger games search concept with the whale hunting process, and adaptively
designed hunger games search (HGS) weights according to the whale’s hunger level to
balance the overall search process of the algorithm. The above improved methods have
different degrees of contribution to improve the search accuracy and convergence speed of
the WOA, which provide valuable ideas for the further improvement of the algorithm’s
performance. However, the problems of not being able to stably converge to the global
optimum for some high-dimensional multi-peak test functions, the lack of a certain degree
of robustness, and the high computational complexity are still more obvious in different
improved algorithms. Therefore, it is of considerable practical significance to further study
the WOA algorithm in terms of its operational theory and calculation process.

• Coarse–fine registration of point cloud based on new improved whale optimization
algorithm (NIWOA) and iterative closest point (ICP) algorithm

WOA and its improved algorithms have been applied in many engineering optimiza-
tion problems and show good performance. In the field of 3D imaging and computer vision,
WOA has been used as a basic tool to optimize the objective function. However, for the
objective function optimization problem in 3D point cloud registration, only applying the
original WOA to the search and optimization of rotation and translation parameters can no
longer meet the requirements of accuracy and speed of registration operation. Therefore,
some scholars have begun to improve WOA and use the improved WOA to optimize the
registration process. For example, Li et al. [34] proposed an improved WOA based on
nonlinear convergence factor and adaptive weight coefficient, which was combined with
the RANSAC algorithm to realize initial registration, and used the obtained transformation
matrix as the initial pose estimation for fine registration. In order to achieve higher registra-
tion accuracy and running speed, based on the original WOA algorithm, three strategies
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were proposed to improve the algorithm, which were circle chaotic mapping, Newton
inertia weight, and nonlinear convergence factor. The new improved WOA (NIWOA)
is used to optimize the objective function of the coarse registration to obtain the global
optimal coordinate transformation to realize the initial pose estimation of the two point
clouds, which provides a reliable initial value for the fine registration based on the ICP
algorithm. Finally, the accuracy of registration is improved and the convergence speed of
the algorithm is accelerated.

NIWOA’s contribution to point cloud registration and its comparison with classical
methods are briefly outlined in Table 1. The specific proof is given in the experimental section.

Table 1. Contribution of NIWOA and its comparison with classical methods.

Registration
Method Method Description Accuracy and

Efficiency

ICP The registration of the point cloud data is performed
directly without initial pose estimation low

WOA + ICP WOA is used for coarse registration optimization
followed by ICP fine registration medium

NIWOA + ICP
NIWOA is used to optimize the coarse registration
to obtain a more accurate initial pose of the point
cloud, and then ICP fine registration is performed

high

2. Principle and Processing Operation of Point Cloud Registration
2.1. Principle of Point Cloud Registration

For two sets of point cloud data P and Q, P =
{

pi|pi ∈ R3, i = 1, 2, · · · , m
}

is the point
cloud to be registered, Q =

{
qi|qi ∈ R3, i = 1, 2, · · · , n

}
is the target point cloud, and m

and n are the number of points in the two sets of point cloud; the purpose of registration is
to solve the space coordinate transformation matrix V between the point cloud P and Q so
as to minimize the Euclidean distance between the two corresponding points. V can be
expressed as Equation (1), where V contains three rotation angles α, β, γ around the x, y, z
axes and three translation vectors vx, vy, vz along the x, y, z axes.

V = t · Rx · Ry · Rz (1)
where

t =


1 0 0 0
0 1 0 0
0 0 1 0
vx vy vz 1

, Rx =


1 0 0 0
0 cos α sin α 0
0 − sin α cos α 0
0 1 0 1

,

Ry =


cos β 0 − sin β 0

0 1 0 0
sin β 0 cos β 0

0 0 0 1

, Rz =


cos γ sin γ 0 0
− sin γ cos γ 0 0

0 0 1 0
0 1 0 1

.

Theoretically, the corresponding points of point cloud P and Q should coincide com-
pletely after the coordinate transformation of the rotation matrix and translation vector;
that is, the Euclidean distance between the corresponding points should be zero. However,
due to the measurement error in the process of point cloud acquisition and the influence of
noisy environment, there will be some inevitable errors in the registration results. The task
of point cloud registration is to minimize the Euclidean distance between the point cloud
to be registered and the corresponding point of the target point cloud through the optimal
rigid body coordinate transformation matrix V, which is essentially a global optimization
problem. Point cloud fine registration using the ICP algorithm usually requires that two
point clouds have relatively close initial relative positions between them. Therefore, before
fine registration, two sets of point clouds are usually coarse-registered to obtain a more
effective initial pose. This paper proposes using the new improved WOA (NIWOA) algo-
rithm to optimize the rotation and translation matrix in the coarse registration stage so as
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to make the Euclidean distance of the corresponding points between the point cloud to be
registered and the target point cloud closer.

2.2. Point Cloud Data Preprocessing

The point cloud data obtained by laser scanning equipment usually contains a large
number of spatial points. The statistics and processing of all points in the point cloud will
undoubtedly increase the computational burden of the registration process, which cannot
ensure the final registration accuracy and affect the overall registration efficiency. In this
paper, before the point cloud registration operation, the uniform sampling method is used
to reduce the amount of data processing in the subsequent operation, and the registration
speed is accelerated to some extent in the early stage.

In order to further improve the accuracy and efficiency of the algorithm, we perform
a feature point extraction operation on the uniformly sampled point cloud. In this paper,
the classical intrinsic shape signature (ISS) [35] feature point extraction algorithm is used
to screen out the representative points. This algorithm has the advantages of a simple
principle and easy implementation, especially suitable for point cloud data with uniform
distribution. The main idea of the ISS algorithm is to calculate the eigenvalues of the
covariance matrix of the neighborhood of each point and determine the key points through
the linear relationship between the eigenvalues. The process can be expressed as follows:

(a) Suppose there are n points in point cloud P, and the coordinate of any point is
pi(xi, yi, zi), i = 0, 1, · · · , n− 1;

(b) The local coordinate system is established for each point pi in the point cloud, and the
search radius r of each point is set;

(c) Query all points pij of each point pi in the point cloud data within the radius r; j is the
number of neighborhood points, and calculate the weight as follows:

wij =
1∣∣∣{pi :

∥∥pi − pij
∥∥

2 < r
}∣∣∣ (2)

(d) Calculate the covariance matrix for each point pi:

Cov(pi) =

k
∑

j=1
‖pi−pij‖2<rwij(pi − pij)(pi − pij)

T

k
∑

j=1
‖pi−pij‖2<rwij

(3)

(e) Compute the eigenvalues
{

λ1
i , λ2

i , λ3
i
}

of the covariance matrix for each point pi and
sort them in descending order;

(f) Set two thresholds γ21 and γ32 as not greater than 1; the points satisfying the following
equation will be marked as ISS feature points.{

λ2
i /λ1

i ≤ γ21
λ3

i /λ2
i ≤ γ32

(4)

2.3. Feature Description and Matching

The preprocessed point cloud data effectively retains the feature points that can
represent its spatial geometric characteristics and filters out most of the useless points in
the original point cloud. On the basis of feature extraction, we use the classical PFH [36]
feature description method to represent the mathematical model of spatial features for
points within the neighborhood of each feature point. The spatial feature description of
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PFH first constructs a local coordinate system for the point pairs composed of feature points
and their neighborhood points, and the construction method can be expressed as follows:

u = hs

v = u× (pi−p′i)

‖pi−p′i‖
2

w = u× v

(5)

where hs is the normal vector of feature point pi, × represents the outer product between
vectors, and u, v, and w are all unit vectors. Based on this local coordinate system, PFH
describes the spatial features of points as follows:

α = v · ht
d =

∥∥pi − p′i
∥∥

2

φ = u · (pi−p′i)
d

θ = arctan(w · ht, u · ht)

(6)

where ht is the normal vector of the neighborhood point that forms a local point pair with
point pi, · represents the inner product between vectors, and α, φ, θ, d together constitute
the feature description of PFH.

The similarity of the feature point description in the point cloud to be registered
and the target point cloud is used as the matching basis to find the spatially symmetric
corresponding points in the two groups of point clouds. In this paper, the Euclidean
distance between feature vectors is used to measure the similarity of matching point pairs.
Here, the distance between feature vectors is denoted by | fn(pi)− fn(qi)|/ fn(pi) + fn(qi).
Then, a threshold τ is set, and the point pairs whose distance between feature vectors is
less than or equal to τ are selected as matching point pairs. The selection conditions are
as follows:

| fn(pi)− fn(qi)|/ fn(pi) + fn(qi) ≤ τ (7)

where n is the number of feature descriptors, f is the feature descriptions of PFH, pi
and qi are the feature points in the point cloud to be registered and the target point
cloud, respectively, i = 1, 2, · · · , N, and N is the number of points in the point cloud after
feature extraction.

To further confirm the accuracy of the corresponding point pairs, we use the the
RANSAC method [37] to eliminate the mismatching point pairs. The algorithm randomly
selects three pairs of matching points as samples, calculates a model parameter from the
point cloud to be registered to the target point cloud, then checks the deviation between
all remaining matching point pairs and the model and compares the deviation with the
threshold set according to experience. When the deviation is less than the threshold, the
matching point pair belongs to the sample point in the model, that is, the correct matching
point pair. Otherwise, it is identified as a wrong matching point pair. The current number of
correct point pairs is recorded, and the process is repeated continuously. In each repetition,
the parameter with the largest number of correctly matched point pairs is retained as the
best model parameter. The number of iterations N required by the algorithm to satisfy all
corresponding point pairs for at least one randomly selected sample model is computed as:

N =

⌈
log(1− k)

log
(
1− (1− e)s)

⌉
(8)

where k is the confidence that all randomly selected sample models are interior points (that
is, correctly matched point pairs) at least once. s denotes the number of corresponding
point pairs in the minimal sampling set. In 3D point cloud registration, three pairs of
non-collinear matching points are needed to calculate the rigid transformation matrix,
so s is set to 3. e is the outlier rate, which is the probability that a point pair does not
match. After N iterations, the best model parameters are the estimated values of the desired
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model parameters, which are used as the correct rigid body transformation matrix, and the
point pairs calculated from the transformation matrix are used as the set of exact matching
point pairs.

3. The Classic Whale Optimization Algorithm

The WOA algorithm consists of three phases: encircling prey, bubble net attack, and
searching prey; the performance of the algorithm depends on the balance between the
global exploration phase and the local exploitation phase. In WOA, these three strategies
are used to achieve a dynamic balance between exploration and exploitation processes.

3.1. Mathematical Model of Encircling Prey

Humpback whales can accurately identify the location of their prey and surround
them. As the position of the optimal solution in the search space is unknown, WOA
assumes that the best alternative solution in the current population (the optimal whale
position) is the position of the target prey. After determining the position of the prey, the
rest of the search agents (individual whales) will move to the best search agent (the prey)
in different ways. At this stage, other whale individuals in the population approach the
optimal position and update their positions using Equations (9) and (10):

→
D =

∣∣∣∣→C .
→
X
∗
(t)−

→
X(t)

∣∣∣∣ (9)

→
X(t + 1) =

→
X
∗
(t)−

→
A ·
→
D (10)

where
→
D represents the bounding step size and t is the current iteration number.

→
A and

→
C

are coefficient vectors;
→
X
∗

is the position vector of the current prey;
→
X is the position vector

of the remaining search agents; || is the absolute value; and · is a multiplication between

elements. The vectors
→
A and

→
C can be calculated by the following equations:

→
A = 2

→
a ·→r −→a (11)

→
C = 2 ·→r (12)

where
→
a is the coefficient in the iterative process (linearly decreasing from 2 to 0 in the

iterative process);
→
r is a random vector between 0 and 1. During the computation, the

position of
→
X around the optimal solution can be adjusted by adjusting the values of vectors

→
A and

→
C .

3.2. Mathematical Model of Bubble Net Attack
3.2.1. Shrinking Encircling Mechanism

During the iteration, this behavior is achieved by decreasing the value of a from 2 to

0 in Equation (11), in which case
→
A will fluctuate within [−a, a], and when

→
A is a random

value within [−1, 1], the whale can be located anywhere between the original position and
the current optimal position.

3.2.2. Spiral Updating Position Mechanism

Firstly, the distance between the position of the search agent (individual whale) and
the position of the prey is calculated, and then the position of the individual whale is
updated by using Equation (13) by simulating the hunting method that the whale spits out
the bubble net along the spiral line and approaches the prey.

→
X(t + 1) =

→
D′ · ebl · cos(2πl) +

→
X
∗
(t) (13)
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where
→
D′ =

∣∣∣∣→X∗(t)−→X(t)
∣∣∣∣ represents the distance between the whale and the prey, b

is a constant controlling the shape of the logarithmic spiral, and l is a random number
in [−1, 1].

3.2.3. Mathematical Model of the Search Prey Phase

In the stage of searching prey, the individual whale does not choose the current best
individual as the target for position update but randomly selects an individual from the
current population for position update. The purpose is to increase the search range and find
the optimal solution while maintaining the diversity of the population. The mathematical
model at this stage is as follows.

→
D =

∣∣∣∣→C ·→Xrand −
→
X
∣∣∣∣ (14)

→
X(t + 1) =

→
Xrand −

→
A.
→
D (15)

where
→
Xrand is the position of a randomly selected individual whale from the current

population, || is the absolute value, and · is a multiplication between elements.
In general, humpback whales swim around their prey in a shrank circle following a

spiral trajectory. In order to simulate this behavior, suppose that there is a 50% probability
to choose the shrinking bounding mechanism or the spiral mechanism to update the
position of the whale in the optimization process, that is, p is a random number of [0, 1]
interval. When p ≥ 0.5, the bubble net attack mechanism is entered, and the position is
updated using Equation (13). When p < 0.5, the system enters the stage of searching prey

or encircling prey according to the absolute value of the coefficient vector
→
A. If

∣∣∣∣→A∣∣∣∣ < 1,

then it enters the stage of encircling the prey (the search agent moves in the direction of the

prey), and the position is updated using Equation (10). When
∣∣∣∣→A∣∣∣∣ ≥ 1, it enters the stage of

searching prey (the search agent moves in the direction of the randomly selected search
agent), and the position is updated using Equation (15). Overall, WOA updates its position
in the following way:

→
X(t + 1) =




→
X
∗
(t)−

→
A ·
→
D

∣∣∣∣→A∣∣∣∣ < 1
→
Xrand −

→
A.
→
D

∣∣∣∣→A∣∣∣∣ ≥ 1
i f p < 0.5

→
D′ · ebl · cos(2πl) +

→
X
∗
(t) i f p ≥ 0.5

(16)

4. New Improved Whale Optimization Algorithm
4.1. Population Initialization Based on Circle Chaotic Map

Chaos is a special motion form of a nonlinear dynamic system, which is a pseudo-
random phenomenon between deterministic and random phenomena. In the latest research
of the swarm intelligence algorithm, chaos is widely used in the initialization process
to improve the optimization performance of the algorithm; a chaotic sequence has the
characteristics of randomness and ergodicity. The main idea is to map the variables into the
value interval of the chaotic variable space, and the obtained solution is linearly transformed
into the optimization variable space.

The convergence accuracy and speed of the WOA algorithm are largely affected by
the diversity of the initial population distribution. The classical WOA algorithm establishes
the initial population by a random method, and the algorithm does not have any prior
knowledge of the solution space of the optimization problem, which is easy to make the
distribution of individual whales in the population uneven, and the spatial position of the
optimization is not extensive enough. To address such problems, in order to produce a
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uniform population distribution during the initialization process of the algorithm and to
improve the speed of the algorithm to search for the global optimal solution, this paper
adds circle mapping in the process of population initialization, and the improved algorithm
is able to conduct a comprehensive exploration of the search space, which increases the
diversity of the initial population location of whales. To a certain extent, the optimization
efficiency of the algorithm is increased. The circle mapping can be expressed as follows:

zt+1 = mod(zt + 0.2− (
0.5
2π

) sin(2πzt), 1) (17)

where mod is the residual function. Based on the chaotic variables obtained from the
circle mapping, we set the upper and lower boundaries of the search space, ub and lb; the
improved algorithm produces a high-quality initial whale population [32]:

X j
i = lb + zj × (ub− lb) (18)

where X j
i is the jth dimension coordinate of the ith search agent and zj is the jth dimension

coordinate of z after internal random ordering.

4.2. Newton Inertia Weight

In order to achieve a better balance between the global search and local optimization
ability of the algorithm, the inertia weight is widely used in the optimization process of
intelligent algorithms. The commonly used inertia weight includes constant inertia weight,
linear decreasing inertia weight, and nonlinear adaptive inertia weight. Setting the constant
inertia weight as larger or smaller will affect the performance of the algorithm in different
degrees, resulting in the decline of the accuracy of the algorithm. Although the linearly
decreasing inertia weight can adjust the global and local search ability of the algorithm to a
certain extent, its local search ability is weak in the early iteration, and it often misses the
global optimum. In the later iteration, the global search ability becomes weak, and it is easy
to fall into the local optimum value. The nonlinear adaptive inertia weight can adjust the
search direction to the better area by comparing the objective function value, but it is not
flexible enough to adjust the exploration and exploitation ability of the algorithm.

The classical whale optimization algorithm lacks adaptability in the process of up-
dating the whale position. Therefore, this paper improves Equation (16) by designing
an effective inertia weight. In view of the shortcomings of the traditional inertia weight,
this section proposes a Newton inertia weight based on Newton interpolation formula
according to the number of iterations of the algorithm, which can flexibly adjust the weight
and better distribute the relationship between the exploration and exploitation capabilities
of the original whale optimization algorithm. The weights corresponding to 0 times; inter-
mediate iteration times Tmid and maximum iteration times Tmax are set as ωinit, ωmid, and
ωend, respectively. According to the three points (0, ωinit), (Tmid, ωmid), and (Tmax, ωend),
the Newton interpolation formula is obtained as follows:

ω(t) = ωinit + Mt + Nt(t− Tmid) (19)

where t is the current iteration number, M = ωmid−ωinit
Tmid

, N = 1
Tmax

(ωend−ωmid
Tmax−Tmid

− ωmid−ωinit
Tmid

).
In order to make the algorithm produce a relatively small weight when approaching

the optimal point and accelerate the convergence speed of the algorithm, on this basis,
we add the random disturbance part to the Newton interpolation formula and obtain the
expression of the Newton inertia weight:

ω(t) = ωinit +
ωmid −ωinit

Tmid
t +

t
Tmax

(
ωend −ωmid
Tmax − Tmid

− ωmid −ωinit
Tmid

)(t− Tmid) + µ · rand. (20)

where µ is an adjustable parameter; in general, the inertia weight will decrease with the
increase in the number of iterations; therefore, ωinit > ωmid > ωend is set in this paper.
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Combined with the Newton inertia weight, the position update method of the whale is
improved by the following equation:

→
X(t + 1) =




ω(t)×

→
X
∗
(t)−

→
A ·
→
D

∣∣∣∣→A∣∣∣∣ < 1

ω(t)×
→
Xrand −

→
A.
→
D

∣∣∣∣→A∣∣∣∣ ≥ 1
i f p < 0.5

→
D′ · ebl · cos(2πl) + ω(t)×

→
X
∗
(t) i f p ≥ 0.5

(21)

In the process of updating the whale position, by adjusting the intermediate iteration
number Tmid and weight value ωmid, Newton inertia weight can flexibly adjust the pro-
portion of the exploration and exploitation ability of the algorithm. In the early stage of
iteration, we set a larger weight to improve the global search ability of the algorithm; in
the later stage of iteration, setting a smaller weight helps to improve the ability of local
optimization. Under the action of Newton inertia weight, the whale will approach the prey
in the later iteration and adjust it into an adaptive weight to make the population around
the pilot whale so that the algorithm can carry out a more refined local search and greatly
avoid the algorithm falling into local optimum.

4.3. Nonlinear Convergence Factor

In the classical WOA algorithm, the search performance of the algorithm greatly de-

pends on the value of the coefficient vector
→
A, and

→
A changes linearly with the decrease in

the convergence factor a; moreover, the coefficient vector
→
A is controlled by the coefficient a

in the iterative process. However, with the increase in iterations, a is a linearly decreasing
function, which cannot show the actual search state and the actual iterative process of
the algorithm. It has the same decreasing speed during the execution of the algorithm,
which easily affects the diversity of the whale population and reduces the overall opti-
mization ability of the algorithm and makes it easy for the algorithm to fall into the local
optimum [24]. In order to further make the algorithm achieve a better balance between
the global search in the early stage and the local optimization in the later stage, this paper
proposes a nonlinear decreasing convergence factor, which can be expressed as:

a = 2× (1− e
1
t−1) (22)

In the early stage of the algorithm execution, the convergence factor is adaptively
adjusted to a large value and rapidly decreases so that the algorithm can carry out optimal
exploration in the global scope. With the increase in the number of iterations, the value of a
decreases slowly in the later stage of the algorithm operation, which makes it so that the
improved whale optimization algorithm can search the optimal solution more accurately
and effectively improve the convergence accuracy of the algorithm.

5. Point Cloud Registration Based on NIWOA and ICP
5.1. Optimization Model for Coarse Registration of Point Clouds Based on NIWOA

In this section, we use the optimization objective function of point cloud coarse
registration as the fitness function of NIWOA. The corresponding point set that overlaps
with the target point cloud Q is found in the point cloud P to be registered. NIWOA is
used to optimize the rotation and translation matrix, which aims to minimize the average
Euclidean distance between the corresponding points of the two point clouds. The rotation
and translation matrix contains six parameters (rotation angles α, β, γ and translations vx,
vy, vz). These six parameters are used as optimization variables for the NIWOA algorithm.
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In this paper, we assume that the rotation matrix is R and the translation vector is T; the
fitness function can be expressed as follows:

d = min
1
c

c

∑
i=1
‖qi − (R · pi + T)‖

2

(23)

where c represents the number of matched point pairs and pi and qi represent the matched
points in the point cloud P to be registered and the target point cloud Q, respectively.

5.2. Fine Registration of Point Clouds Based on ICP Algorithm

Through NIWOA, we can obtain the initial transformation parameters of the two
point clouds, and some overlap has been achieved in these matching points. To achieve a
more accurate registration effect, the most simple and effective method is to continue to
iteratively calculate the two point clouds on the basis of the initial rotation and translation
transformation to make more corresponding point pairs coincide. Therefore, this paper
uses the classic ICP algorithm to calculate the final rigid body coordinate transformation.
After calculating the transformation parameters each time, the algorithm transforms the
coordinates of the point clouds obtained by the previous transformation so that the two
point clouds obtain a closer pose; then, the algorithm continues to calculate the next
transformation until the distance between the corresponding point pairs is small enough or
the pose of the two iterations does not change significantly. The procedure of ICP can be
viewed as a robust estimation problem, which aims to further minimize the mean square
objective function as follows:

f (T) =
1
c

c

∑
i=1

(
‖q∗i − (rp∗i + t)‖2

)
(24)

where T contains the coordinate transformation of rotation and translation,r and t are
the rotation matrix and translation vector during the ICP iteration, and p∗i and q∗i are the
spatially symmetric corresponding points of the two point clouds after coarse registration
transformation, respectively.

Fine registration using the ICP algorithm has the advantages of a simple implemen-
tation process and no need for segmenting point clouds. As NIWOA provides effective
initial registration parameters for ICP, the overall registration operation largely avoids the
problem of the algorithm falling into local optimum.

6. Registration Experiments and Result Analysis
6.1. Experimental Instructions and Setup

In this section, we apply the proposed NIWOA to the objective function optimization
of point cloud registration. At the same time, we conduct registration experiments on
several representative point cloud datasets, and then, through the comparison of multiple
evaluation indicators, we prove the effectiveness and robustness of the NIWOA algorithm
in point cloud registration. In the experiment, we compare the accuracy and running
efficiency of the coarse registration using only WOA and the coarse registration using
NIWOA; we also verify the performance of the coarse–fine registration combined with ICP.
The datasets selected for the experiment include the classic point cloud models of Stanford
University [38] (Bunny, Dragon, Armadillo, HappyBuddha) and the Princeton 3Dmatch
dataset [39,40] (sun3d-hotel_umd-maryland_hotel3). The Stanford University dataset is the
most common dataset for point cloud processing, and the point cloud models in it are also
widely used as experimental objects for point cloud registration. The Princeton 3Dmatch
dataset is often used for keypoint detection, feature descriptors, point cloud registration,
and other point cloud tasks.
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These datasets contain some model point clouds and indoor scene point clouds, which
can verify the applicability of the registration algorithm for different application objects.
The point clouds under different viewpoints are shown in Figures 1–5.
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The sizes of different point cloud models are shown in Table 2.

Table 2. Size of the point cloud model.

Point Cloud Model Number of Points

bun000 39,937
bun045 39,974

dragonBk1_0 47,747
dragonBk4_0 44,832

ArmadilloOnHeadMultipleOffset_15 32,208
ArmadilloOnHeadMultipleOffset_45 24,764

happyBkgd3_0 83,327
happyBkgd4_0 79,802

sun3dhotel_umdmaryland_hotel3 cloud_bin_35 75,521
sun3dhotel_umdmaryland_hotel3 cloud_bin_36 151,564

The parameter setting in each stage of the registration process is particularly important,
and different parameter values have a great impact on the accuracy and efficiency of
the registration results. Therefore, after numerous tests and verifications, we set the
most appropriate parameters for each link to conduct the experiment. Firstly, for the
preprocessing stage, the uniform sampling scale of the point cloud directly determines
the calculation amount of the subsequent point cloud processing. Too high a sampling
rate will increase the computational burden of the algorithm, and too low a sampling rate
will lead to inaccurate local feature expression and cause the algorithm to be prone to
large registration error. On the basis of appropriate uniform sampling, we determined the
parameters of the ISS algorithm through multiple sets of feature extraction experiments
and finally selected the search radius r = 0.04 and 0.2; the values of γ21 and γ32 were 0.5.
This set of parameters can better retain the inherent shape features of the point cloud after
preprocessing and has good robustness for point cloud data with noise and outliers.

In addition, in this experiment, the number of iterations of WOA, NIWOA, and ICP
were all set to 100, the size of the whale population was set to 20, and the dimension of
the solution was set to 6. The experimental operation was programmed using MATLAB
R2022a on a 3.60 GHz Intel(R) Core (TM) i9-9900KF CPU configured with 32 GB of RAM.

6.2. Experiments on Coarse Registration of Point Clouds

In this section, we apply the proposed NIWOA algorithm to the coarse registration
process of point clouds to verify its effectiveness in improving the accuracy of coarse
registration. In the experiment, we chose the registration method based on the original
WOA for comparison to verify the contribution of the proposed NIWOA algorithm to the
improvement of coarse registration performance.

In this experiment, the registration accuracy was tested by the mean square error
(MeanSE) between the corresponding points of the two point clouds after coarse registra-
tion so as to measure the error of coarse registration. The smaller the value of MeanSE, the
higher the consistency of the two point clouds after coarse registration. The mathematical
expression of MeanSE is shown in Equation (25). We calculated the error of coarse registra-
tion using two different methods respectively, and the comparison results are shown in
Table 3 below:

MeanSE = Mean
R,t
‖Rp∗i + t− q∗i ‖

2 (25)

It can be seen from the MeanSE values in the table that NIWOA has a smaller registra-
tion error. Compared with the coarse registration method of the original WOA algorithm,
NIWOA can provide a more accurate coarse registration guarantee for point cloud data of
different scales so that the relative positions of the two point clouds are closer. In addition,
the coarse registration results of five groups of point cloud data achieved by using these
two methods are shown in Figures 6–10. It can be clearly seen from the figures that the
coarse registration based on the NIWOA algorithm can make the point cloud be registered
and have the target obtain a closer distance, regardless of if it is used on the model point
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cloud data of the Stanford dataset or on the large indoor scene point cloud data of Princeton.
It can ensure the smooth execution of the subsequent fine registration more effectively.

Table 3. MeanSE of coarse registration based on WOA and NIWOA.

Point Cloud Model WOA NIWOA

bun000 and bun045 54.971 × 10–3 4.3481 × 10–3

dragonBk1_0 and dragonBk4_0 3.6750 × 10–3 1.7964 × 10–3

ArmadilloOnHeadMultipleOffset_15 and 45 2.9120 × 10–3 0.9347 × 10–3

happyBkgd3_0 and happyBkgd4_0 49.537 × 10–3 1.3966 × 10–3

sun3d-hotel_umd-maryland_hotel3 cloud_bin_35 and 36 93.479 × 10–3 48.141 × 10–3
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where R and t represent the rotation matrix and translation vector from point 
*
ip  to point 

*
iq , respectively, and M is the number of corresponding point pairs after feature point 

extraction. Both RMSE and MAE can reflect the effect of registration, and the smaller their 
values are, the higher the accuracy of registration is. As can be seen from Table 4, com-
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Figure 10. Coarse registration results based on WOA (a) and NIWOA (b) for point cloud sun3d-
hotel_umd-maryland_hotel3 cloud_bin_35 and sun3d-hotel_umd-maryland_hotel3 cloud_bin_36.

6.3. Experiments on Coarse–Fine Registration of Point Clouds

The test results of multiple sets of coarse registration show that the proposed NIWOA
algorithm can achieve a better coarse registration effect for the point cloud data after feature
extraction, which also indicates that the coarse registration based on the NIWOA algorithm
can provide a more reliable initial registration position for the next step of fine registration.
To verify the final registration results, we further test the effectiveness and robustness
of this improved algorithm by combining the ICP algorithm. In the experiment, we use
the relative positions of point clouds obtained by coarse registration methods based on
WOA and NIWOA as the initial values of the ICP algorithm. In the case of increasing
iterations, we use these methods to calculate the final registration accuracy on point cloud
models of different datasets. To this end, this paper provides two accuracy evaluation
indicators, including the root mean square error (RMSE) and mean absolute error (MAE)
of the Euclidean distance between the corresponding points of the two point clouds after
coarse–fine registration, which are expressed in the following equations:

RMSE(P, Q) =

√√√√ 1
M

M

∑
i=1

∥∥Rp∗i + t− q∗i
∥∥2

(26)

MAE(P, Q) =
1
M

M

∑
i=1
‖Rp∗i + t− q∗i ‖ (27)

where R and t represent the rotation matrix and translation vector from point p∗i to point
q∗i , respectively, and M is the number of corresponding point pairs after feature point
extraction. Both RMSE and MAE can reflect the effect of registration, and the smaller their
values are, the higher the accuracy of registration is. As can be seen from Table 4, compared
with the classical WOA algorithm, our improved method has a great improvement in
the registration accuracy, and the NIWOA can also reduce the final registration error to a
certain extent.

Table 4. Coarse and fine registration accuracy combined with the ICP algorithm.

Point Cloud Model
WOA + ICP NIWOA + ICP

RMSE MAE RMSE MAE

bun000 and bun045 0.2137 × 10–3 0.1796 × 10–3 0.1830 × 10–3 0.1596 × 10–3

dragonBk1_0 and dragonBk4_0 0.4564 × 10–3 0.3835 × 10–3 0.3991 × 10–3 0.3557 × 10–3

ArmadilloOnHeadMultipleOffset_15 and 45 2.2423 × 10–3 1.7998 × 10–3 1.6007 × 10–3 1.4047 × 10–3

happyBkgd3_0 and happyBkgd4_0 1.2529 × 10–3 0.9981 × 10–3 1.5877 × 10–3 0.8737 × 10–3

sun3d-hotel_umd-maryland_hotel3
cloud_bin_35 and 36 6.0036 × 10–3 5.8355 × 10–3 1.8908 × 10–3 1.7002 × 10–3

After verifying the effectiveness of the NIWOA algorithm for point cloud registration,
this paper further considers the registration performance of the proposed improved algo-
rithm for initial position changes. In order to better prove the robustness of the NIWOA
algorithm for arbitrary initial pose registration, we perform varying degrees of rotation and
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translation transformations on the point clouds to be registered in these point cloud data, as
shown in Table 5. A total of 10 groups of transform positions are given in the table, in which
the rotation angle refers to the angle of rotation along the x, y, and z axes, respectively, and
the translation parameter represents the translation distance along the three coordinate
axes. In the experiment, the NIWOA+ICP, WOA+ICP, and direct ICP registration methods
were compared. RMSE and MAE were also used as evaluation indexes. The comparison
results are shown in Tables 6–10.

Table 5. Different initial position changes.

Transformation Rotation Angle Translation Parameter

1 π/18,π/18, π/18 0.02, 0.02, 0
2 −π/18,− π/18, π/18 0.02, 0.02, 0
3 π/18, π/9, π/18 0.02, 0.02, 0.02
4 −π/9,−π/18, π/18 0.04, 0.04, 0.04
5 −π/9,−π/9, π/18 −0.02, −0.02, 0.02
6 π/18, π/18,−π/9 0.04, −0.04, −0.04
7 −π/9, π/9,−π/9 0.02, 0.02, 0.02
8 −π/6, π/6, π/6 0.02, 0, 0.02
9 π/3, π/4, π/5 0.02, 0.02, 0.02
10 π/4, π/5,−π/3 0.02, 0.02, 0.02

Table 6. Accuracy comparison of different methods under initial position transformation of point
cloud Bunny.

Transformation
ICP WOA + ICP NIWOA + ICP

RMSE MAE RMSE MAE RMSE MAE

1 2.1002 × 10–3 1.4861 × 10–3 0.2007 × 10–3 0.1604 × 10–3 0.1594 × 10–3 0.1260 × 10–3

2 3.4861 × 10–3 1.7831 × 10–3 1.2827 × 10–3 1.0576 × 10–3 1.1262 × 10–3 0.9321 × 10–3

3 3.1411 × 10–3 2.3184 × 10–3 0.9909 × 10–3 0.7848 × 10–3 0.4054 × 10–3 0.3247 × 10–3

4 3.9570 × 10–3 3.4569 × 10–3 3.3988 × 10–3 2.7422 × 10–3 2.8368 × 10–3 2.3830 × 10–3

5 1.9144 × 10–3 1.6427 × 10–3 0.3501 × 10–3 0.2812 × 10–3 0.2022 × 10–3 0.1631 × 10–3

6 2.8302 × 10–3 2.4801 × 10–3 1.6946 × 10–3 1.3569 × 10–3 1.6486 × 10–3 1.3116 × 10–3

7 18.126 × 10–3 10.026 × 10–3 5.2826 × 10–3 4.3323 × 10–3 4.1156 × 10–3 3.4269 × 10–3

8 20.061 × 10–3 14.061 × 10–3 2.9983 × 10–3 2.5001 × 10–3 1.9489 × 10–3 1.6364 × 10–3

9 29.314 × 10–3 24.731 × 10–3 7.4075 × 10–3 5.9711 × 10–3 7.5001 × 10–3 6.1138 × 10–3

10 66.117 × 10–3 61.217 × 10–3 37.331 × 10–3 30.152 × 10–3 22.662 × 10–3 17.913 × 10–3

Table 7. Accuracy comparison of different methods under initial position transformation of point
cloud Dragon.

Transformation
ICP WOA + ICP NIWOA + ICP

RMSE MAE RMSE MAE RMSE MAE

1 2.8112 × 10–3 1.4781 × 10–3 0.4685 × 10–3 0.3926 × 10–3 0.4039 × 10–3 0.3458 × 10–3

2 71.331 × 10–3 69.913 × 10–3 44.146 × 10–3 36.296 × 10–3 1.0666 × 10–3 0.8857 × 10–3

3 50.096 × 10–3 41.562 × 10–3 30.267 × 10–3 25.145 × 10–3 0.4070 × 10–3 0.3437 × 10–3

4 15.584 × 10–3 10.015 × 10–3 3.1386 × 10–3 2.5825 × 10–3 2.2677 × 10–3 1.9539 × 10–3

5 17.146 × 10–3 11.291 × 10–3 8.8337 × 10–3 7.6719 × 10–3 5.1751 × 10–3 4.4633 × 10–3

6 15.001 × 10–3 10.687 × 10–3 12.501 × 10–3 9.8141 × 10–3 1.6681 × 10–3 1.3077 × 10–3

7 67.839 × 10–3 57.630 × 10–3 34.551 × 10–3 28.232 × 10–3 9.1667 × 10–3 7.2391 × 10–3

8 66.110 × 10–3 61.561 × 10–3 47.292 × 10–3 39.386 × 10–3 22.095 × 10–3 18.644 × 10–3

9 36.001 × 10–3 30.088 × 10–3 19.637 × 10–3 16.394 × 10–3 6.3658 × 10–3 5.2960 × 10–3

10 34.892 × 10–3 29.939 × 10–3 23.121 × 10–3 19.864 × 10–3 19.764 × 10–3 15.716 × 10–3
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Table 8. Accuracy comparison of different methods under initial position transformation of point
cloud Armadillo.

Transformation
ICP WOA + ICP NIWOA + ICP

RMSE MAE RMSE MAE RMSE MAE

1 18.641 × 10–3 10.124 × 10–3 1.5373 × 10–3 1.2586 × 10–3 0.2062 × 10–3 0.1553 × 10–3

2 18.712 × 10–3 11.349 × 10–3 2.1173 × 10–3 1.7448 × 10–3 1.5942 × 10–3 1.3149 × 10–3

3 17.130 × 10–3 13.177 × 10–3 3.5651 × 10–3 2.8069 × 10–3 2.5926 × 10–3 2.0991 × 10–3

4 13.577 × 10–3 10.006 × 10–3 5.2117 × 10–3 4.3217 × 10–3 1.2529 × 10–3 1.0146 × 10–3

5 14.519 × 10–3 12.508 × 10–3 6.9152 × 10–3 5.6668 × 10–3 2.5551 × 10–3 2.0391 × 10–3

6 11.667 × 10–3 9.6474 × 10–3 7.6794 × 10–3 6.2240 × 10–3 2.0824 × 10–3 1.6497 × 10–3

7 10.969 × 10–3 9.9773 × 10–3 7.1197 × 10–3 5.9673 × 10–3 4.9126 × 10–3 4.1194 × 10–3

8 17.478 × 10–3 14.302 × 10–3 5.9541 × 10–3 4.8468 × 10–3 1.9536 × 10–3 1.5721 × 10–3

9 70.447 × 10–3 61.347 × 10–3 31.051 × 10–3 24.896 × 10–3 3.9365 × 10–3 3.0721 × 10–3

10 77.893 × 10–3 74.622 × 10–3 36.490 × 10–3 29.492 × 10–3 36.263 × 10–3 29.271 × 10–3

Table 9. Accuracy comparison of different methods under initial position transformation of point
cloud Happy Buddha.

Transformation
ICP WOA + ICP NIWOA + ICP

RMSE MAE RMSE MAE RMSE MAE

1 1.3479 × 10–3 1.1371 × 10–3 0.4246 × 10–3 0.3392 × 10–3 0.1132 × 10–3 0.0903 × 10–3

2 1.1748 × 10–3 1.0030 × 10–3 1.1835 × 10–3 0.9645 × 10–3 1.0259 × 10–3 0.8322 × 10–3

3 6.0047 × 10–3 5.4641 × 10–3 3.1674 × 10–3 2.5306 × 10–3 0.2740 × 10–3 0.2330 × 10–3

4 3.9903 × 10–3 3.2616 × 10–3 2.3172 × 10–3 1.9182 × 10–3 2.1463 × 10–3 1.7688 × 10–3

5 5.3781 × 10–3 5.1791 × 10–3 5.4066 × 10–3 4.5087 × 10–3 3.9862 × 10–3 3.3243 × 10–3

6 1.1792 × 10–3 1.0463 × 10–3 0.5406 × 10–3 0.4141 × 10–3 0.2620 × 10–3 0.2222 × 10–3

7 14.300 × 10–3 11.413 × 10–3 9.0206 × 10–3 7.4120 × 10–3 5.0598 × 10–3 4.2153 × 10–3

8 12.588 × 10–3 11.647 × 10–3 2.5597 × 10–3 2.1557 × 10–3 0.9920 × 10–3 0.7820 × 10–3

9 17.493 × 10–3 13.414 × 10–3 4.4930 × 10–3 3.7820 × 10–3 4.3744 × 10–3 3.7186 × 10–3

10 29.157 × 10–3 24.937 × 10–3 15.620 × 10–3 12.618 × 10–3 14.347 × 10–3 11.438 × 10–3

Table 10. Accuracy comparison of different methods under initial position transformation of point
cloud Sun3d-hotel.

Transformation
ICP WOA + ICP NIWOA + ICP

RMSE MAE RMSE MAE RMSE MAE

1 8.9401 × 10–3 8.4811 × 10–3 5.7463 × 10–3 5.0161 × 10–3 1.5710 × 10–3 1.3297 × 10–3

2 10.257 × 10–3 10.043 × 10–3 9.5630 × 10–3 8.0642 × 10–3 8.9771 × 10–3 7.1357 × 10–3

3 2.1486 × 10–3 1.8326 × 10–3 1.4353 × 10–3 1.2796 × 10–3 0.2486 × 10–3 0.2102 × 10–3

4 60.011 × 10–3 57.561 × 10–3 13.508 × 10–3 11.683 × 10–3 10.366 × 10–3 8.9703 × 10–3

5 9.1137 × 10–3 8.8991 × 10–3 5.9154 × 10–3 5.1550 × 10–3 4.3545 × 10–3 3.8034 × 10–3

6 35.593 × 10–3 27.911 × 10–3 17.320 × 10–3 13.497 × 10–3 9.3239 × 10–3 8.0980 × 10–3

7 29.316 × 10–3 26.633 × 10–3 15.143 × 10–3 12.344 × 10–3 7.7929 × 10–3 6.5554 × 10–3

8 94.538 × 10–3 89.441 × 10–3 25.555 × 10–3 18.465 × 10–3 27.143 × 10–3 20.060 × 10–3

9 88.807 × 10–3 83.218 × 10–3 71.708 × 10–3 58.281 × 10–3 32.818 × 10–3 26.988 × 10–3

10 91.861 × 10–3 86.144 × 10–3 74.896 × 10–3 60.091 × 10–3 40.155 × 10–3 28.103 × 10–3

According to the values of RMSE and MAE in Tables 6–10, it can be seen that in
most cases, the NIWOA algorithm proposed in this paper can obtain higher registration
accuracy in the coarse and fine registration that is combined with ICP, which has a signif-
icant performance improvement compared with the registration directly using ICP and
also has a certain breakthrough compared with WOA+ICP. This is because our proposed
NIWOA algorithm uses circle chaotic mapping to explore the registration space in a more
comprehensive way. Under the adjustment of Newton’s inertia weight, the global search
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ability and local exploration level of the algorithm are flexibly kept within a reasonable
range of relations. Under the action of nonlinear convergence factors, the algorithm can be
used to explore the registration space. In the later stage of the algorithm search, the global
optimal solution is more accurately found, that is, the optimal coordinate transformation of
coarse registration is completed. Therefore, the NIWOA algorithm obtains a more accurate
coarse registration position. The registration result is used as the initial pose of ICP for
iterative optimization, and the final registration error is also reduced as expected, which
fully proves the effectiveness and robustness of the improved method.

In order to clearly show the effectiveness and robustness of the overall registration
strategy in this paper, the experiments in this section are presented in a complete visual-
ization on the above four model point clouds and one scene point cloud, respectively, as
shown in Figures 11–15, where Figure 11a demonstrates the original input point cloud,
Figure 11b is the coarse registration based on the NIWOA, Figure 11c is the fine registration
using ICP on the basis of coarse registration, and Figure 11d is the final result of mapping
the final calculated coordinate transformation parameters to the input point cloud to be
registered. As can be seen from the figures, thanks to the reliable coordinate transformation
calculated by NIWOA for the initial point cloud pose, the fine registration algorithm has a
good initial value, and the overall registration method used in this paper obtains a more
accurate registration effect and also achieves the expected improvement effect. Figure 11e
is the error convergence curve of the coarse registration by using NIWOA, and Figure 11f
is the convergence curve of the error transformation with the number of iterations in the
ICP fine registration process. In the figures, the blue arrow represents the flow guidance
of point cloud registration, and the orange arrow represents the correspondence with the
registration result and the convergence curve. From the final error performance, it can
be seen that NIWOA effectively reduces the coarse registration error of two point clouds
to a certain extent, and the ICP algorithm further improves the registration accuracy on
this basis.
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Figure 11. Coarse–fine registration process of point cloud bun000 and bun045 and convergence
curve of the registration error of the NIWOA and ICP algorithms. (a) original input point cloud,
(b) coarse registration based on the NIWOA, (c) fine registration using ICP on the basis of coarse
registration, (d) final result of mapping the final calculated coordinate transformation parameters
to the input point cloud to be registered, (e) error convergence curve of the coarse registration by
using NIWOA, (f) convergence curve of the error transformation with the iterations in the ICP fine
registration process.
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Figure 12. Coarse–fine registration process of point cloud dragonBk1_0 and dragonBk4_0 and
convergence curve of the registration error of the NIWOA and ICP algorithms. (a) original input
point cloud, (b) coarse registration based on the NIWOA, (c) fine registration using ICP on the basis
of coarse registration, (d) final result of mapping the final calculated coordinate transformation
parameters to the input point cloud to be registered, (e) error convergence curve of the coarse
registration by using NIWOA, (f) convergence curve of the error transformation with the iterations in
the ICP fine registration process.
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Figure 13. Coarse–fine registration process of point cloud ArmadilloOnHeadMultipleOffset_15 and
ArmadilloOnHeadMultipleOffset_45 and convergence curve of the registration error of the NIWOA
and ICP algorithms. (a) original input point cloud, (b) coarse registration based on the NIWOA,
(c) fine registration using ICP on the basis of coarse registration, (d) final result of mapping the final
calculated coordinate transformation parameters to the input point cloud to be registered, (e) error
convergence curve of the coarse registration by using NIWOA, (f) convergence curve of the error
transformation with the iterations in the ICP fine registration process.
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performance of point cloud registration. Therefore, after determining the effective im-
provement of the accuracy of the registration method proposed in this paper, we record 
the time consumption of different methods to complete registration. The experimental test 

Figure 14. Coarse–fine registration process of point cloud happyBkgd3_0 and happyBkgd4_0 and
convergence curve of the registration error of the NIWOA and ICP algorithms. (a) original input
point cloud, (b) coarse registration based on the NIWOA, (c) fine registration using ICP on the basis
of coarse registration, (d) final result of mapping the final calculated coordinate transformation
parameters to the input point cloud to be registered, (e) error convergence curve of the coarse
registration by using NIWOA, (f) convergence curve of the error transformation with the iterations in
the ICP fine registration process.
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Figure 15. Coarse–fine registration process of point cloud sun3d-hotel_umd-maryland_hotel3
cloud_bin_35 and sun3d-hotel_umd-maryland_hotel3 cloud_bin_36 and convergence curve of the reg-
istration error of the NIWOA and ICP algorithms. (a) original input point cloud, (b) coarse registration
based on the NIWOA, (c) fine registration using ICP on the basis of coarse registration, (d) final result
of mapping the final calculated coordinate transformation parameters to the input point cloud to be
registered, (e) error convergence curve of the coarse registration by using NIWOA, (f) convergence
curve of the error transformation with the iterations in the ICP fine registration process.
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The execution efficiency of the algorithm is another important index to evaluate
the performance of point cloud registration. Therefore, after determining the effective
improvement of the accuracy of the registration method proposed in this paper, we record
the time consumption of different methods to complete registration. The experimental test
was conducted on the point cloud data Bunny, with the initial position of the point cloud to
be registered being rotated π/18,π/18, π/18 and the translation distance being 0.02, 0.02, 0.
The statistics are shown in Table 11, which shows the registration times using only the ICP
algorithm, the original WOA algorithm combined with ICP registration, and the NIWOA
algorithm combined with ICP registration. All time units in the table are in seconds (s).
It can be clearly seen from the table that the registration time of the proposed NIWOA
algorithm combined with ICP algorithm is less, which is significantly reduced compared
with the ICP algorithm only. It also has a certain competitive advantage compared with
WOA + ICP and has a higher time efficiency because the improved algorithm can search
the global optimal value more accurately and quickly. In the coarse registration stage,
the position of the target point cloud is found in general, which provides a reliable initial
pose for further iterative searches of ICP, and it reduces the computational burden of the
ICP algorithm.

Table 11. Registration times for different methods (s).

Point Cloud Model
ICP WOA + ICP NIWOA + ICP

tICP tWOA tICP’ tsum tNIWOA tICP” tsum

bun000 and bun045 9.62 2.08 0.78 2.86 1.58 0.73 2.31
dragonBk1_0 anddragonBk4_0 11.06 2.60 0.74 3.34 2.47 0.54 3.01

ArmadilloOnHeadMultipleOffset_15 and 45 8.57 1.61 0.39 2.00 1.49 0.41 1.90
happyBkgd3_0 and happyBkgd4_0 27.39 9.04 1.14 10.18 8.36 1.22 9.58

sun3d-hotel_umdmaryland_
hotel3cloud_bin_35 and 36 13.26 6.55 0.79 7.34 3.91 0.57 4.48

7. Conclusions

In this paper, a point cloud coarse and fine registration method based on the new
improved version of whale optimization algorithm (NIWOA) and ICP algorithm is pro-
posed. a circle chaotic map, Newton inertia weight, and nonlinear convergence factor are
integrated in WOA to enhance the global exploration and local exploitation ability of the
algorithm. The improved algorithm is used to optimize the objective function of the coarse
registration of the point cloud to obtain a more accurate initial registration position, and
this initial registration result is used as the initial value of the ICP algorithm to iteratively
compute the globally optimal coordinate transformations to achieve the final registration.
Through the coarse registration experiments on different model point clouds and the scene
point cloud, it is verified that NIWOA can effectively improve the coarse registration ac-
curacy. At the same time, in the coarse and fine registration experiment combined with
the ICP algorithm, by changing the initial positions of multiple sets of point clouds to be
registered, the superiority of NIWOA+ICP for improving the registration performance
and the robustness of different registration conditions is proven. In addition, in terms
of the execution efficiency of registration, the proposed method is also proven to have
better performance.

In future work, according to the characteristics of the solution space of the optimization
objective function and in combination with more advanced improvement strategies, we
will focus on developing improved algorithms with faster optimization speeds and higher
search accuracies based on this study, with the aim of being able to calculate more accurate
registration parameters and provide higher registration efficiency for larger and more
complex models and scene point clouds.
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