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Abstract: This article proposes several solutions for the use of novel AC voltage regulators as
electrical energy quality conditioners and for the use of a half-bridge voltage inverter circuit as an
active filter. This study was carried out with a real object, and more attention was paid to it. Structural
models of electrical energy quality assurance systems, the calculation of control system elements
and experimental results are presented. In particular, the use of a half-bridge voltage inverter circuit
was considered as a replacement for the passive filter of the battery charger and rectifier device. AC
voltage regulators are also used as compensators for higher-current harmonics, namely active filters
and reactive power, voltage drop, voltage unbalance and flicker effect compensators. Block diagrams
of power quality conditioners are presented, control algorithms are developed and the results of the
current high-frequency harmonics compensation, reactive power and signal balancing are presented.
The results of an active filter experiment based on the NRT 160.220 charge-rectifier device circuit
showed a reduction in ripple of up to 1% with smaller dimensions compared to a passive filter. The
control characteristics and external characteristics of the regulators are removed. The dependences of
the current THD factor and the power factor are presented depending on the modulation depth for
AC voltage regulator circuits used as power quality conditioners.

Keywords: semiconductor converter; active filter; compensator; reactive power; voltage drop;
asymmetry; flicker

1. Introduction

Improved power quality is currently being encouraged in some countries around the
world, which is leading to lower electricity tariffs. This, of course, primarily includes the
harmonic composition of the current. But what should consumers who live in remote
regions where the network is unstable do? It is possible to use electrical energy storage sys-
tems based on voltage inverters, but such a solution is very expensive and may take a long
time to pay off. The use of individual devices to improve electrical energy quality may be
one of the solutions to this problem. So-called power quality conditioners (stabilizers) can
be used as active filters; reactive power compensators; and voltage drop, asymmetry and
flicker compensators. As an electrical energy quality conditioner, the generally accepted
concept of a stabilizer is implied, but due to the fact that it is not only the stabilization func-
tion but also the ability to improve that is considered, we propose the term “conditioner”.
Such devices can be made on the basis of both voltage inverters and AC voltage regulators.

Stable electricity, the quality of which complies with current standards, is a prerequisite
for any production due to the fact that problems with the power supply have an extremely
negative impact on industrial equipment (even causing its failure) and are an indirect cause
of a decrease in the products’ quantity and quality.
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The use of semiconductor converters will minimize or completely eliminate the con-
sequences of short-term voltage drops/surges, pulse overvoltage and long-term low or
long-term high main voltage. For example, the installation of a modern three-phase AC
voltage regulator in production can help an organization avoid large costs in its budget
that will inevitably arise in the event of repairs or industrial equipment downtime [1].

The need to improve electrical energy quality is relevant for all AC networks, which
requires the creation of appropriate semiconductor converters. So, the first autonomous
voltage inverters or current inverters were considered. But such converters require the use
of bulky and expensive reactive elements in the form of electrolytic capacitors in the DC
link or reactors in the AC link. The presence of a DC link requires setting the control system
to discharge and recharge capacitors to prevent emergency modes [2].

The problem of electrical energy quality improvement is acute in the development of
devices that improve electrical energy quality, which include reactive power compensators,
active filters, compensators for voltage drops and asymmetry, flicker compensators and
soft starters for motors.

Today, several types of reactive power compensators can be selected. These are
thyristor and transistor reactive power compensators [3–6]. The most famous reactive
power compensator is a voltage inverter. It can also operate as an active filter, compensating
high-frequency harmonic components of the current. The inverter can operate on a load
with any power factor [7–9]. The reactive power value at the output of the inverter is
determined from the ratio of the network electromotive force and the inverter. On the part
of the inverter, there is a dependence on the magnitude of the voltage in the DC link. The
voltage of the DC link is set at a level that is determined by the power loss balance and the
consumed active power. There is also a reactive power compensator on a multichannel
structure. The multichannel structure is achieved by a combination of cells consisting of
sequential activation of Ćuk regulator circuits [10–17]. The input voltage of each channel
is set at a level from 1 kV to 3 kV. The instantaneous power method is used here as a
control algorithm. It is based on the transition from three-phase alternating signals to
constant signals in d-q coordinates. A separate class of compensators are static reactive
power compensators, for example, stepwise-regulated capacitor banks [18]. Among the
disadvantages of this compensator type is the possibility of selecting a low reaction rate
to a change in reactive power in the case of a sudden change in load. A similar type can
include shunt reactors equipped with switching equipment, controlled reactors, thyristor-
controlled shunt reactors, so-called static thyristor compensators with reactors, thyristor-
controlled capacitor banks and static thyristor compensators with capacitors. Among
the disadvantages of this category of compensators are unsatisfactory weight and size
indicators and the relatively low speed that can be selected. A reactive power compensator
based on the electromechanical effect can also be singled out separately [19]. Under the
action of inertial and electromagnetic forces in a movable frame with alternating electric
current, an effective electrical capacitance is created, combined with the inductance of
the frame and its active electrical resistance in a transverse reactive power compensation
scheme. Among the disadvantages, we can select the complexity of the design. Let us
return to the previously considered class of compensators. The next one is the transverse
switchable reactor. It is possible to regulate the compensated reactive power by reactor
switching. An alternative can be called a longitudinal compensator, which reduces the
reactance of the line. The most common application of such compensators is long lines.
In practice, longitudinal compensation is performed with no more than two capacitors.
Among the disadvantages are direct interference in the construction of lines and the
impossibility of parallel connection. The centralized, group and individual compensation
schemes of reactive power coverage by capacitors in electrical networks have become
widespread in enterprises [20]. The advantages of individual compensation include the
use of the starting device capacitor installation as for an electric receiver and the discharge
resistance as an electric receiver. The use of compensating capacitors is very limited due to
the occurrence of the resonance effect. This can be corrected by capacitor switching in a
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circuit with a voltage resonance, which is necessary to switch a reactor with an inductance
tuned to a certain frequency in series with the capacitor. The use of several LC circuits
is possible for greater effect. Among the disadvantages of such a system, there is an
occurrence of shock overcurrents that appear when the capacitor bank is connected to the
supply network [21].

AC voltage regulators can operate as devices for improving the quality of electrical
energy, for example, as compensators of voltage drops and voltage surges.

AC voltage regulators containing back-to-back thyristors in each phase are charac-
terized by two fundamental features [22]. The non-sinusoidal shape of output voltages,
output current and input current and the presence of phase shift of the current relative to
the voltage lead to a decrease in energy performance. These converters do not allow main-
taining the rated voltage at the output of the regulator when the input voltage decreases
due to the inability to increase it.

An alternative solution could be AC voltage regulators, cycloconverters and matrix
converters [23,24]. On their basis, active harmonic filters, reactive power compensators,
voltage drop compensators and symmetrical devices in multiphase networks are built.
These converters are single-stage and, accordingly, do not contain a DC link with large
reactive storage devices [25–28]. Semiconductor converters, namely AC voltage regulators
with the ability to increase the output voltage without a transformer, deserve special
research attention [29–31]. It is also possible to create new circuits by appropriately adapting
known circuits of DC-DC buck–boost regulators for operation in AC circuits [32–37].

Thus, it is shown that there is a necessity to develop new circuit solutions for semicon-
ductor converters that can be used as devices for improving the quality of electrical energy
as electrical energy “conditioners”.

2. Active Filter Based on a Half-Bridge Circuit of a Single-Phase Voltage Inverter

Today, the quality of electrical energy is strictly regulated and often can lead to
the failure of household and industrial equipment due to a poor-signal-level voltage or
current. As an example of such a consumer, we can consider systems where the presence
of an accumulator battery is required, which require high-quality currents and charging
voltages, primarily currents. The use of high-capacity batteries affects more and more
areas directly related to social spheres, which may include power supply systems for urban
transport, uninterruptible power supply systems for municipal institutions, data banks
and power supply systems for the aerospace industry. If in electric buses it is a source of
driving force, then in hospitals and server stations the presence of a power source with
rechargeable batteries will save data and even save lives in case of an emergency. The main
advantage of batteries is multiple use, which is impossible without charging devices, but
the service life of any rechargeable battery, especially a lithium-ion battery, which is one of
the leaders in terms of capacity, depends on the shape and value of the current the battery is
charged with.

Thus, in [38–40], pulsed boost, buck and buck–boost voltage regulators were proposed,
providing a low level of current pulsations and, most importantly, the absence of low-
frequency pulsation components: 100 Hz, 300 Hz. It has been proved that the presence of
such pulsations significantly reduces battery life [41].

There are several ways to avoid this, as suggested in [38–40], such as using a con-
verter as a source that will not have low-frequency harmonic components at the output
and, finally, the installation of LC filters. It is possible to remove low-frequency pul-
sating components using multi-pulse rectifier circuits [24]. Unlike a single-phase recti-
fier built according to a bridge circuit (the frequency of rectified current pulsations is
100 Hz) and a two-half-period three-phase current circuit (the frequency of rectified current
pulsations is 300 Hz), in a twelve-pulse rectifier circuit, the pulsation frequency will be
twice as high—600 Hz. The use of such circuits in the power supply system requires a
larger number of semiconductor power switches and the presence of several low-frequency
power transformers with different connections of secondary windings, which will affect
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the reliability and cost of the device. If we are talking about high-power systems, the
installation of reactive elements as low-pass filters will significantly increase the weight
and size indicators; for example, a smoothing choke designed for a constant current of
300 A with an inductance of 170 µH will weigh 56 kg with dimensions of 306× 230× 235 mm3,
whereas the converter for the same current will be less than 10 kg with dimensions of
155 × 280 × 215 mm3 [42]. Thus, the presence of a choke, including in a pulse converter,
increases the dimensions of the power supply system by 2 times and increases the mass
of the device by 5 times. Accordingly, in a high-power supply system with hundreds and
thousands of kilowatts of power, the weight and size of the power choke will be very
significant, currents through it can reach hundreds of amperes and the cross-section of wire
will equal from 50 mm2 or more. At the same time, the number of winding turns can be
several tens depending on the design of a choke.

An alternative version of the LC filter was proposed—a power active filter [43]. This
is another converter, which is the source of the pulsation component, but opposite in phase
present in the output signal of the rectifier. It is connected to the output circuit of the
rectifier through a matching transformer with a small number of secondary winding turns,
from one, which improves its weight and dimensions compared to the choke [44–54]. A
single-phase inverter of the H-bridge type is used as a converter.

An active filter is proposed for the power supply system based on a monoblock type
NRT 160.220 charging and rectifying device, where a half-bridge circuit of the single-
phase voltage inverter is used as a compensator. Compared with pulse converters on
transistors, a charging and rectifying device based on a thyristor rectifier will have a greater
overload capacity.

Figure 1 shows a diagram of a charging and rectifying device with an active filter.
To select the required compensation signal, it was necessary to develop a control system
for a semi-bridge single-phase voltage inverter. Switches were regulated by pulse-width
modulation, where a sawtooth signal with a frequency of 33 kHz was used as a reference
signal, which is a multiple of the pulsation frequency (300 Hz). The modulating signal was
a pulsation component, selected using a second-order Bessel filter and a low-pass filter
(Figure 2).
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sampling/hold, K—proportional coefficient).

The input of the Bessel filters and the low-pass filter (1) received a signal from the
output of the rectifier “voltage sensor”. The signal at the output of the rectifier consists of a
constant and a variable component, so it was necessary to filter out the constant component
and save only the variable one. The signal will work as a modulating signal of the half-
bridge voltage inverter control system. The Bessel filter in this work filtered an operating
variable signal. The low-pass filter (2) was necessary to scale the signal to the requirements
of the digital control system. At the output of the low-pass filter (1), the constant signal
level was obtained along with the implementation of the auto-tuning function. It was
required to obtain a modulating signal not exceeding 1 V in span. The output signal from the
low-pass filter (2) was divided by the signal level from the output of the low-pass filter (1). Thus,
the difference in the output voltage level from the rectifier of the charging and rectifying
device was taken into account.

The current increases on the primary side of the transformer T2 due to the fact that the
active filter with the charging and rectifying device is switched on instantly, or the output
voltage of the charging and rectifying device is changed. It was decided to install a current
sensor in the circuit of the transformer’s primary side that tracks its surge. The limit was
fixed at ±1.5 A (after the LC filter choke) (Figure 3).

This solution is implemented in the block “current delay of the transformer primary
side”. At the same time, the delay duration is 0.1 s. In addition, in the “delay in switching
on the active filter” block, the active filter activation delay is 0.4 s. This ensures that the
capacitors of the active filter are charged, while the transistors are turned off at this moment
due to the prohibition on issuing control pulses. The dead time circuit provides a delay in
the output of transistor control pulses; it is equal to 2 µs, preventing both switches of the
half-bridge inverter from being switched on simultaneously.
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The power unit consists of a half-bridge voltage inverter and a matching transformer
T2 (Figure 4).
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Figure 4. The power unit of the active filter.

It is worth noting that the inverter of the active filter must be powered. Several
solutions were considered, including the option proposed in [35], where an additional
diode bridge connected to the input of a charging and rectifying device was installed as
a DC source. It was decided to power the inverter from the output of the rectifier of the
dc_af_sup charging and rectifying device. But in this case, when regulating the voltage of
the rectifier of the charging and rectifying device, the supply voltage of the inverter would
also change, which could negatively affect the value of the compensation signal. Thus, a
tracking system for the value of the inverter supply voltage was required.

In [55], Mirzaee proposes a two-circuit closed control system, where both the input
voltage of the active filter (with pulsation) and the output voltage from the matching
transformer (without pulsation) are monitored. The principle of operation is similar to that
offered in the proposed active filter. The pulsation component is also selected, which is
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compared with a high-frequency signal as a modulating signal. In this case, there is no
monitoring of the output voltage, but a current feedback loop is added. It was possible
to avoid an error in the output signal due to the sequential installation of a second-order
Bessel high-pass filter and a low-pass filter (Figure 2). The presence of only a high-pass filter
introduced a positive phase shift into the resulting modulating signal, which amplified the
error between the compensating signal of the active filter and the output voltage of the
rectifier. When the low-pass filter is installed in series with the high-pass filter, the phase
shift is significantly reduced and the error in the output circuit of the active filter becomes
minimal (Figure 5).
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The filter calculation (low frequencies, high frequencies) was reduced to finding the
nominal values of RC elements included in the filter on operational amplifiers:

R40C = fn/2π fc, (1)

where fn is the normalizing frequency equal to 1.274 Hz for the Bessel filter second-order, fc
is the cutoff frequency, which is known, and in our case it is 20 Hz [56].

R37 = R38(1− K), (2)

where K is the gain.

Uout_high−pass = Uo f f set(R39/[R39 + R52])·(1 + R37/R38), (3)

where Uoffset is the upward offset voltage.

Uout_low−pass(2) = Uout_high−pass·R46/R47, (4)

where Uout_low-pass(2) is the output of the low-pass filter, the scaled signal of the high-
pass filter.

Uout_low−pass(2) = −Eo f f set·R46/R50, (5)

where Eoffset is the downward offset voltage.
The calculation of the low-pass filter (1) is presented as follows:

- Determination of the resistor and capacitor values for the selected cutoff frequency,
2 Hz in our case:

RC = 1/2π f ′c, (6)

- Determination of the resistor and capacitor values for the required gain, selected based
on the calculation that Uin is the input voltage equal to the maximum according to
the technical specification (270 V), and Uout_op is the output voltage of the operational
amplifier (≈3 V):
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R53 = R54/K. (7)

In addition, the system has an adaptive coefficient that reacts to changes in the supply
voltage of the active filter (from 180 V according to technical specification):

Kmatch = 3.3/(180·Klow−pass(1)·4095). (8)

During the power circuit calculation, the parameters of the transformer and LC ele-
ments were obtained, and transistors were selected (Table 1).

Table 1. Parameters of the transformer, LC elements and transistors.

Requirements for an Active Filter

Transformer T2

Output voltage range, V 72.1–135
Ripple amplitude range, V 3.2–5.9

The current of the secondary winding of the matching
transformer, A 168

Pulsation frequency, Hz 300
Power, W 188.5

Transformer efficiency, % 98

Inverter

Transistors S1, S2 24NM60N
Transistor current, A 3.696

The maximum voltage applied to the transistor, V 270
Inductance of the choke on the AC side, Lf1, µH 390

Capacitance of the capacitor on the AC side, Cf4, µF 6.8
Inductance of the choke on the DC side, Ldc, µH 270

Capacitance of the capacitor on the DC side, CDC, µF 820

3. Active Filter Based on an AC Voltage Regulator

AC voltage regulators can be constructed using single-stage (direct) and multi-stage
circuits. On the basis of single-stage AC-AC converters; AC voltage regulators; stabilizers;
active harmonic filters; reactive power, voltage drop and flicker effect compensators; and
symmetrical devices in multiphase networks as a combination of all these functions, an
electrical energy quality “conditioner” is constructed.

For the successful construction of these devices, it is necessary to have effective
single-stage AC voltage regulators. The well-known classical thyristor regulators with
phase control are not suitable for solving these problems due to the distorted shapes
of input and output currents and the delay in regulation associated with the properties
of natural switching. In the middle of the 1990s, AC voltage transistor regulators with
high-frequency controlled inductive–capacitive energy exchange appeared. They were
characterized by almost sinusoidal shapes of input and output currents and good dynamics
of their regulation [25–28]. The possibility of a transformerless increase in the output
voltage relative to the input one in some types of regulators should be noted [25–31]. A set
of such AC voltage regulators was obtained by appropriately adapting known circuits of
DC-DC buck–boost regulators for operation in AC circuits [25–35].

The topologies of AC voltage regulators are being upgraded based on the following
research directions: voltage stabilization, voltage regulation to nominal values and voltage
increase with a gain greater than one. Recently, much attention has been paid to the quality
of electrical energy. This in turn led to the development of existing AC-AC converters into
devices for improving the quality of electrical energy, namely reactive power compensators,
active filters, voltage drop compensators, etc. As a result, in addition to semiconductor
elements, more reactive elements began to appear in the topologies of regulators. In
this regard, it became necessary to evaluate AC voltage regulators from different points
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of view of efficiency. Let us first consider the quantitative factor of how many reactive
and semiconductor elements they included. The balance between efficiency, reliability,
dimensions and cost of systems has led to the development of several areas of construction
of AC voltage regulators at once. The transformer version includes an AC voltage regulator
with switchable cells and reactors. This converter allows you to compensate voltage drops
and overvoltages. The regulator can generate different voltage levels, thereby suppressing
voltage drops and overvoltages [57]. Also, this should include a unidirectional buck AC
voltage regulator, and its modification is a bidirectional boost regulator. This converter
can operate as a voltage drop compensator with a relatively wide compensation range.
In this topology, it is assumed that there are eight IGBT switches in combination with a
step-down transformer [14]. Despite all the advantages of such regulators, a large number
of semiconductor switches affects both the efficiency and the cost of the system and also
increases the share of kW/USD. If we also take into account the fact that such regulators
can be used in three-phase networks, then this number of switches increases threefold. The
dimensions of the system are mainly determined by the presence of reactive elements in
the converters, which affects the weight and size parameters, and the proportion of kW/kg
increases. There are also transformerless versions of AC voltage regulators; for example, a
matrix converter has smaller filters. Its relative power can also be included in its advantages.
Among the disadvantages of such a converter are the lack of the possibility of increasing the
output voltage and the inability to compensate for the input reactive power [58]. Cascade
H-bridge circuits allow for generating multi-level step voltages together with the voltage
on the capacitors [10]. There are also AC-AC resonant converters with a high-frequency AC
link. In the regulator, energy is transferred from the input to the output through the reactor
L, which is charged with an input voltage and discharged to the output. The capacitor in the
link creates a partial resonance, thereby performing soft switching. Also, the converter has
a higher relative power and reliability in comparison with traditional PWM converters. In
a resonant converter, the input power factor is equal to one, and it is possible to increase the
voltage by a factor greater than one. Nevertheless, all these solutions have a large number
of semiconductor switches, which increases their cost and makes them less effective in
this regard. But the absence or small number of reactive elements has a positive effect on
the weight and size indicators. Also, the improvement of weight and size indicators can
be achieved using high-frequency transformers. Single-stage AC voltage regulators, for
example, include AC-AC regulators with soft switching, but in this scheme, there is a fairly
large number of AC switches. The circuit, in this regard, has large losses when keys are
switching, but due to the use of soft switching, they are significantly reduced [59]. The
three-phase version of the AC voltage regulator with soft switching can be used at both
small and medium power. In addition, this converter has a high input power factor and
has the ability of bidirectional energy flow with the necessary amplitude and frequency
control [60]. Two-stage AC voltage regulators with a high-frequency transformer are also
found in distribution systems [61,62]. Two-stage regulators can operate at high output
power along with low losses in power circuits due to the switching of one switch at each
clock cycle of the circuit.

Existing transistor AC voltage regulators, buck–boost AC-AC converters, with and
without a transformer, with a high-frequency link, with a DC link and H-bridges have a
number of disadvantages, mainly the presence of a large number of reactive and semi-
conductor elements. This also includes the inability to use them in general industrial
networks, as well as the inability to increase the voltage by a factor greater than one. In
this regard, an assessment can also be made from the point of view of the voltage increase
coefficient. This, in turn, is suitable for a class of AC-AC-type converters, called electronic
transformers. Transformerless matrix converters have a voltage increase coefficient that is
not more than one. It was proposed to include a volt-additional source of reactive voltage
in series between the output of the converter and the load to increase the coefficient [63].
For this goal, a single-phase bridge voltage inverter without a power source in the DC
link is used. Another way to increase the voltage boost coefficient of the matrix converter
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and the voltage inverter included in its structure is associated with the modification of
the control method. The method is based on the cyclic control in every sixth part of the
output voltage period only by switches of its two phases, leaving switches of the third
phase permanently conducting. With this method, the output of the first harmonic of the
voltage is increased by 15%. There is also a way to increase the boost factor by combining
pulse-width modulation and pulse-width regulation [64,65]. In this case, the output voltage
will be formed by pulse-width regulation pulses, which, with full modulation, will lead
to an increase in the first harmonic by 28%. Another way to change the voltage increase
coefficient is to solve the problem of combining a matrix converter with a boost AC voltage
regulator [66,67]. Such a scheme requires an input LC filter. The scheme of a one-phase
matrix buck–boost converter is formed from a bridge matrix converter and a Ćuk AC volt-
age regulator [68]. Another buck–boost matrix converter with a continuous input current
is formed from a Ćuk AC voltage regulator and a zero-matrix converter [69]. Among the
disadvantages of matrix converters are the large number of switches and the complexity of
control algorithms that can be selected. An alternative solution to electronic transformers
can be called AC voltage regulators, which have significantly simpler circuits and simple
control algorithms. AC voltage regulators have been proposed based on the introduction
of a volt-additive using a high-frequency conversion [70]. The input and output currents
of such a regulator are of high quality. There are also multi-cell high-voltage regulators
using AC/DC–high-frequency DC/AC–high-frequency AC/AC–AC/DC–DC/AC in each
channel. They provide galvanic isolation and small weight and size indicators at a high
frequency in the intermediate link. Another direction of boost high-voltage AC voltage
regulators is based on the Arkadiev–Marx concept of a boost DC voltage converter. Here,
at a high frequency, the capacitors are first switched on in parallel with the supply network
and charged to the current value of the AC voltage and then switched on in series and feed
the output circuit [71].

The construction of an active filter is possible on the basis of single-stage AC-AC regula-
tors with switching quasi-impedance of the power supply with a high frequency [72–74].

Some circuits require separated phases of the power supply (Figures 6–9) or loads
(Figure 10).
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of the power supply.

Each scheme can be divided into three parts. The first part is a power supply with its
own inductive reactance; the second part is the load circuit of a reactor and active resistance
connected in series; and the third part is everything else from reactors, capacitors and
switches between the first and second parts. The purpose of the circuitry of the third part
is to ensure the switching of inductive–capacitive reactance parameters between the first
and second parts, which is an external quasi-impedance of the source. At the same time, it
avoids surges of reactor currents and capacitor voltages.

So, you can evaluate the existing and proposed types of AC-AC converters (Table 2).

Table 2. Comparison of AC-AC converters.

Type of Converter Number of Transistors
per Phase

Number of Reactive
Elements per Phase

The Possibility of
Increasing the Voltage

AC voltage regulator with switchable cells and reactors 6 8 Yes
A converter operating as a unidirectional buck regulator of

alternating voltage, as well as a bidirectional
boost regulator

8 5 Yes

Matrix converter 6 3 No
H-bridge scheme 16 2 No

AC-AC resonant converter with high-frequency link 4 3 Yes
AC-AC regulator with soft switching 16 7 No

Three-phase AC-AC regulator with soft switching 4 6 No
Matrix converter with a reactive voltage source 10 4 Yes

Matrix converter with modification of the control method 6 3 Yes
Matrix converter with a combination of pulse-width

modulation and pulse-width regulation in the
control system

6 3 Yes

A circuit with a combined matrix converter and a boost AC
voltage regulator 4 4 Yes

A circuit with a combined bridge matrix converter and an
AC voltage Ćuk regulator

7 6 Yes

Combination of an AC voltage Ćuk regulator according to
a classical zero matrix converter

3 2 Yes

An AC voltage regulator based on the concept of
introducing a volt-additive using a high-

frequency conversion
3 1 Yes

An AC voltage regulator based on the
Arkadiev–Marx concept 8 4 Yes
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Table 2. Cont.

Type of Converter Number of Transistors
per Phase

Number of Reactive
Elements per Phase

The Possibility of
Increasing the Voltage

A simple circuit of a buck–boost AC voltage regulator with a
switched quasi-impedance of the power supply 1 4 Yes

AC voltage regulator with a switched quasi-impedance of the
power supply 1 2 Yes

AC voltage regulator with a switched quasi-impedance of the
power supply and a capacitor in the load 1 3 Yes

An extension of the direct method for the energy parameter calculation of the converter
(Figure 9) was constructed for its model with variable parameters, leading to differential
equations with periodic discontinuous coefficients. After their algebraization [24], we
obtain the equations in matrix form for the first harmonics of the variables in (9):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 R1 0 1 ωL1ψsin ωL2 0 0
0 0 1 0 −ωL1 0 0 0
−1 0 0 0 0 0 −ωC1 ωC2ψsin
1 −1 0 0 0 0 ωC1 0

ωL1ψcos ωL2 0 0 0 −R1 0 −1
−ωL1 0 0 0 0 0 −1 0

0 0 −ωC1 ωC2ψcos 1 0 0 0
0 0 ωC1 0 −1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I1(1)a
I2(1)a

UC1(1)a
UC2(1)a

I1(1)r
I2(1)r

UC1(1)r
UC2(1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U1(1)aψsin
−U1(1)a

0
0
0
0
0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (9)

where ψ is the switching function of switches.
Regulators for comparison were modeled in the PSIM program with ideal parameters

of the elements. The control characteristics for a number of regulators are shown in
Figure 11; the load characteristics are shown in Figure 12; and the dependences of the input
power factor, THD, on the modulation depth are given in Figure 13.
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The efficiency of the proposed regulators can be considered from two points of view:
the quality of the current and the quality of the voltage. This estimate is given to us by
the THD. Some of the circuits were evaluated earlier using the current THD; this research
was carried out experimentally, and it is also worth noting that this assessment allows us
to implement the method of algebraization of differential equations (ADE), which was
mentioned earlier. To determine the THD, it was necessary to determine the magnitude of
the first harmonic of the current and the higher harmonics of the current. To do this, one
phase of an AC voltage regulator with a switched quasi-impedance was analyzed, and a
system of equations for similar circuits was compiled, as shown in Figure 7. The resulting
matrix has the following form:∣∣∣∣∣∣∣∣∣∣∣∣

0 R1 1 −ωL1ψsin ωL2 0
0 0 1 −ωL1 0 0
−1 1− ψsin 0 0 0 −ωC1

−ωL1ψcos ωL2 0 0 −R1 −1
−ωL1 0 0 0 0 −1

0 0 −ωC1 1 −(1− ψcos) 0

∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣∣

I1(1)a
I2(1)a

UC1(1)a
I1(1)r
I2(1)r

UC1(1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

−U1(1)aψsin
−U1(1)a

0
0
0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (10)

where the determining factor of the harmonic component we are looking for is the switching
function ψ.

So, to determine the components by the higher harmonics, we use the following expression:

ψ = 1−M +
∞

∑
n=1

[
1

πn
sin(2πn(1−M))· cos(2πn f t)− 1

πn
(cos(2πn(1−M))− 1)· sin(2πn f t)

]
, (11)

where n is the harmonic order.
In turn, an efficiency assessment was performed for the above schemes. It is worth

noting that there is a method for calculating the efficiency of semiconductor converters [75,76].
We have evaluated static and dynamic losses in semiconductor switches. We took 2 kW for
the base power, while the losses in a simple circuit of the buck–boost AC voltage regulator
with a switched quasi-impedance of the power supply amounted to 80 W. In the AC voltage
regulator with a switched quasi-impedance of the power supply, the losses amounted to
40 W. This can be explained by the circuitry of converters, where in the case of simple
circuits of the buck–boost AC voltage regulator with a switched quasi-impedance of the
power supply, more reactive elements are used.

Thus, data were obtained to determine the harmonic coefficient obtained theoretically
and in the PSIM experiment, as well as the efficiency of regulators (Table 3).
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Table 3. Comparison of the proposed topologies in terms of their effectiveness.

Type of Converter Modulation Depth THDI(ADE), % THDI(PSIM), % Efficiency, %

AC voltage regulator with a switched
quasi-impedance of the power supply and

a capacitor in the load
0.75 3.2 3.1 98

A simple circuit of a buck–boost AC voltage
regulator with a switched quasi-impedance of the

power supply
0.7 4 3.94 96

A block diagram of the use of this type of regulator as an active filter is shown in
Figure 14. To simulate the presence of high-frequency components in the network current,
a rectifier was used as a load.

The direct connection of such a regulator is impossible without a closed-loop control
algorithm. Figure 15 shows the control system of such a system.
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As in an active filter based on a voltage inverter, compensation of the high-frequency
component of the current occurs due to its introduction in the opposite phase, which can
be obtained due to the LC circuit of the regulator. The current and voltage waveforms in
the PSIM program before compensation are shown in Figure 16. The compensated signal is
shown in Figure 17.
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The first harmonic of the current signal was removed; its filtering could be carried
out through a digital low-pass filter [76]. The filter parameters were calculated using the
impulse response using the Blackman function:

w(n) = 0.42− 0.5· cos
(

2πn
N − 1

)
+ 0.08· cos

(
4πn

N − 1

)
, (12)

where N is the number of coefficients.
The parameters of the PI controller are calculated in such a way that, with the known

parameters of all other elements of the system, the required quality of its response to the
control and disturbing effects is ensured.

During the calculation, the proportional coefficient and the integration time were
determined to be K = 1.67 and Ti = 0.0334 s [77].

A sawtooth signal with a frequency of 8 kHz was chosen as the reference volt-
age generator.

4. Reactive Power Compensator Based on an AC Voltage Regulator

A multi-zone AC voltage regulator was proposed [78], the main function of which
was to soft start an induction motor. This solution has been adapted to the possibility
of compensating reactive power in the input signal. The proposed system is shown in
Figure 18.
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Figure 18. Two-zone AC voltage regulator as a reactive power compensator.

When using a multi-zone AC voltage regulator, the input shift of reactive power is
completely eliminated due to the presence of capacitive power. Its presence is due to the
regulation of the output voltage. Reactive power can be eliminated by using the method
of pulse-width regulation of the output voltage while remaining in phase with the supply
voltage (Figure 19).

The presence of a current shift with an active inductive load, which can also be
provided by an induction motor, is shown in Figure 20. The compensation algorithm is
shown in Figure 21. The compensation algorithm also required signal phase tracking; this
could be implemented in a closed system. The rectification unit is an uncontrolled rectifier
made according to a bridge circuit, at the output of which a filter is connected. The filter is
a capacitor, the capacitance of which is calculated as

C f =
10× 0.02
qm2·Rd

(13)

with a tenfold excess of the load signal time constant over the pulsation period and was
C f = 2× 10−6 F, with a current from the current sensor equal to 5 mA.
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Figure 20. Input current and voltage, output current and voltage (top—input, bottom—output,
red—voltage, green—current).

The parameters of the PI controller are calculated in such a way that, with the known
parameters of all other elements of the system, the required quality of its response to the
control and disturbing effects is ensured.
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Figure 21. Input current and voltage, output current and voltage after compensation (top—input,
bottom—output, red—voltage, green/blue—current).

During the calculation, the proportional coefficient and the integration time were
determined to be K = 2.857 and Ti = 0.0124 s [77].

The reference voltage generator is the same sawtooth signal as in the previous section,
the frequency of which depends on the selected power switches, in this case 8 kHz.

5. Voltage Drop Compensator Based on an AC Voltage Regulator

In supply voltage drops, appliances may malfunction, even leading to their failure.
This circumstance requires the presence of a compensator.

A drop is considered to be a voltage drop below 0.9 Unom, followed by a voltage
restoration to the nominal level or close to it after a period of time from ten milliseconds to
several tens of seconds.

You can use an AC voltage regulator as a voltage drop compensator, as shown in
Figure 8. This type of regulator has a full range of regulation and allows you to obtain
increased output voltage with a full modulation depth of up to 1.4 of input voltage. This
can be done by monitoring the network voltage level; in case of a drop, the regulator begins
to operate in the voltage increase mode. The block diagram of the control system is shown
in Figure 22.

In the drop selection unit, when the voltage amplitude decreases, fixation occurs; for
example, in the case of using a digital control system, data are recorded in a microcontroller.
It records the previous values of the signal, and then the current signal is subtracted from
the stored previous one, thereby fixing the drop, which is then fed in the opposite phase.

The method presented in [77] was used for PI regulator calculating, in which the
parameters of the object of regulation are calculated; in particular, the gain values are
calculated, along with the parameters of the PI link itself, one of which is the integration
time. According to the results of the calculation, the transmission coefficient and the
integration time were determined to be K = 1.18 and Ti = 0.079 s.

The reference voltage generator is a sawtooth signal with a frequency of 8 kHz.
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Figure 22. Drop compensator control system (VS—voltage sensor).

6. An Asymmetry Compensator Based on an AC Voltage Regulator

To eliminate the negative impact of powerful nonlinear loads on a network, it is
necessary to use an asymmetry compensator, which can be used as a buck–boost AC
voltage regulator [72] (Figure 23). The control system of such a compensator is shown in
Figure 24.
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Figure 23. An AC voltage regulator, as a compensator for asymmetry.

Unbalanced voltage can be compensated using the control system. The signal will
be received from the load voltage sensors and converted into a forward, reverse and zero
sequence. Then, the error will be calculated, which will affect the magnitude of the received
signal when converting the input voltage to a direct sequence signal. The reference voltage
generator is a sawtooth signal with a frequency of 8 kHz.
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Voltage diagrams before compensation are shown in Figure 25, and voltage diagrams
after compensation of asymmetry are shown in Figure 26. At different loads, the phase
voltage will be different, as can be seen in Figure 25. The compensation result is shown in
Figure 26, where all three phase voltages are symmetrical.
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7. A Flicker Effect Compensator Based on an AC Voltage Regulator

Figure 27 shows a compensator circuit containing an AC voltage regulator. The flicker
effect is the so-called flicker of lighting, felt by a person and caused by low-frequency fluc-
tuations in the voltage level, for example, up to 10 Hz. Figure 28 shows the control system
for an AC voltage regulator that performs the function of a flicker effect compensator.
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Figure 28. Control system of the flicker compensator (CS—current sensor).

The first harmonic selection unit is presented in the form of a digital low-pass filter [79].
To calculate the filter parameters, the ideal and real impulse responses are calculated, for
which it is necessary to use the Blackman function.

As noted earlier, the parameters of the PI controller are calculated in such a way that,
with the known parameters of all other system elements, the required quality of its response
to the control and disturbing influences is ensured.

During the calculation, the proportional coefficient and the integration time were
determined to be K = 1.67 and Ti = 0.0334 s [77].

The reference voltage generator is a sawtooth signal with a frequency of 8 kHz.
This regulator can work as a flicker compensator, suppressing low-frequency harmon-

ics that are present in the supply network (Figure 29).
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The compensation result is shown in Figure 30. Suppression of harmonics with a
frequency of 10 Hz was achieved by adding these harmonics into the control signal in the
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opposite phase, thereby compensating for the presence of these harmonics in the system
input voltage.
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8. Experiment Results

An experiment was carried out with an active filter based on a half-bridge circuit of
a single-phase voltage inverter. The experimental model was practically a digital twin of
the device. All elements of the scheme corresponded to real objects. Carrying this out on
a physical model was impossible due to the long manufacturing time of the transformer
and the lack of an NRT 160.220 charging and rectifying device in the laboratory; it is an
enterprise-scale device. A photo of the NRT 160.220 is shown in Figure 31.
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However, several tests were carried out with the element parameters shown in Table 1:

• Uin = 253 V, Uout = 187 V, M = 4.89, Rl = 1.113 Om, switching of the filter, with a choke
in the DC link, reset surge of the main voltage 253–126.5–253 V;

• Uin = 253 V, Uout = 187 V, M = 4.89, Rl = 1.113 Om, switching of the filter, two capacitors
in parallel in the DC link, reset surge of the main voltage 253–126.5–253 V;

• Uin = 253 V, Uout = 187 V, M = 4.89, Rl = 1.113 Om, switching of the filter, without a
choke in the DC link, reset surge of the main voltage 253–126.5–253 V;

• Uin = 253 V, Uout = 187 V, M = 4.89, Rl = 1.113 Om, switching of the filter, two capac-
itors in parallel and without a choke in the DC link, reset surge of the main voltage
126.5–253–126.5 V;

• Uin = 253 V, Uout = 187 V, M = 4.89, Rl = 1.113 Om, the active filter does not work, the
transistors are closed;

• Uin = 253 V, Uout = 187 V, M = 4.89, Rl = 1.113 Om, the transition process;
• Uin = 187 V, Uout = 270 V, M = 9.76, Rl = 1.715 Om, the maximum voltage of the

charging and rectifying device;
• Operate on counter-EMF;
• Uin = 253 V, Uout = 187 V, M = 4.89, Rl = 1.113 Om, without filter capacitor at the output

of the charging and rectifying device, ripple 3.188 V, THDI = 0.233%.

Figure 32 shows the oscillograms of the active filter at different points of the circuit
at the time of switching of the active filter, obtained in the PSIM software (Professional
2022.2.0.17). At the output voltage maximum of the charging and rectifying device, the
ripple level with the active filter turned on remains minimal (Figure 33). The results were
obtained in dynamics and at a high frequency (33 kHz); in this regard, the signal period is
not visible, and only the moment when the active filter is turned on is visible. Also, the
output voltage value of the charging and rectifying device is interesting here. Figure 33
shows the transition process itself, where you can see the value of the output voltage ripple,
and the simulation data of specific figures are given in Table 4. For convenience, some
figures show a scale scan.
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Figure 32. Oscillograms of Uin = 253 V, Uout = 187 V, M = 4.89, Rl = 1.113 Om, transient ((a) voltage of 
the charging and rectifying device before and after the active filter (top), the DC-link capacitor volt-
age of the active filter (bottom); (b) the choke current of the active filter output (top), the capacitor 
current of the active filter output (bottom); (c) the capacitor current of the active filter DC link (top), 
the choke current of the active filter DC link (bottom); (d) active filter transistor current (top), DC-
link choke voltage (bottom); (e) the primary-side current of the active filter (top), the transistor volt-
age of the active filter (bottom)). 

Figure 32. Oscillograms of Uin = 253 V, Uout = 187 V, M = 4.89, Rl = 1.113 Om, transient ((a) voltage
of the charging and rectifying device before and after the active filter (top), the DC-link capacitor
voltage of the active filter (bottom); (b) the choke current of the active filter output (top), the capacitor
current of the active filter output (bottom); (c) the capacitor current of the active filter DC link (top),
the choke current of the active filter DC link (bottom); (d) active filter transistor current (top), DC-link
choke voltage (bottom); (e) the primary-side current of the active filter (top), the transistor voltage of
the active filter (bottom)).
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Table 4 shows the simulation results, as well as the level of the ripple coefficient (Kp). 

Table 4. Simulation results and ripple coefficient level. 

Uin, V 253 253 220 220 220 187 

Uout, V 187 232 220 220 232 270 

Figure 33. Oscillograms of Uin = 187 V, Uout = 270 V, M = 9.76, Rl = 1.715 Om, maximum voltage
of the charging and rectifying device ((a) voltage of the charging and rectifying device after the
active filter (top), the DC-link capacitor voltage of the active filter (bottom); (b) the choke current
of the active filter output (top), the capacitor current of the active filter output (bottom); (c) the
capacitor current of the active filter DC link (top), the choke current of the active filter DC link
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(bottom); (d) active filter transistor current (top), DC-link choke voltage (bottom); (e) the primary-side
current of the active filter (top), the transistor voltage of the active filter (bottom)).

Table 4. Simulation results and ripple coefficient level.

Uin, V 253 253 220 220 220 187
Uout, V 187 232 220 220 232 270

Udcmax, V 187.348 232.299 220.424 218.941 232.313 270.269
Udcmin, V 187.003 231.964 220.11 218.614 231.971 270.029
Udcave, V 187.174 232.129 220.265 218.777 232.144 270.148
KpU, % 0.18432 0.144316 0.142556 0.149467 0.147322 0.08884

KpU/KpU(without an active filter) 6.600593 6.286236 5.371182 5.215144 4.8261 2.662608

KpU(without an active filter)—the ripple coefficient of the output voltage of the charging and rectifying device in the
absence of an active filter.

Table 4 shows the simulation results, as well as the level of the ripple coefficient (Kp).
The presence of an active filter in the charging and rectifying device allowed for

reducing voltage ripples up to 6 times, which also allowed for reducing the number of filter
capacitors at the output of the rectifier of the charging and rectifying device from 6 units,
6800 µF each, to 3 units [78].

9. Conclusions

Improving the quality of electrical energy is one of the priorities along with the
distribution of electricity throughout the state. An increasing number of nonlinear, active
inductive loads and their different phase distributions can lead to a deterioration in the
quality of network operation. This may include the presence of high-frequency harmonic
components that can reach electricity consumers and the presence of reactive power, which
leads to inefficient use of electricity. Many people often overpay for electricity due to a poor
power factor, less than 0.9, and also because of the uneven distribution over the phases of
the network. In the case of accidents, an asymmetry may appear in a three-phase network,
which can negatively affect the operation of both industrial and household appliances. In
this regard, variants of devices that improve electrical energy quality have been proposed.
AC voltage regulators were introduced, mainly with a switched quasi-impedance of the
power supply, but the main emphasis was placed on an active filter based on a half-
bridge inverter.

When analyzing the active filter, special attention was paid to the battery charge,
namely the quality of current and voltage with a minimum level of pulsations in the
DC link. At the same time, a charger with an active filter must remain mobile, which
implies a reduction in its weight and dimensions. Thus, it was proposed to abandon bulky
chokes and switch to an active filter based on a half-bridge inverter. Compared to similar
solutions [43,55], the proposed active filter uses a control system with a control loop for
the output current of the active filter. This made it possible to limit current surges on
the primary side of the transformer. The pulsation coefficient was less than 1%, while for
analogs, this value reached 2.5%. Thus, the following conclusions were made:

1. The required ripple level did not exceed 0.2%.
2. The possibility of compensation of the pulsation component is achieved both at a

small output voltage value of the rectifier of the charging and rectifying device and at
a maximum equal to 270 V, where the pulsation was 0.2 V.

3. The presence of only two transistors indicates a low level of energy loss on
semiconductors—25 W, which will reduce the size of the radiator.

4. The disadvantages include a non-standard type of matching transformer; this will
affect the cost of the entire power supply system.

Obtaining such a low level of ripple indicates that the goal was achieved, the imple-
mentation of the pulsating voltage form filtering, where the ripple value was more than
4 V, and after filtering less than 0.6 V, which was 0.1–0.2%.



Symmetry 2023, 15, 2092 29 of 32

Electrical energy quality “conditioners” based on AC voltage regulators were also
presented. The considered converters can be used as reactive power regulators, ac-
tive harmonic filters, compensators of voltage drop and symmetrical devices in mult-
iphase networks.
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