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Abstract: In this paper, we propose using quiver representations as a tool for understanding artificial
neural network algorithms. Specifically, we construct these algorithms by utilizing the group algebra
of a finite cyclic group as vertices and convolution transformations as maps. We will demonstrate
the neural network using convolution operation in the group algebra. The convolution operation
in the group algebra that is formed by a finite cyclic group can be seen as a circulant matrix. We
will represent a circulant matrix as a map from a cycle permutation matrix to a polynomial function.
Using the permutation matrix, we will see some properties of the circulant matrix. Furthermore, we
will examine some properties of circulant matrices using representations of finite symmetric groups
as permutation matrices. Using the properties, we also examine the properties of moduli spaces
formed by the actions of the change of basis group on the set of quiver representations. Through this
analysis, we can compute the dimension of the moduli spaces.

Keywords: quiver representations; finite cyclic group; group algebra; moduli space; dimension

1. Introduction

In the modern age, artificial intelligence has seamlessly woven into our daily lives.
Whether it is the video assistant referees in football matches or the autonomous cars
navigating our city streets, artificial intelligence’s presence is undeniable [1]. At its core,
artificial intelligence often relies on the remarkable capabilities of artificial neural networks,
a technology that mirrors the workings of the human brain, enabling object recognition,
tracking, and much more [2].

The human brain, a marvel of complexity, processes information through the intricate
interplay of neurons, transferring signals with astonishing precision. In artificial neural net-
works, these neurons find their mathematical counterpart as nodes, and the transmission of
information takes on the guise of maps. We craft a mathematical model that employs quiver
representations to better understand and manipulate these networks. In this model, nodes
become vertices, and the transfer of information is akin to connecting paths between them.
Quiver representations offer a visual means of grasping the intricate connectivity between
artificial neurons, facilitating our exploration of information flows within neural networks.

Crucially, within this framework, the activation function emerges as the arbiter of
information significance, determining which data are worthy of propagation through the
network. Yet, this is only the beginning of our journey into the captivating world of artificial
neural networks.

To further enrich our understanding and empower our analysis, we introduce the
concept of Group algebra. It is a mathematical construct formed by mapping a group onto

Symmetry 2023, 15, 2110. https://doi.org/10.3390/sym15122110 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15122110
https://doi.org/10.3390/sym15122110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-7059-3196
https://doi.org/10.3390/sym15122110
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15122110?type=check_update&version=1


Symmetry 2023, 15, 2110 2 of 14

a field—in our case, the complex number set. This addition becomes particularly essential
when dealing with situations where a single neuron must process multi-dimensional
information, such as colors. Group algebra’s functional properties offer a versatile toolkit
for convolution and transformation, allowing us to explore the intricate relationships
between different functions within the neural network.

In our exploration, we particularly focus on applying group algebra in the context
of cyclic groups, finite groups, with cyclic properties. This choice becomes especially
pertinent when creating a quiver group algebra representation, where we draw connec-
tions with neural networks. These representations provide us with the means to com-
pare and contrast various artificial neural networks through the lens of morphisms of
quiver representations [3–5] .

As we traverse this intricate web of mathematical constructs, neural science, and data
analysis, our journey leads us to the intriguing concept of moduli spaces. These spaces offer
a glimpse into the diverse dimensions and possibilities within neural networks, shedding
light on their potential and limitations.

In this paper, we will embark on a comprehensive exploration of the interplay between
artificial intelligence, quiver representations, group algebras, cyclic groups, and moduli
spaces. By the journey’s end, it will become evident that these seemingly disparate threads
are tightly woven into a unified tapestry that reshapes the landscape of mathematics, neural
science, and data-driven discovery.

2. Quiver Representation from Convolution Group Algebras
2.1. Quiver Representation

Let Q = (V, E, s, t) be a quiver where V is a set of vertices, E is a set of arrows and
s, t : E→ V map every arrow ε ∈ E to its source vertex s(ε) ∈ V and target vertex t(ε) ∈ V,
respectively. A quiver can have loops. An arrow ε ∈ E is a loop if s(ε) = t(ε) [4]. Quiver Q
is said to be arranged by layers if it satisfies the following conditions:

• All vertices v ∈ V can be arranged in columns from left to right;
• There are no arrows from vertices in the right columns to vertices in the left columns;
• There are no arrows between vertices in the same column [4].

A quiver Q is called a network quiver if it satisfies the following conditions:

• Q is arranged by layers;
• Every input, output, and bias vertex does not have any loop;
• Every hidden vertex has exactly one loop [4].

Now, we will describe a quiver representation.

Definition 1. Let Q = (V, E, s, t) be a quiver. A quiver representation is defined by a tuple (W, T)
where W = {Wv}v∈V is a sequence of vector spaces that indices by vertices in V and T = {Tε}ε∈E
is a sequence of linear maps that indices by arrows in E, such that for every ε, Tε : Ws(ε) → Wt(ε)
is a linear map [6].

Definition 2. Let (W, T) and (U, S) be two quiver representations of a quiver Q. A morphism of
representations is defined by τ = {τv}v∈V a sequence of linear maps where τv = Wv → Uv satisfy

Ws(ε) Wt(ε)

Us(ε) Ut(ε),

Tε

τs(ε) τt(ε)

Sε

if τv is a bijection for every v ∈ V, we say that τ is an isomorphism and (W, T) and (U, S) are
isomorphic to each other [6].
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2.2. Convolution Representation

Now, we will see a quiver representation that uses group algebra and a convolution
operation that induces linear transformation.

Definition 3. A non-empty set G, is called a group if there exists a map · : G× G → G, that is
called an operation of the group, such that

• (a · b) · c = a · (b · c) for all a, b, c ∈ G,
• There is e ∈ G such that e · a = a = a · e for all a ∈ G, called the identity of G;
• For every a ∈ G there is a−1 ∈ G such that a · a−1 = e = a−1a.

If there is n ∈ N such that |G| = n, then G is called a finite group.

Definition 4. Let G be a finite group. Define

CG = { f : G → C}

where

• For every f , g ∈ CG and x ∈ G, we have ( f + g)(x) = f (x) + g(x);
• For every f ∈ CG, z ∈ C, and x ∈ G, we have (z f )(x) = z( f (x));
• For every f , g ∈ CG, we define 〈 f , g〉 = ∑x∈G f (x)g(x);
• For every f , g ∈ CG, we define ( f ∗ g)(x) = ∑y∈G f (y)g(y−1x) (convolution operation)

[7].

Using the group algebra, we will define the Fourier transformation as follows.

Definition 5. Let n ∈ Z and G ∼= Zn. Let ωn = e
2πi
n . Define

F :CG → CG

a 7→ â

where â(g) = ∑h∈G a(h)ω−gh
n . The transformation F is called a Fourier transformation [7].

From the definition, the Fourier transformation can be represented by the Fourier
matrix

F =



1 1 1 · · · 1
1 ωn ω2

n · · · ωn−1
n

1 ω2
n ω4

n · · · ω
2(n−1)
n

...
...

...
. . .

...
1 ωn−1

n ω
2(n−1)
n · · · ω

(n−1)(n−1)
n

.

Now, we obtain group algebra with a Fourier transformation and convolution opera-
tion. Using the group algebra, we will define a quiver representation that is called a
CG-representation.

Definition 6. Let Q = (V, E, s, t) be a quiver and G be a finite group. Let W = ({Wv}v∈V , {Wε}ε∈E)
be a representation of Q. The representation W is called a CG-representation if Wv = CG for every
v ∈ V where CG is the group algebra related to G and C.

Definition 7. Let W = ({CG}v∈V , {Wε}ε∈E) be aCG-representation of a quiver Q = (V, E, s, t).
The representation W is called a CG-convolution representation if for every ε ∈ E there is wε ∈ CG

such that
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Wε :CG → CG

a 7→ wε ∗ a.

We can compare two representations using a transformation called a morphism in
quiver representation. The morphism of representations is defined as follows:

Definition 8. Let U, W be two CG-representations of a quiver Q = (V, E, s, t). A morphism of
CG-representations τ : W → U is given by τ = {τv}v∈V , where τv : Wv → Uv is a linear map
such that for every ε ∈ E, we have

τt(ε)Wε = Uετs(ε).

If for every v ∈ V, τv is invertible then τ is an isomorphism and W is isomorphic to U.

Define H(Q) as the set of all morphisms of CG-representations.

Theorem 1. Let Q = (V, E, s, t) be a quiver. Let CG(Q) be the set of all CG-representations of Q.
Define

Γ(Q) =
{

τ ∈ H(Q)|∃U, W ∈ CG(Q) such that τ : W → U is an isomorphism
}

where for every τ, σ ∈ Γ, we have
τ · σ = {τvσv}v∈V .

The set Γ under operation · forms a group. Furthermore,

Γ(Q) = ∏
v∈V

GL(CG).

Proof. It is easy to see that for every τ, σ ∈ Γ(Q), τ · σ ∈ Γ(Q) because τvσv is invertible for
every v ∈ V and τ · σ commutes with the representations. Next, we will see the associative
property of the operation · in Γ(Q). Let τ, σ, ρ ∈ Γ(Q). We have

(τ · σ) · ρ = {(τvσv)ρv}v∈V = {τvσvρv}v∈V = {τv(σvρv)}v∈V = τ · (σ · ρ).

The identity morphism id = {idCG}v∈V is the identity element in Γ(Q). It is easy to see
that every τ ∈ Γ(Q) has an inverse because for every v ∈ V, τv is an isomorphism and
commutes with the representations. Therefore Γ(Q) forms a group. Now, we will prove that
Γ(Q) = ∏

v∈V
GL(CG). It is clear that Γ(Q) ⊆ ∏

v∈V
GL(CG). Let τ = {τv}v∈V ∈ ∏

v∈V
GL(CG).

We know that τ has an inverse, that is τ−1 = {τ−1
v }v∈V because τv ∈ GL(CG). We only

need to show that τ is a morphism of CG-representation. Let W be a CG-representation and
define a CG-representation

U = τWτ−1

where for every ε ∈ E, we have
Uε = τt(ε)Wετ

−1
s(ε).

This means that τ ∈ Γ(Q). Therefore, Γ(Q) = ∏
v∈V

GL(CG).

Now, we will define a CG-representation that uses convolutions as linear transforma-
tions.



Symmetry 2023, 15, 2110 5 of 14

Definition 9. Let W = ({CG}v∈V , {Wε}ε∈E) be a CG-representation of a quiver Q = (V, E, s, t).
The representation W is called a convolution representation if for every ε ∈ E there is wε ∈ CG

such that

Wε :CG → CG

a 7→ wε ∗ a.

Definition 10. Let W, U be two CG convolution representations of a quiver. A morphism of
convolution representations τ : W → U is a morphism of CG-representation. Furthermore, if τ is
an isomorphism of CG-representation, then τ is an isomorphism of convolution representations, and
we say W is isomorphic to U.

Let G be a finite group. We write CCG (Q) for the set of all convolution representations
of a quiver Q and C(Q) for the set of all isomorphisms of convolution representations of
quiver Q. Obviously C(Q) ⊆ Γ(Q). Define

CΓ(Q) =
{

τ ∈ C(Q)|τWτ−1 ∈ CCG (Q), ∀W ∈ CCG (Q)
}

.

If |G| = n then CG is isomorphic to Cn as a C-vector space. From now on, we assume
that G is cyclic. Let w ∈ CG and write w = (w0, w1, w2, · · · , wn)T . Define a linear map

W :CG → CG

a 7→ w ∗ a.

By definition, (w ∗ a)(x) = ∑
y∈G

w(y)a(y−1x) for all x ∈ G. Under the standard basis

{δg}g∈G where δg(x) = 1 if x = g and δg(x) = 0 if x 6= g, we can write

W(a) =


w0 wn−1 · · · w1
w1 w0 · · · w2
...

...
. . .

...
wn−1 wn−2 · · · w0




a0
a1
...

an−1;

.

It means that the matrix representation of a convolution linear map is a circulant matrix.
Circulant matrices have a nice property.

Lemma 1. Let π = circ(0, 1, 0, · · · , 0) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

. Let A be n× n matrix, then A

is circulant if and only if
Aπ = πA

Proof. We know that π is the permutation matrix of σ = (1, 2, · · · , n). So, we can get
π−1 = π∗ where π∗ is the conjugate transpose of π. Let A = (ai,j). We know that

πAπ∗ = (aσ(i),σ(j)).

We know that A is a circulant matrix if and only if ai,j = aσ(i),σ(j). So, we can conclude
πAπ∗ = A if and only if A is a circulant matrix. Because of π∗ = π−1, we can get πA = Aπ
if and only if A is a circulant matrix.

Lemma 2. Let A, B be two invertible matrices. If ACB is a circulant matrix for every circulant
matrix C, then A, B are also circulant.
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Proof. Let A, B be two invertible matrices and π = circ(0, 1, 0, · · · , 0). Let ACB be a
circulant matrix for every circulant matrix C. We have

π(AIB) = π(AB) = (AB)π (1)

where I is the identity matrix. From Equation (1), we have πA = ABπB−1. Now we have

(AπB)π = π(AπB)

AπBπ = (πA)πB

AπBπ = (ABπB−1)πB

πBπ = (BπB−1)πB

B = π∗BπB−1πBπ∗.

We get B = π∗BπB−1πBπ∗. Notice that

BπB−1 = (π∗BπB−1πBπ∗)πB

= π∗BπB−1π.

Hence BπB−1 is a circulant matrix. From the diagonalization of circulant matrices, we get

BπB−1 = F∗DF

where F is a Fourier matrix and D is a diagonal matrix. Now, we have

BπB−1 = BF∗ΩFB−1 = F∗DF

FBF∗ΩFB−1F∗ = D

where Ω = diag(1, ωk, ω2k, · · · , ω(n−1)k). Let D = diag(d1, d2, d3, · · · , dn) and

M = FBF∗ =


m1,1 m1,2 m1,3 · · · m1,n
m2,1 m2,2 m2,3 · · · m2,n

...
...

...
. . .

...
mn,1 mn,2 mn,3 · · · mn,n

.

We get
MΩ = DM.

⇒


m1,1 m1,2 · · · m1,n
m2,1 m2,3 · · · m2,n

...
...

...
. . .

...
mn,1 mn,2 · · · mn,n




1 0 · · · 0
0 ωk · · · 0
...

...
. . .

...
0 0 · · · ω(n−1)k



=


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn




m1,1 m1,2 · · · m1,n
m2,1 m2,2 · · · m2,n

...
...

. . .
...

mn,1 mn,2 · · · mn,n

.

⇒


m1,1 ωkm1,2 · · · ω(n−1)km1,n
m2,1 ωkm2,2 · · · ω(n−1)km2,n

...
...

. . .
...

mn,1 ωkmn,2 · · · ω(n−1)kmn,n

 =


d1m1,1 d1m1,2 · · · d1m1,n
d2m2,1 d2m2,2 · · · d2m2,n

...
...

. . .
...

dnmn,1 dnmn,2 · · · dnmn,n

.
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We know di 6= 0 for all i ∈ {1, 2, · · · , n} because D is invertible. Now, let us see the
component of the matrices in the last equation. For column j we get that di = ω(j−1)k for
every i ∈ {1, 2, · · · , n} or mi,j = 0 for i 6= j. If di = ω(j− 1)k for every i ∈ {1, 2, · · · n}, we
must get mi,l = 0 for l 6= j but that is impossible because M is an invertible matrix. So,
we can get mi,j = 0 for i 6= j. It means that M must be a diagonal matrix and D = Ω. So,
we have

FBF∗ΩFB−1F∗ = D

FBF∗ΩFB−1F∗ = Ω

BπB−1 = F∗ΩF

BπB−1 = π.

Therefore, B is a circulant matrix. Notice that

π(AB) = (AB)π

πAB = A(Bπ)

(πA)B = A(πB) because B is circulant .

We conclude that πA = Aπ and A is a circulant matrix.

Let Cir(Cn) be the set of all n× n invertible circulant matrices over C.

Theorem 2. Let G be a cyclic group of order n. The set CΓ(Q) under the operation · forms a
subgrup of Γ. Furthermore,

CΓ(Q) = ∏
v∈V

Cir(Cn)

Proof. Let τ ∈ CΓ(Q) and W ∈ CCG (Q). From the definition, we know that τWτ−1 in
CCG (Q). Let τWτ−1 = U, then for every ε ∈ E we have

Uε = τt(ε)Wετ−1
s(ε)

We know that Uε, Wε ∈ C(CG), so from Lemma 2 we get that τt(ε), τ−1
s(ε) must be in CCG too

because the inverse of a circulant matrix is a circulant matrix. We have that every v ∈ V
τv must be a circulant matrix, so we have CΓ(Q) ⊆ ∏

v∈V
Cir(CG) = ∏

v∈V
Cir(Cn). Now, we

will see ∏
v∈V

Cir(Cn) ⊆ CΓ(Q). We know that the multiplication of two circulant matrices

must also become a circulant matrix. So we must have ∏
v∈V

Cir(Cn) ⊆ CΓ(Q). It is easy to

see CΓ(Q) is a group because ∏
v∈V

Cir(Cn) forms a group under · operation.

3. Moduli Space of Neural Networks from Convolution Group Algebras
3.1. Neural Network Function

Definition 11. Let Q = (V, E, s, t) be a quiver. The delooped quiver is the quiver Q◦ =
(V◦, E◦, s◦, t◦) where V◦ = V, E◦ = {ε ∈ E|s(ε) 6= t(ε)}, s◦ = s �E◦ , and t◦ = t �E◦ [4].

Definition 12. Let Q = (V, E, s, t) be a network quiver. The hidden quiver is the quiver Q̃ =
(Ṽ, Ẽ, s̃, t̃) where Ṽ is a set of all vertices in the hidden layer, Ẽ is a set of all arrows between hidden
vertices, s̃, t̃ : Ẽ→ Ṽ induced by s, t [4].

Definition 13. Let Q be a network quiver. Let Q◦ be a delooped quiver of Q. A neural network over
quiver Q is a pair of (W, f ) such that W is a convolution representation of Q◦ and f = { fv}{v∈Ṽ}
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where for every v ∈ Ṽ we have fv : CG → CG is a differentiable function. The function fv is called
the activation function [4].

Now, we will define a neural network function using the vertex output function.

Definition 14. Let (W, f ) be a neural network over quiver Q. Define ζv = {ε ∈ E|t(ε) = v}
and a function a(W, f )v : (CG)d → CG where

a(W, f )v(x) =


xv if v is an input vertex
1 if v is a bias vertex

f
(

∑ε∈ζv wεa(W, f )s◦(ε)(x)
)

if v is a vertex that has activation function

∑ε∈ζv wεa(W, f )s◦(ε)(x) if v is an output vertex

.

Define the function Ψ(W, f ) : (CG)d → (CG)k where every x ∈ (CG)d is mapped to Ψ(W, f )(x)
= {a(W, f )v(x)}{v∈Vout} with Vout = {v ∈ V|v is an output vertex} [4].

Using the concept of morphism of quiver representations, we can define a morphism
of neural networks.

Definition 15. Let (W, f ) and (W ′, f ′) be two neural networks over a network quiver Q. A
morphism of neural networks is a morphism of convolution representations τ : (W, f )→ (W ′, f ′)
that satisfies

• τv = 1 for every v /∈ Ṽ;
• For every v ∈ Ṽ, we have this commutative diagram:

CG CG

CG CG

fv

τv τv

f ′v

where Ṽ is a set of all vertices in the hidden layer. If for every v ∈ V, τv is bijective, then τ is an
isomorphism and (W, f ) is isomorphic to (W ′, f ′) [4].

Now, we will see the similarity of neural network functions from two isomorphic
neural networks.

Theorem 3. If (W, f ) and (V, g) are two isomorphic CG-neural networks then

Ψ(W, f )(x) = Ψ(V, g)(x).

Proof. Let (W, f ) and (V, g) be two isomorphic CG-neural networks. It means that there is
an isomorphism τ such that τ � (W, f ) = (V, g). Let ε : s(ε)→ t(ε) be an arrow in Q. Let
x ∈ (CG)d be an input vertex for (W, f ) and (V, g). If v is an input vertex, we have

a(W, f )v(x) = a(V, g)v(x) =

{
xv v is an input vertex
1 v is a bias vertex

because τv = id.
If v is in the first hidden layer, we have
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a(V, g)v(x) = gv

(
∑

ε∈ζv

Vεa(V, g)s(ε)(x)

)

= τv fv

(
τ−1

v ∑
ε∈ζv

Vεa(V, g)s(ε)(x)

)

= τv fv

(
τ−1

v ∑
ε∈ζv

τt(ε)Wετs(ε)a(V, g)s(ε)(x)

)

= τv fv

(
∑

ε∈ζv

τ−1
v τvWεa(V, g)s(ε)(x)

)
because τs(ε) = 1

= τv fv

(
∑

ε∈ζv

Wεa(V, g)s(ε)(x)

)
.

Since s(ε) is an output vertex, then a(V, g)s(ε)(x) = a(W, f )s(ε)(x). Hence, we get

a(V, g)v(x) = τv fv

(
∑

ε∈ζv

Wεa(W, f )s(ε)(x)

)
.

Therefore, we get
a(V, g)v(x) = τva(W, f )v(x). (2)

For v in the second hidden layer, we have

a(V, g)v(x) = gv

(
∑

ε∈ζv

Vεa(V, g)s(ε)(x)

)

= τv fv

(
τ−1

v ∑
ε∈ζv

Vεa(V, g)s(ε)(x)

)

= τv fv

(
τ−1

v ∑
ε∈ζv

τt(ε)Wετ−1
s(ε)a(V, g)s(ε)(x)

)

= τv fv

(
∑

ε∈ζv

τ−1
v τvWετ−1

s(ε)τs(ε)a(W, f )s(ε)(x)

)
because ε ∈ ζv

= τv fv

(
∑

ε∈ζv

Wεa(W, f )s(ε)(x)

)
= τva(W, f )v(x) from the definition of (W, f ).

It means if v is in the second hidden layer, we get

a(V, g)v(x) = τva(W, f )v(x).

Inductively, we will get a(V, g)v(x) = τva(W, f )v(x) for every v in the hidden layer. If v is
an output vertex, we have
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a(V, g)v(x) = ∑
ε∈ζv

Vεa(V, g)s(ε)(x)

= ∑
ε∈ζv

τt(ε)Wετs(ε)a(V, g)s(ε)(x)

= ∑
ε∈ζv

τvWετ−1
s(ε)τs(ε)a(W, f )s(ε)(x) because s(ε)is in hidden layer

= ∑
ε∈ζv

Wεa(W, f )s(ε)(x) because τv = 1 for v ∈ V′.

Therefore, we get
a(V, g)v(x) = a(W, f )v(x).

It means for every output vertex v we get

Ψ(W, f ) = Ψ(V, g).

3.2. Moduli Spaces of Neural Network

The last theorem tells us two isomorphic neural networks will have the same neural
network function. The moduli spaces can be defined by the isomorphic classes of neural
networks as follows.

Definition 16. Let G be a group and X be a set. An action of G on X is a map · : G× X → X,
denoted by a · x such that

• e · x = x for every x ∈ X where e is the identity in G,
• a · (b · x) = (a · b) · x for all a, b ∈ G and all x ∈ X.

The set O = {a · x|a ∈ G} is called an orbit of the action [8].

We know that Γ(Q) is a group of isomorphisms. Let CG(Q) be a set of all CG-
representation of Q. Define a map

· :Γ(Q)×CG(Q)→ CG(Q)

(τ ·W) 7→ τ ·W.

where τ ·W = τWτ−1. We know that the map · is an action of Γ(Q) on CG(Q) because we
have I = {idCG}v∈V ∈ Γ(Q) and IWI−1 = IWI = W for all W ∈ CG(Q). We also have

τ · (σ ·W) = τ · (σWσ−1) = τσWσ−1τ−1 = (τσ)W(τσ)−1 = (τ · σ) ·W

for all τ, σ ∈ Γ(Q) and all W ∈ CG(Q). Now, we can define M(Q) as the set of all orbits
of the action of Γ on CG(Q). The set M(Q) is the moduli space of CG-representations (see
also [9]). We will apply the same group action to CΓ(Q) as a subgroup of Γ(Q) and CCG (Q)
as a subset of CG(Q). We know that the map · is also a group action of CΓ(Q) on CCG (Q).

Definition 17. Let Q = (V, E, s, t) be a network quiver. Define an action of CΓ(Q) on CCG (Q) as
τ ·W = τWτ−1. The moduli spaceM(Q) of the convolution representation is the set of all orbits
from the group action.

Let W̃ be a convolution representation of Q̃. We can fix a family of vector spaces
{Uv}v∈Ṽ indexed by v ∈ Ṽ and given Vv = (CG)k if v is an output vertex in Q̃ and Vv = 0
for any other vertices in Q̃. A choice of convolution representations W̃ of hidden quiver Q̃
and a linear map hv : W̃v → Vv for each v ∈ Ṽ determines a pair (W̃, h) where h = {hv}v∈Ṽ
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that is known as a framed quiver representation of Q̃ by the family of vector spaces {Vv}v∈Ṽ .
From the definition, we can say ker(h) = {ker(h)v}v∈Ṽ .

Dually, we can fix a family of vector spaces {Uv}v∈Ṽ indexed by v ∈ Ṽ and given
Uv = (CG)d when v is an input vertex of Q̃ and Uv = 0 for any other v ∈ Ṽ. A choices
of convolution representation W̃ of hidden quiver Q̃ and a linear map lv : Uv → W̃ for
each v ∈ Ṽ determines a pair (l, W̃) where l = {lv}v∈Ṽ , that is known as co-framed quiver
representation of Q̃ by the family of vector spaces {Uv}v∈Ṽ . From the definition we can say
Im(l) = {Im(l)v}v∈Ṽ .

Definition 18. A double-framed convolution quiver representation is a triple (l, W̃, h) where W̃ is
a convolution representation of quiver Q̃, (W̃, h) is a framed quiver representation of Q̃, and (l, W̃)
is a co-framed quiver representation of Q̃ [4].

Now, we will see the stability of the double-framed moduli space.

Definition 19. A double-framed quiver representation (l, W̃, h) is stable if

• The subrepresentation that contained in ker(h) is only zero sub representation;
• The subrepresentation that contains Im(l) is only W̃ [4].

From this definition, we can get this lemma.

Lemma 3. Let (l, W̃, h) be a double-framed convolution representation. We say (l, W̃, h) is stable
if

• For every output vertex v, ker(hv) =
⋂k

i=1 ker((hv)i holds;
• For every input vertex v, Im(lv) = span(

⋃k
i=1 Im((lv)i) holds.

This lemma only gives us a sufficient condition for the stability condition. Not all
double-framed convolution representations are stable. Nevertheless, we can see the dimen-
sion of the moduli space. Let us see this example first.

Example 1. Let Q be a network quiver that is drawn like this:

a3 a6

a1 a9

a4 a7

a2 a10

a5 a8

f 1 f 4

f 2 f 5

f 3 f 8

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9ε10

ε11

ε12ε13

ε14

ε15

ε16

ε17

ε18

ε19

ε20

ε21

.

We can make the delooped quiver from Q as Q◦
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a3 a6

a1 a9

a4 a7

a2 a10

a5 a8

f 5

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9ε10

ε11

ε12ε13

ε14

ε15

ε16

ε17

ε18

ε19

ε20

ε21

.

After that, we will make a new quiver as follows:

a3 a6

a1

a4 a7

a2

a5 a8

ε1

ε5

ε6

ε7

ε11

ε15

.

The quiver will be denoted as Qv. The CG quiver representation of Q is as follows:

CG CG

CG CG

CG CG

CG CG

CG CG

Wε1

Wε2
Wε3

Wε4

Wε5

Wε6

Wε7

Wε8

Wε9Wε10

Wε11

Wε12Wε13

Wε14

Wε15

Wε16

Wε17

Wε18

Wε19

Wε20

Wε21

We can also choose a morphism of representation τ such that τa3 = Wε1
−1, τa4 = W−1

ε5
, τa5 = W−1

ε6
,

τa6 = Wε1
−1τ−1

Wε7
, τa7 = Wε5

−1Wε11
−1, τa8 = Wε6

−1Wε15
−1, and τa1 = τa2 = τa9 = τa10 = I

such that quiver QV has weight equal to identity for all arrows:
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CG CG

CG CG

CG CG

CG CG

CG CG

I

τa4 Wε2
τa5 Wε3

τa5 Wε4

I

I

I

τa7 Wε8 τ−1
a3

τa8 Wε9 τ−1
a3

τa6 Wε10 τ−1
a4

I

τa8 Wε12 τ−1
a4

τa6 Wε13 τ−1
a5

τa7 Wε14 τ−1
a5

I

Wε16 τ−1
a6

Wε17 τ−1
a6

Wε18 τ−1
a7

Wε19 τ−1
a7

Wε20 τ−1
a8

Wε21 τ−1
a8

So, we will get that the dimension of double-framed convolution representation is proportioned
by the number of arrows that are not equal to identity.

Theorem 4. Let Vin be the set of input vertices of Q and Vout be the set of output vertices from Q.
Define

CΓ(Q̃) = {I}v∈Vin × ∏
v∈Ṽ

Cir(CG)× {I}v∈Vout .

LetM(Q̃) be the set of all orbits from the action of CΓ(Q̃) on CCG (Q̃), then the setM(Q̃) will
form the moduli space. Furthermore, the dimension of the moduli space is |G|(|E◦| − |Ṽ|).

Proof. Let Q be a network quiver with Q̃ as the hidden quiver and Q◦ as the delooped
quiver. Let W be a convolution representation of quiver Q◦. Let v ∈ Ṽ. We know that there
is ε ∈ E◦ such that t(ε) = v. We only choose one ε ∈ E◦ that t(ε) = v for every v ∈ Ṽ to
build a new quiver Qv. Because of the construction, no two arrows have the same target.
This implies that Qv is a union of trees, and the intersection of any two trees can only be a
source vertex of Q. Furthermore, for any of those trees, only a vertex that is hidden is a
unique source corresponding to that tree. Now, we will construct a morphism of quiver
representations τ = {τv}{v∈V}. If v is the input vertex, set the τv = 1. If v is not the input
vertex, we have an arrow α ∈ Qv such that t(α) = v. So, we can set τv = W−1

α τs(α). Using
the recursive formula, we can get a new convolution representation of Qv such that every
arrow in Qv will be represented as identity linear maps from CG to CG. From that fact, we
can conclude that the number of free choices of quiver representation will be the same as
the number of arrows in Q◦ that have not been set to identity. Consider

CG CGWε .

Using Fourier transformation, we know the dimension of C = {T : CG → CG|∃a ∈
CG 3 T( f ) = a ∗ f } is equal to |G|. Therefore, the dimension of the moduli space is
|G|(|E◦| − |Ṽ|).

4. Conclusions

We have defined a neural network function from an artificial neural network formed
by CG representation, especially for convolution representation. We can also see some
moduli space properties formed by the action of the isomorphism group on the set of all
convolution representations. From this work, we can minimize the complexity of the neural
network algorithm.

In further research, we will explore the moduli spaces from recurrent neural networks
and the topology of moduli spaces. We will see some properties of neural network func-
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tions with some types of activation functions and their effect on the continuity of neural
network functions.
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