
Citation: Pan, J.-S.; Zhang, Z.; Chu,

S.-C.; Lee, Z.-J.; Li, W. Application of

Diversity-Maintaining Adaptive

Rafflesia Optimization Algorithm to

Engineering Optimisation Problems.

Symmetry 2023, 15, 2077. https://

doi.org/10.3390/sym15112077

Academic Editors: Lorentz Jäntschi,

Alexander Zaslavski and Sergei D.

Odintsov

Received: 29 September 2023

Revised: 7 November 2023

Accepted: 13 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Application of Diversity-Maintaining Adaptive Rafflesia
Optimization Algorithm to Engineering Optimisation Problems
Jeng-Shyang Pan 1,2 , Zhen Zhang 1 , Shu-Chuan Chu 1,* , Zne-Jung Lee 3 and Wei Li 4

1 College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; jspan@cc.kuas.edu.tw (J.-S.P.); zhangzhenzzww@sdust.edu.cn (Z.Z.)

2 Department of Information Management, Chaoyang University of Technology, Taichung 41349, Taiwan
3 School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China; johnlee@fzu.edu.cn
4 College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China;

wei.li@hrbeu.edu.cn
* Correspondence: scchu0803@sdust.edu.cn

Abstract: The Diversity-Maintained Adaptive Rafflesia Optimization Algorithm represents an en-
hanced version of the original Rafflesia Optimization Algorithm. The latter draws inspiration from
the unique characteristics displayed by the Rafflesia during its growth, simulating the entire life-
cycle from blooming to seed dispersion. The incorporation of the Adaptive Weight Adjustment
Strategy and the Diversity Maintenance Strategy assists the algorithm in averting premature con-
vergence to local optima, subsequently bolstering its global search capabilities. When tested on the
CEC2013 benchmark functions under a dimension of 30, the new algorithm was compared with
ten optimization algorithms, including commonly used classical algorithms, such as PSO, DE, CSO,
SCA, and the newly introduced ROA. Evaluation metrics included mean and variance, and the
new algorithm outperformed on a majority of the test functions. Concurrently, the new algorithm
was applied to six real-world engineering problems: tensile/compressive spring design, pressure
vessel design, three-bar truss design, welded beam design, reducer design, and gear system design.
In these comparative optimizations against other mainstream algorithms, the objective function’s
mean value optimized by the new algorithm consistently surpassed that of other algorithms across
all six engineering challenges. Such experimental outcomes validate the efficiency and reliability
of the Diversity-Maintained Adaptive Rafflesia Optimization Algorithm in tackling optimization
challenges. The Diversity- Maintained Adaptive Rafflesia Optimization Algorithm is capable of
tuning the parameter values for the optimization of symmetry and asymmetry functions. As part
of our future research endeavors, we aim to deploy this algorithm on an even broader array of
diverse and distinct optimization problems, such as the arrangement of wireless sensor nodes, further
solidifying its widespread applicability and efficacy.

Keywords: Rafflesia Optimization Algorithm; adaptive weight adjustment; diversity-maintaining;
engineering optimization

1. Introduction
1.1. Meta-Heuristic Algorithms

In recent years, with the rapid development of intelligent optimization algorithms, nu-
merous optimization problems have been addressed effectively. An optimization problem
is characterized by the quest to find the best solution or parameter values that maximize
or minimize an objective function within a vast array of solutions and parameters, subject
to certain constraints. Meta-heuristic optimization algorithms are useful to solve both
the optimization of symmetry functions and asymmetry functions with constrains. These
problems encompass essential components such as the objective function, variables, and
constraints. The domains covered by optimization problems are diverse, spanning areas

Symmetry 2023, 15, 2077. https://doi.org/10.3390/sym15112077 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15112077
https://doi.org/10.3390/sym15112077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3128-9025
https://orcid.org/0000-0003-2117-0618
https://orcid.org/0000-0003-0998-5435
https://doi.org/10.3390/sym15112077
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15112077?type=check_update&version=2

Symmetry 2023, 15, 2077 2 of 31

such as engineering optimization, data mining, machine learning, wireless sensor deploy-
ment, resource scheduling, digital image processing, mechanical design, and path planning,
among others. When confronted with these challenges, traditional optimization methods,
such as Newton’s method, necessitate an exhaustive traversal of the entire search space, a
process that is often time-consuming. In the context of specific complex optimization issues,
due to the vastness of their search spaces, high complexity, and the presence of constraints
and nonlinearities, pinpointing the optimal solutions becomes increasingly challenging.
Hence, there is a pronounced emphasis on seeking high-performance, rapidly converging
intelligent optimization algorithms to tackle these intricate problems.

Inspired by natural social laws and collective biological behaviors, researchers have
begun to introduce a category of algorithms known as metaheuristic algorithms. Compared
to traditional optimization algorithms, these metaheuristics exhibit superior robustness,
explorative capacity, and adaptability. Some metaheuristic algorithms, originating as early
as the 1970s and 1980s, have been proposed. For instance, the classic Genetic Algorithm
and Simulated Annealing Algorithm were introduced, leveraging the simulation of natural
biological evolution and the annealing process of solid materials to search spaces for optimal
solutions. Empirical tests indicated that these algorithms achieved favorable outcomes in
solving intricate problems.

With the continued evolution of scientific research, an increasing number of meta-
heuristic algorithms have been developed and studied. In 1995, for example, Storn and
colleagues introduced the Differential Evolution Algorithm, rooted in swarm intelligence
theory. Initially conceived for Chebyshev polynomial problems, it was subsequently found
to be effective for other optimization problems. There are numerous algorithms based
on swarm intelligence, such as Particle Swarm Optimization [1] (PSO), inspired by the
flocking and clustering behaviors of birds during foraging. Owing to its simplicity and
ease of implementation, PSO quickly garnered considerable attention. By simulating the
behavior of ants in their unaided search for the shortest route between food and their nest,
Ant Colony Optimization [2,3] (ACO) was proposed, primarily for shortest-path problems.
Drawing inspiration from the behavioral traits and hunting strategies of cats, researchers
introduced Cat Swarm Optimization [4] (CSO). By emulating the echolocation features and
flight patterns of bats, researchers presented the Bat Algorithm [5,6] (BA). The Sine-Cosine
Algorithm [7] (SCA), developed based on the continuity and periodicity of sine and cosine
functions, simulates solution optimization and searching. In recent years, newer opti-
mization algorithms have emerged, such as the Goose Optimization Algorithm [8] (GOA),
which is founded on the behavior of geese during predation, particularly their exploratory
behavior prior to spotting fish and their chasing behavior once fish are detected. The
Artificial Fish Swarm Algorithm [9,10] (AFSA) was proposed, inspired by fish interactions
during predation and predator avoidance. The Artificial Bee Colony Algorithm [11] (ABCA)
emanates from bee foraging behaviors, replicating the bees’ information exchange and
foraging strategies. Bamboo Forest Optimization [12] (BFGO) was inspired by the growth
characteristics of bamboo, while the Rafflesia Optimization Algorithm [13] (ROA) and the
Binary Rafflesia Optimization Algorithm were conceived based on the blooming and repro-
duction patterns of the Rafflesia flower. The Grey Wolf Optimizer [14,15] (GWO) mimics
the societal behaviors of grey wolves, particularly in their hunting endeavors. Based on the
migratory and foraging behaviors of whales, the Whale Optimization Algorithm [16,17]
(WOA) was introduced to optimize solution spaces. Additionally, algorithms such as the
Gaining–Sharing Knowledge-Based Algorithm [18] (GSK) have been introduced. Upon
their introduction, these metaheuristic algorithms have been successfully deployed in
path planning, engineering applications, and sensor placements, among other complex
optimization challenges, consistently delivering commendable results.

With the continued advancements in intelligent optimization algorithms in recent
years, numerous optimization strategies have been proposed by researchers and success-
fully applied to real-world optimization problems. However, no single algorithm has been
identified that can universally address all optimization challenges. This observation aligns

Symmetry 2023, 15, 2077 3 of 31

with the No Free Lunch Theorem. When confronted with a particular complex optimiza-
tion problem, an algorithm might produce commendable outcomes post-optimization. Yet,
the same algorithm may underperform when tasked with different challenges. This sug-
gests that algorithms can often become trapped in local optima when applied in practical
scenarios. To mitigate this issue, researchers have sought to refine existing algorithms
and introduce enhanced ones, aiming to bolster their convergence capabilities. One such
effort, the Butterfly Optimization Algorithm (BOA), was indeed grounded in the No Free
Lunch Theorem.

To achieve superior convergence results, modifications were made to the Rafflesia
Optimization Algorithm, incorporating adaptive weight adjustment strategies and diver-
sity preservation techniques. This revamped algorithm, designed to avoid local optima
entrapments and demonstrate augmented convergence capabilities, has been termed the
Diversity-Maintained Adaptive Rafflesia Optimization Algorithm (AROA). Subsequently,
the AROA’s performance was assessed and tested using the CEC2013 benchmark function
set. It was compared with algorithms such as ROA, PSO, SCA, WOA, GSA [19], DE [20,21],
CSO [22], BA, and BOA for problems with a dimensionality of 30. Comparative outcomes
revealed that AROA exhibited superior convergence performance. Moreover, AROA was
applied to engineering optimization problems to gauge its efficacy in practical applica-
tions. When juxtaposed with other algorithms in this context, AROA consistently delivered
superior results.

1.2. Algorithmic Features or Principles

Meta-heuristic algorithms, such as Particle Swarm Optimization (PSO), Ant Colony
Optimization (ACO), Cat Swarm Optimization (CSO), the Artificial Bee Colony Algo-
rithm (ABCA), Artificial Fish Swarm Algorithm (AFSA), Grey Wolf Optimizer (GWO),
Whale Optimization Algorithm (WOA), Bat Algorithm (BA), Sine-Cosine Algorithm (SCA),
Gaining–Sharing Knowledge-Based Algorithm (GSK), and the Rafflesia Optimization Al-
gorithm (ROA), are evolutionary or swarm intelligence algorithms designed to address
optimization problems. The fundamental distinctions between them lie in their basic
principles and characteristics.

A common trait amongst these algorithms is that they emulate behaviors observed
in nature or mathematical principles to identify optimal solutions. For instance, PSO
mimics the flocking behavior of birds, ACO simulates ant foraging, and CSO emulates
hunting behavior of cats. These algorithms employ various strategies to guide their search
processes, exploring the search space to eventually pinpoint either global optima or high-
quality solutions.

However, these meta-heuristic algorithms have unique foundational principles and
essential characteristics. For instance, in PSO, which imitates the flocking behavior of birds,
particles adjust their velocities and positions based on personal and global best positions.
ACO, drawing inspiration from ants searching for food, uses pheromones as guidance
for the search process. CSO, emulating cat hunting and migration behaviors, introduces
hunting and migration phases to enhance diversity. ABCA mirrors bee recruiting, foraging,
and information-sharing behaviors, fostering inter-bee cooperation to pinpoint optimal
solutions. AFSA emulates fish foraging and migration, encompassing both individual and
collective behaviors. GWO replicates social behaviors within wolf packs, incorporating
alpha leadership and followership. WOA imitates whale search and foraging, integrating
linearly decreasing predation behaviors. BA emulates bat foraging and echolocation, using
frequency and amplitude adjustments for exploration. SCA employs the mathematical
principles of sine and cosine functions to generate novel solutions, while GSK, predi-
cated on knowledge-sharing and acquisition mechanisms, optimizes solutions through
individual cooperation.

Regarding application domains, certain algorithms, such as PSO, GWO, and ROA, are
more suited for continuous optimization problems, whereas ACO and CSO are tailored

Symmetry 2023, 15, 2077 4 of 31

for discrete optimization problems. Algorithms such as ABCA and AFSA can often be em-
ployed across diverse problem types, including both continuous and discrete optimization.

From an information dissemination perspective, ACO deploys pheromones to guide
the search, with pheromone deposition and evaporation influencing path selection. ABCA
and AFSA, despite also involving information dissemination, differ in their mechanisms:
bees and fish collaborate and exchange information to locate optimal solutions.

In terms of update strategies, algorithms such as CSO, AFSA, and GWO introduce
unique diversity maintenance strategies, such as hunting and migration behaviors and
individual versus collective behaviors, to enhance search diversity. In summary, the
critical distinguishing features among these meta-heuristic algorithms encompass their
foundational principles, application domains, information dissemination mechanisms,
diversity maintenance strategies, parameter tuning, and adaptiveness. The choice of the
appropriate algorithm largely depends on the nature and specific requirements of the
problem at hand.

The advantages of these algorithms over traditional optimization techniques lie in
their ability to guide a search by simulating behaviors observed in nature or by leveraging
mathematical principles, thereby enhancing their exploration capabilities for complex,
multimodal problems. During the search process, they are able to maintain diversity and
possess both global and local search capabilities. As a result, they are typically more adept
at locating global optima or high-quality solutions. The choice of algorithm often hinges
upon the specific nature of the problem and the configuration of algorithmic parameters.
The flexibility and versatility of these algorithms render them potent tools for addressing a
wide array of optimization challenges.

The remaining structure of this paper is organized as follows: Section 2 presents the
preparatory work, introducing the original Rafflesia Optimisation Algorithm, the strategies
employed for the improved algorithm, and the optimization domains and challenges ad-
dressed in this study. Section 3 delves into the specific improvement details of applying the
adaptive weight adjustment strategy and diversity maintenance strategy to the Rafflesia
Optimisation Algorithm. Section 4 conducts tests on the algorithm, presenting comparative
test results and their analysis. Section 5 evaluates the algorithm’s performance in engi-
neering application problems. Section 6 discusses the algorithm’s applicability and time
complexity and also highlights the performance capabilities of some benchmark algorithms.
The final section, Section 7, summarizes the main research contributions of this paper and
offers perspectives on future research directions.

2. Related Works

This section predominantly delineates the specific algorithmic procedure of the original
Rafflesia Optimization Algorithm. Additionally, two strategies employed to enhance the
Rafflesia Optimization Algorithm are detailed: the adaptive weight adjustment strategy and
the diversity maintenance strategy. The section concludes by identifying the optimization
domains and challenges addressed in this paper and proposing the optimization processes
tailored to these specific areas.

2.1. ROA

The inspiration for the Rafflesia Optimization Algorithm is derived from all the
behavior of the Rafflesia flower, from its blooming onset to seed propagation. Drawing
upon the characteristics exhibited during the Rafflesia’s growth process, this algorithm
emulates certain distinctive features evident from its budding phase through to seed
dispersion. Firstly, when the Rafflesia begins to bloom, it emits a scent to allure insects.
Secondly, once insects are attracted by the fragrance released upon the Rafflesia’s blooming,
they assist the flower in the pollination process. However, due to the Rafflesia’s unique
floral chamber structure, certain insects can become trapped during pollination, ultimately
leading to their demise. Thirdly, once the Rafflesia’s petals wither, it yields a fruit laden with
a multitude of seeds. The seeds produced by the Rafflesia are dispersed in various ways

Symmetry 2023, 15, 2077 5 of 31

for propagation in diverse locales. Owing to environmental constraints, only a minimal
number of these seeds manage to endure. Taking into account these three distinctive traits
of the Rafflesia, the algorithm has been segmented into three phases: the insect attraction
phase, the insect consumption phase, and the seed dissemination phase. Furthermore, the
algorithm regards the optimal solution as the insect positioned nearest to the Rafflesia.

2.1.1. Attracting Insects Stage

In the initial phase, the ROA employs two strategies. The first strategy addresses the
relationship between insects newly attracted by the Rafflesia and those not flying towards
the Rafflesia. The second strategy is utilized to update the status of insects consistently
heading towards the Rafflesia.

Due to the individuals in the population existing within a multi-dimensional space for
which a suitable coordinate system has yet to be constructed in reality, an abstraction to a
three-dimensional space is utilized for computational purposes for each dimension of the
new individuals. The position of these new individuals is computed with reference to a
mathematical model exemplified in Figure 1. This three-dimensional space is composed
of the X, Y, and Z axes, where Y and Z represent two arbitrary dimensions that are
perpendicular to the X axis within the multi-dimensional space.

X

Y

Z

a

b

Pr

Pi

distance

O(pbest)

distance

Figure 1. The model of the calculated dimensions.

In Strategy I, individuals are abstracted and calculations are performed within a three-
dimensional space, as depicted in Figure 1. The three axes of this space are denoted as X, Y,
and Z, respectively. Within this coordinate system, the origin, O, is employed to represent
the optimal individual, termed Pbest. Pi (where i = 1, 2, ..., N

3) symbolizes newly generated
individuals, with N denoting the population size. Subsequently, the mathematical method
yields the position formula for Pi as follows:

Pi = O +
∣∣∣−→OPi

∣∣∣× sin(a) cos(b) (1)

Based on the given formula, the position update formula for the individual in the dim
dimension can be derived as

Pid = Pbestd + distance× sin(a)d cos(b)d (2)

Here, a represents the angle between the vector
−−−→
PbestPi and the Z-dimension, with its

value in the range of (0, π/2). b signifies the angle between the projection of the vector
−−−→
PbestPi on the plane formed by the X and Y dimensions and the X-dimension, and its value
lies within the range (0, π).

Symmetry 2023, 15, 2077 6 of 31

To ensure that the newly generated insects are oriented towards the same Rafflesia as
those in the original population, the distance between the newly generated individual Pi
and Pbest is set to be equivalent to or approximate the distance between a randomly chosen
individual Pr within the population and the optimal individual.

The distance denotes the value between Pbest and Pi. Pbest represents the global best
solution. Pr is a randomly selected individual within the population, and its distance from
Pbest is equal to the distance between Pi and Pbest. dim stands for the dimension of the
particles. The computation result is presented by Equation (3),

distance =

√√√√dim

∑
d=1

(Pid − Pbestd
)2 (3)

the newly generated individuals will replace the poorly adapted ones. This iterative process
is represented by the following equation:

Pworsti = Pi (4)

In Strategy II, the primary focus is on updating individual positions. As an insect
entity flies, its motion speed is the vector sum of translational and rotational velocities.
The flight speed equation for insects is modeled after the work presented in Reference [13].
This model suggests that during flight, an insect’s wing motion can be decomposed into
translational and rotational movements. The equation for the translational motion of
the wings is given by Equation (5), while that for the rotational motion is provided by
Equation (6). By deriving these equations, we obtain the formulas for the translational
and rotational velocities of the insect entity; the translational velocity is presented in
Equation (7), and the rotational velocity is presented in Equation (8).

σ =
A
2

cos(ω0t + θ)

δ =
B
2

sin(ω1t + θ)

(5)

ϕ = ϕ0(1− sin(ω0t + θ + µ)) (6)

−→v1 =


dσ

dt
= −A

2
ω0 sin(ω0t + θ)

dδ

dt
=

B
2

ω1 cos(ω1t + θ)

(7)

−→v2 = −dϕ

dt
= ϕ0ω0 cos(ω0t + θ + µ) (8)

Here, A denotes the amplitude of wing flapping, B represents the lateral offset, ω0
is the flapping frequency period, ω1 stands for the lateral flapping frequency period, θ
signifies the phase, µ indicates the phase difference between rotation and translation, the
initial angle of attack is represented as ϕ0, and t denotes time.

From Equation (7), it is evident that the translational velocity comprises two compo-
nents. When these two components are synthesized, we derive −→v1 . Setting the ratio of
the flapping frequency period ω0 to the lateral wing flap frequency period ω1 as 1, the
computation formula for the synthesized −→v1 is as follows:

−→v1 =
1
2

√
A2ω02 sin2(ω0t + θ) + B2ω1

2 cos2(ω1t + θ)

=
ω0

2

√
A2 sin2(ω0t + θ) + B2 cos2(ω1t + θ)

(9)

Symmetry 2023, 15, 2077 7 of 31

For the velocity −→v2 , we will transform it according to Equation (8). Letting the initial
angle of attack ϕ0 be represented by the pre-update rotational speed −→v2 , Equation (8) can
be reformulated into the following computational formula:

−→v2 = −→v2 ω0 cos(ω0t + θ + µ) (10)

Vectorially synthesizing −→v1 and −→v2 , we ultimately derive the update formula for the
insect’s velocity as follows:

−→v = −→v1 +−→v2 (11)

Certain parameters within the aforementioned equations are set as follows: A, B, ω1,
ω0, and µ are, respectively, set to 2.5, 0.1, 0.025, 0.025, and −0.78545. The range for the site
is (0, π); t symbolizes the iteration number, and the initial value for −→v2 is defined between 0
and 2π.

While the entity’s position is updated based on the velocity update formula, it is also
influenced by the globally optimal entity. Incorporating this influence into the insect’s
motion, the position update formula for the insect entity is derived as follows:

−→
L = C×−→v × i + (Pbest − P(i))× (1− C)× Rand (12)

In this formula, the preceding part underscores the insect’s free movement distance
based on the velocity update formula. In contrast, the subsequent segment highlights
the movement distance of the insect post its influence from the globally optimal entity. C
denotes the influencing factor, with its value ranging between −1 and 1. The term Rand
refers to a pseudo-random number that falls between 0 and 1. Specifically, Rand(0, 1)
denotes a number that is generated from a pseudo-random sequence and is uniformly
distributed over the interval from 0 (inclusive) to 1 (exclusive). Such pseudo-random
numbers are computed via an algorithm designed to mimic true randomness. Although
they are produced by a deterministic process, for the majority of applications, they are
sufficiently close to genuine random numbers. i represents the current number of iterations.
Ultimately, the formula updating the position of the entity after each iteration is as follows:

P(i) = P(i) +
−→
L (13)

2.1.2. Insectivorous Stage

At this stage, the algorithm primarily aims to eliminate the least fit individuals from
the population, thereby ensuring the quality of the optimal entities. During this phase, a
predetermined number of iterations are executed, and after each iteration, the population
size decreases by one. Nreduce signifies the number of entities that need to be culled from
the population. The pseudocode for this phase can be seen in Algorithm 1.

2.1.3. Seed Dispersal Stages

In the third phase, the position of Rafflesia is initialized based on the optimal entity’s
position at the conclusion of the two preceding phases. As this phase corresponds to the
seed propagation stage, the definition of the optimal entity shifts to the seed with the
highest probability of survival. Meanwhile, other entities search randomly for suitable
growth environments. The update formula for this phase is provided as follows:

P(i)d = Pbestd
+ Ra× exp(

T
maxiter

− 1)× sign(rand− 0.5) (14)

where Ra designates the distribution range of the entity, with its computation formula
provided in Equation (15). Dim (with dim = 1, 2, ..., n) denotes the dimensionality of
the population, MAX_iter signifies the maximum population size, and T represents the
number of iterations. Exp(T

maxiter
− 1), in this context, is an influencing factor that changes

with the progression of iterations. rand stands for a random number lying within the range

Symmetry 2023, 15, 2077 8 of 31

(0, 1). To enhance the diversity of the solution space, a sign factor is introduced, where the
value of sign(rand − 0.5) is set to either −1 or 1.

Ra = RAND× (ub− lb) + lb (15)

Within the aforementioned formula, lb indicates the upper boundary of the entity
distribution range, while ub represents the lower boundary.

Algorithm 1 The pseudocode of ROA.

Input: N: population size; Dim: problem dimension; Max_iter: the maximum number of
iterations;

Output: the location of Rafflesia and its fitness value;
1: Initialize the populations;
2: Initialize the correlation parameter A, B, λ1, λ2, θ, t, µ, constant C, −→v2 ;
3: for i = 1:Max_iter do
4: Calculate the fitness values of individuals;
5: By ordering fitness values, the current global optimal individual is defined as Pbest;
6: //First stage
7: if rem (Iter,100) < 50 then//rem denotes the remainder operation
8: for t = 1:N do
9: if t <= N

3 then
10: Calculate the distance parameter d by Equation (1);
11: New individual generation by Equation (2);
12: Eliminate individuals with poor fitness by Equation (3);
13: else
14: for k=1:D do
15: Calculate −→v1 and −→v2 by Equations (5) and (6);
16: Calculate −→v of each individual by Equation (7);
17: Update the remaining individuals occupying 2

3 of the populations by
Equations (12) and (13).

18: end for
19: end if
20: end for
21: end if
22: //Second stage
23: Eliminate individuals with the worst fitness by Equation (3);
24: if rem (Iter,100) == 50 then//rem denotes the remaning operation
25: pop(Pworst,:)=[];
26: fitness(Pworst,:)=[];
27: N=N − 1;//reduce the individual by one
28: end if
29: //third stage
30: if rem (Iter,100)>50 then//rem denotes the remainder operation
31: for t=1:N do
32: Calculate the parameter Rd by Equation (15);
33: Update the population individuals by Equation (15);
34: end for
35: end if
36: end for

2.2. Adaptive Weight Adjustment Strategy

The adaptive weight adjustment strategy [23,24] is a commonly employed optimiza-
tion strategy within intelligent optimization algorithms. This approach primarily serves
to dynamically fine-tune certain parameters within the optimization algorithm. Its main
objective is to regulate the converging capability of the optimization algorithm by dynami-
cally adjusting its weight parameters, thus enhancing both the performance and the rate

Symmetry 2023, 15, 2077 9 of 31

of convergence of the algorithm. Within many optimization algorithms, such as Particle
Swarm Optimization (PSO) and Differential Evolution (DE), certain weight parameters
exist. These parameters strike a balance between global and local search initiatives or serve
to control the algorithm’s convergence properties.

The underlying principle of the adaptive weight adjustment strategy is to modify
these weight parameters dynamically based on both the running state of the algorithm
and the characteristics of the problem at hand. In doing so, the algorithm becomes more
tailored to the current optimization problem, elevating the efficiency and accuracy of
the search. Specifically, the adaptive weight adjustment strategy might modify weights
based on various indicators, such as changes in the objective function values, the degree of
convergence of particles, or the diversity of the population. For instance, as the algorithm
nears convergence, it might be beneficial to increase the weight of the local search to
expedite convergence. Conversely, if the algorithm becomes trapped in a local optimum,
elevating the weight of the global search can help break free from that local peak. In essence,
the goal of the adaptive weight adjustment strategy is to render optimization algorithms
more flexible and adaptable, ensuring optimal performance across various problems and
stages of optimization.

2.3. The Diversity Maintenance Strategy

The diversity maintenance strategy [25,26] is a tactic employed within optimization
algorithms to sustain population diversity, averting premature convergence to local optima
and thereby amplifying global search capabilities. Within such algorithms, population di-
versity refers to the degree of variation between individuals in a population. If a population
becomes overly concentrated within a specific local region, it poses the risk of the algorithm
becoming ensnared in a local optimum, preventing the identification of a superior global
solution. Thus, the objective of the diversity maintenance strategy is to uphold population
diversity through an array of technical means, fostering a comprehensive global search.

Common diversity maintenance strategies can be classified into several categories.
Initially, there is the diversity preservation mechanism, which utilizes specific tactics to
maintain individual diversity within the population. For instance, in the Particle Swarm
Optimization (PSO) algorithm, a diversity maintenance factor can be introduced to adjust
the social and cognitive weightings between individuals, ensuring a balance between
global and local search capabilities. Subsequently, there is the diversity enhancement
operation, which incorporates randomness and diversity-boosting actions to promote the
exploratory capacity of the population. As an example, in genetic algorithms, strategies
involving crossover and mutation operators can be employed, introducing randomness
and thereby enhancing individual diversity. Lastly, diversity measurement and selection
entail using diversity metrics to evaluate the degree of diversity within a population
and making selections based on these metrics. For example, in evolutionary algorithms,
diversity indices, such as population entropy or variance, can be used to assess variations
between individuals, subsequently selecting those with higher diversity for reproduction
and evolution.

In conclusion, the aim of the diversity maintenance strategy is to retain population
diversity by fine-tuning algorithmic operations and parameters, bolstering global search
capabilities, thereby offering a more profound exploration of the solution space of opti-
mization problems.

2.4. Operational Content and Mechanisms of the Two Optimization Strategies

The Adaptive Weight Strategy primarily adjusts algorithmic parameters dynamically
in response to the ongoing optimization process. This approach aids in maintaining
a balance between exploration (seeking new solutions within the solution space) and
exploitation (optimizing the currently known best solutions). Its mechanism operates by
introducing an adaptive component, which updates algorithmic weights or parameters
based on the quality of solutions found in previous iterations. If the algorithm identifies a

Symmetry 2023, 15, 2077 10 of 31

stagnation phase (i.e., it fails to discover better solutions over a set number of iterations),
weights are adjusted to encourage heightened exploration. Conversely, if the algorithm
identifies a promising region within the solution space, weights might be fine-tuned to favor
exploitation. The operational facets of the Adaptive Weight Strategy encompass weight
initialization, evaluation of the current solution’s quality, dynamic weight adjustments,
feedback mechanisms, boundary constraints, and termination criteria.

The Diversity Maintenance Strategy ensures that the set of solutions remains diversi-
fied, preventing premature convergence and promoting a more global search. It functions
by periodically assessing the diversity amongst solutions. Should diversity decrease be-
low a certain threshold (indicating potential early convergence), the strategy initiates
mechanisms to diversify the solution set. This can be achieved in several ways, such as
reintroducing random solutions, perturbing existing solutions, or employing techniques
akin to crossover and mutation operations found in genetic algorithms. Typical operational
aspects of the Diversity Maintenance Strategy include measuring diversity, population
replacement, introducing randomness, employing multi-start strategies, and preserving
elite strategies.

Together, these strategies bolster a more potent and adaptive search process, enabling
the algorithm to efficiently traverse the solution space and identify high-quality solutions.

2.5. Areas of Optimization and Challenges

This study delves deeply into an advanced optimization technique named the Diver-
sity Maintenance Adaptive Rafflesia Optimization Algorithm, which is an enhancement
and extension of the original Rafflesia algorithm. The paper elaborately explains how
this algorithm integrates both the Adaptive Weight Adjustment Strategy and the Diver-
sity Maintenance Strategy to augment its global search capabilities and deter premature
convergence to local optima.

The optimization problems addressed in this paper begin with benchmark test issues.
To validate the universality and efficiency of the algorithm, this study chose the CEC2013
benchmark test functions as an initial verification method. Recognized globally and widely
accepted among researchers, the CEC2013 benchmark test functions serve as a metric to
evaluate the performance of various optimization algorithms. It encompasses an array
of function types, such as unimodal, multimodal, and complex functions, allowing for a
comprehensive assessment of the algorithm’s performance across multiple dimensions.

Subsequent to this are real-world engineering design problems. The paper specifically
covers several domains within engineering design, which include: tension/compression
spring design, an optimization problem concerning a spring’s material, length, diameter,
and coil count, aimed at meeting specific performance criteria; pressure vessel design,
which pertains to the optimization of a vessel’s shape, dimensions, and material selection
to satisfy specific storage and safety prerequisites; three-bar truss design, a structural
design issue involving the optimization of truss member lengths and cross-sectional areas;
welding beam design, focusing on the optimization of beam width, height, and weld seam
positioning; gearbox design, targeting the optimization of gear ratio, material, and size to
achieve the desired transmission efficiency and lifespan; and gear system design, a complex
mechanical design challenge encompassing optimization of multiple parameters, such as
gear dimensions, shape, and material selection.

2.6. Recommendations for Improving the Optimization Process

This paper investigates the Rafflesia optimization algorithm and its application to
various engineering design problems. Broadly speaking, optimization is the process of find-
ing the best solution from a range of possible choices. Within the contexts of mathematics
and engineering, it typically involves maximizing or minimizing a specific function under
given constraints.

Firstly, this work proposes the Diversity Maintenance Adaptive Rafflesia Optimiza-
tion Algorithm as a novel approach for addressing these engineering design challenges.

Symmetry 2023, 15, 2077 11 of 31

Through an Adaptive Weight Adjustment Strategy, the algorithm can dynamically alter
the direction and intensity of the search, ensuring efficient search performance across
various optimization stages. Additionally, the diversity maintenance strategy safeguards
the diversity within the population, preventing the algorithm from prematurely settling
into local optima. This implies that for engineering challenges such as spring design or gear
system design, the algorithm can swiftly identify superior design solutions, which exhibit
enhanced performance and reliability in practical applications. Furthermore, by bench-
marking on the CEC2013 test functions, this paper further substantiates the superiority of
the enhanced Rafflesia algorithm.

Secondly, the Adaptive Weight Adjustment Strategy, by automatically modulating
the weights of the search strategy, can better adapt to different optimization problems
and stages. When the algorithm ventures into a region of local optima, elevating the
weight of global search assists the algorithm in escaping the local optimum to pursue
improved solutions. To ensure population diversity and deter premature convergence, the
maintenance of diversity within the population enables the algorithm to perpetually search
on a global scale, amplifying its global optimization capabilities.

Thirdly, by incorporating biomimetic principles that consider the growth characteris-
tics of the Rafflesia, the algorithm simulates its lifecycle from blooming to seed dispersion.
This biomimetic approach furnishes the optimization algorithm with a fresh perspective,
aligning the algorithm more closely with natural optimization mechanisms, thereby en-
hancing its efficiency and robustness. When compared to other algorithms, results from
the CEC2013 benchmark test functions demonstrate that the new algorithm is not only
theoretically distinct but also excels in practical applications. Particularly when juxtaposed
against other mainstream optimization algorithms, the new method consistently outper-
forms across various evaluation metrics, solidifying its case for broader implementation in
real-world engineering applications.

3. Method

This section primarily delves into the intricate details of the enhancements made to
the AROA algorithm. It elucidates how the strategies employed within this improved
algorithm confer it an edge over other optimization algorithms. The necessity of incorpo-
rating an adaptive weight updating strategy and a diversity maintenance strategy is also
underscored.

3.1. Improvement Details

Comparing the original algorithm (ROA) with the newly enhanced version (AROA),
several key modifications and refinements have been undertaken.

Firstly, the integration of an Adaptive Weight Adjustment Strategy has been intro-
duced, primarily focusing on the third phase of the algorithm. A mechanism for adaptive
weight adjustment has been newly added, allowing for dynamic updates of parameters
such as w0, w1 and phi. This ensures that the algorithm’s movement within the search
space is more flexible, allowing it to adjust its search strategy based on iteration counts.
Such adjustments empower the algorithm with a robust global search capability in the early
stages, followed by an efficient local search ability in the later stages, thereby enhancing its
convergence rate.

Secondly, the inclusion of a diversity maintenance strategy has been made, with
modifications also being made in the third phase of the algorithm. A similarity computation
method has been introduced to assess if individuals within the population are overly alike.
When two individuals are found to be too similar, one is reset. This strategy ensures the
maintenance of diversity within the population, preventing the premature convergence to
local optima.

Thirdly, probabilistic controls for weight adjustment and diversity maintenance have
been implemented. Using the condition i f rand < 0.7, weight adjustments and diversity
maintenance are not conducted at every iteration. Instead, they are executed with a

Symmetry 2023, 15, 2077 12 of 31

certain probability. This introduces an element of randomness to the algorithm, preventing
premature convergence to a certain extent.

For a more in-depth understanding of the improvements, one can refer to the pseu-
docode of ROA labeled as Algorithm 1 and that of AROA depicted as Algorithm 2. Addi-
tionally, the flowchart in Figure 2 can also be consulted for further clarity.

Start

Initialize parameters A, f, w_0,
B, w_1, phi

Initialize population pop

Calculate fitness

Start iteration

First stage: attracting insects for
pollination. Update the location

of the insects.

Second stage: Eliminate
individuals with poor fitness

Third stage: Adaptive
adjustment and diversity

maintenance

Finding the global optimal
position

 Has the number of
 generations been reached?

End iteration, return
convergence resultsEnd

NO

YES

Figure 2. The flowchart of AROA.

3.1.1. Adaptive Weight Adjustment Improvement

Within the adaptive weight adjustment strategy, the initial focus revolves around
the selection of weight parameters. The algorithm predominantly targets the adaptive
adjustments of the weight parameters w0, w1 and phi. Weights hold significant importance
in evolutionary algorithms given their capability to govern the direction and speed of the
search process. To initialize the weight parameters, w0 and w1 are set to 1/ f , where f
represents the wing-beat frequency. The phi value is initialized to −0.78545.

As for the weight updating strategy, within the enhanced Rafflesia algorithm, the
weight parameters are updated based on iteration count, denoted as iter, and the periodic
parameter pd. An exponential decay strategy is employed for these updates, wherein the
weights are diminished by multiplying them with an exponential function. This can be
expressed through the subsequent formula:

w0 = w0 · exp

(
−

iter− pd
2

pd
2

)
(16)

w1 = w1 · exp

(
−

iter− pd
2

pd
2

)
(17)

Symmetry 2023, 15, 2077 13 of 31

phi = phi · exp

(
−

iter− pd
2

pd
2

)
(18)

The weight reduction strategy is devised based on the iteration number, represented
as iter, and a periodic parameter, denoted as pd. As iterations progress, these weight
parameters are methodically diminished, subsequently influencing the motion pattern
of the insects. The behavior of insects in different phases is governed by these weight
parameters. Both w0 and w1 are instrumental in striking a balance between the exploration
and convergence of the insects, while phi modulates the phase difference between the
translational and rotational motions of the insects. Through variations in the fitness
function, these parameters are adaptively set to influence the algorithm’s exploration and
convergence performance. The frequency of weight parameter updates is regulated by the
periodic parameter pd. In the presented algorithm, pd orchestrates the updates of weight
parameters, invoking a weight update operation whenever the condition rem(iter, pd) >
pd
2 is met.

The weight parameters play a pivotal role in dictating the methodology of updating
the insect’s position. This positional adjustment can be encapsulated by the subsequent
formula for the first phase, which will be elaborated upon, where target_position is the
target position and random_vector is the random vector. This formula elucidates how the
insect’s position is adjusted based on the target and influenced by the random vector,
modulated by the weight parameters.

new_position = old_position + w0 · (target_position− old_position) + w1 · (random_vector− 0.5) + phi (19)

3.1.2. Diversity Maintenance Improvement

The enhancements made to the algorithm also encompass the integration of a diversity
maintenance strategy. The primary objective of this strategy is to uphold population
diversity in each iteration, forestalling the algorithm from becoming ensnared in local
optima, thereby augmenting its global search performance.

When refining the ROA with the Diversity Maintenance Strategy, a similarity threshold,
denoted as similaritythreshold, was initially defined. This threshold serves as a metric to
gauge the similarity between individual entities within the population. A simplified form
of the Euclidean distance was employed as the similarity measure. The formula for this
similarity measure is presented as follows:

similarity =
1

dim

dim

∑
k=1
|pop(i, k)− pop(j, k)| (20)

In this context, pop(i, k) and pop(j, k) represent the position vectors of the i-th and j-th
individuals within the population, respectively, while dimdim indicates the dimensionality
of the problem. The similarity measure calculates the sum of the absolute differences be-
tween the dimensions of two individuals and then divides the result by the dimensionality,
dimdim. Upon the computation of similarity, the algorithm embarks on the process of
diversity maintenance. For each pair of individuals within the population, nested iter-
ative loops ensure that each individual is juxtaposed against the rest. If the similarity,
denoted as similarity, between two individuals exceeds the predefined similarity threshold,
similarity_threshold, diversity maintenance operations are executed. The condition for
diversity maintenance can be articulated as if similarity(i, j) > similarity_threshold.

Within the diversity maintenance operation, one individual, termed resetindex, is
randomly chosen from the two similar entities. This selected individual is subsequently
reverted to its initial state by invoking the initialisation function to regenerate a random
individual. This resetting maneuver enhances population diversity and furnishes the

Symmetry 2023, 15, 2077 14 of 31

algorithm with the means to break free from local optima. The individual reset is character-
ized by

reset_index = randi([i, j]) (21)

pop(reset_index, :) = random_initialization() (22)

where randominitialisation() stands for a function devised to spawn a random individual.
In essence, the Diversity Maintenance Strategy ensures population diversity by gauging
inter-individual similarity and initiating an individual reset whenever similarity surpasses
the set threshold. Such an approach augments the algorithm’s global search performance,
curtailing the risks associated with premature convergence to local optima. This strategy
proves invaluable across numerous optimization algorithms, especially when grappling
with intricate problems.

Algorithm 2 The pseudo code of AROA.

1: // Third stage
2: if rem(iter, pd) > (pd / 2) then//rem denotes the remainder operation
3: for i = 1 to sizepop do
4: rd← rand× (ub− lb) + lb
5: for j = 1 to dim do
6: pop(i, j)← pop_best(j) + rd× exp(iter

Max_iter − 1)× sign(rand− 0.5)
7: end for
8: end for
9: if rand < 0.7 then

10: // Update weights

11: w0 ← w0 × exp(− iter− pd
2

pd
2

) . Equation (16)

12: w1 ← w1 × exp(− iter− pd
2

pd
2

) . Equation (17)

13: φ← φ× exp(− iter− pd
2

pd
2

) . Equation (18)

14: // Diversity maintenance
15: similarity_threshold← 0.8
16: for i = 1 to sizepop do
17: for j = i+1 to sizepop do

18: similarity← ∑dim
k=1 abs(pop(i,k)−pop(j,k))

dim . Equation (20)
19: if similarity > similarity_threshold then
20: reset_index ← randi([i, j]) . Equation (21)
21: pop(reset_index, :)← initialization(1, dim, ub, lb) . Equation (22)
22: end if
23: end for
24: end for
25: end if
26: end if

3.2. Role and Necessity of Strategy

Adaptive weight adjustment fosters an improved balance between global and local
searches within the algorithm, thereby amplifying the probability of pinpointing the global
optimum. Diversity maintenance ensures adequate variation among individuals within the
population, facilitating a more comprehensive exploration of the search space. This reduces
the risk of entrapment in local optima at the expense of overlooking the global optimum.
Through probabilistic control of weight adjustment and diversity maintenance, an element
of randomness and unpredictability is injected into the algorithm, bolstering its robustness.
With these enhancements, the novel optimization algorithm might, in certain scenarios,
outstrip the original algorithm and other optimization techniques in terms of convergence

Symmetry 2023, 15, 2077 15 of 31

speed and solution quality. Indeed, its efficacy has been corroborated using the CEC2013
benchmark function suite and in addressing specific engineering application problems.

To delve deeper, let us ponder over six distinct engineering applications and contem-
plate the potential advancements and superiority of AROA in these domains. In Section 5,
this paper delineates several specific engineering applications, highlighting the treatment
of varying constraint types. For instance, spring design might encompass different types
of elasticity models and materials. Pressure vessel design may be riddled with myriad
constraints, such as tensile strength and pressure endurance. Welded beam design might en-
compass constraints relating to weld strength and material durability, while gearbox design
would perhaps necessitate considerations of multiple parameters and objectives. Gear sys-
tem design could involve constraints on gear ratios and gear strength. AROA, through its
adaptive weight adjustment strategy, can deftly adapt to these diverse design variables, en-
suring all constraints are aptly met. Especially when grappling with tension/compression
spring design, gearbox design, and the intricate design space commonly found in gearbox
design, AROA’s integration of the diversity maintenance strategy amplifies its global search
prowess. Endowed with a refined search mechanism, it evades premature local optima
entrapment and sweeps the design space more exhaustively, tailoring its approach to the
problem’s nuances. In these engineering realms, AROA’s enhancements might manifest as
heightened adaptability, swifter convergence speeds, and superior global search capabili-
ties, rendering it more adept at handling complex, multi-objective real-world engineering
issues. The specific merits might necessitate validation through actual case studies and
empirical results. Indeed, Section Five of this article provides a meticulous exposition of
the experimental outcomes.

4. Experiments

The experimental section primarily entailed a performance assessment of the algo-
rithm. In this evaluation, the algorithm was validated against the CEC2013 benchmark test
suite. Finally, an analysis of the experimental data was completed.

4.1. Experiments Results

Testing was conducted using a 30-dimensional configuration, and the average fitness
values (mean) and standard deviations (std) were documented after 30 independent runs
of each algorithm. This approach provided a holistic assessment, affirming the efficacy of
the newly proposed method. An additional tabular reference (Table 1) was incorporated,
detailing each algorithm under comparison, alongside their respective parameter settings.
This augmentation was made to enhance the clarity and observability of the comparative
framework. Tables 2 and 3 showcase the statistical outcomes for each algorithm. At the
conclusion of each table, the term “win” quantifies the number of occasions on which the
AROA surpassed its competitors in terms of the evaluation metric “Mean”. From the data
presented in these tables, it can be observed that AROA exhibited superior performance in
terms of both average fitness values (mean) and standard deviations (std).

Table 1. Parameter settings for each related algorithm.

Algorithms Parameter

AROA N = 30, pd = Max_iter / 10; A = 2.5; f = 40; w_0 = 1 / f; B = 0.1; w_1 = 1 / f; phi = −0.78545;
ROA N = 30, pd = Max_iter / 10; A = 2.5; f = 40; w_0 = 1 / f; B = 0.1; w_1 = 1 / f; phi = −0.78545;
PSO N = 30, c = 2.0; w = 0.729; Vmax = 100; Vmin = −100;
WOA N = 30;
GSA N = 30, Rpower = 1; Rnorm = 2;
DE N = 30; PCr = 0.5; F = 0.9;
CSO N = 30; AP = 0.1; fl = 2;
BOA N = 30; p = 0.6; power_exponent = 0.1; sensory_modality = 0.01;
BA N = 30; r0 = 0.7; Af = 0.9; Rf = 0.9; Qmin = 0; Qmax = 1;
SCA N = 30;

Symmetry 2023, 15, 2077 16 of 31

Table 2. Assessment result 1.

Title AROA’s Mean and Std Comparison Results with ROA, PSO, WOA, and GSA after Running 30 Times on CEC2013 Test Functions

Function AROA Mean/std ROA Mean/std PSO Mean/std WOA Mean/std GSA Mean/std

f1 −1.400× 103 1.019× 10−6 −1.400× 103 2.351× 10−4 −8.080× 102 2.301× 103 −8.762× 102 3.555× 102 −1.387× 103 9.374× 101

f2 1.674× 107 1.502× 106 1.245× 107 1.184× 106 1.687× 107 2.864× 107 3.188× 107 3.817× 107 3.283× 107 6.318× 106

f3 4.333× 109 1.450× 109 4.949× 109 1.602× 109 4.471× 109 1.043× 1011 1.062× 1010 5.003× 1010 1.293× 1013 9.451× 1013

f4 7.007× 104 1.679× 103 7.452× 104 1.047× 104 7.867× 104 2.062× 104 4.689× 104 2.212× 104 7.191× 104 5.085× 103

f5 −9.901× 102 2.848× 100 −9.992× 102 9.009× 10−4 −9.894× 102 1.762× 103 4.392× 102 2.849× 102 −3.571× 102 2.280× 102

f6 −8.805× 102 9.938× 100 −8.416× 102 2.713× 101 −8.209× 102 5.122× 102 −7.208× 102 1.156× 102 −5.133× 102 8.256× 102

f7 −6.244× 102 1.332× 101 −6.147× 102 2.592× 101 −6.254× 102 3.292× 101 −7.223× 102 1.797× 103 4.376× 103 5.199× 103

f8 −6.790× 102 1.449× 10−2 −6.789× 102 6.209× 10−2 −6.790× 102 3.284× 10−2 −6.790× 102 9.453× 10−2 −6.790× 102 4.474× 10−2

f9 −5.693× 102 2.191× 100 −5.644× 102 1.546× 100 −5.631× 102 2.203× 10−1 −5.775× 102 1.244× 100 −5.630× 102 3.024× 100

f10 −4.905× 102 1.860× 100 −4.962× 102 2.839× 100 −4.911× 102 7.484× 102 −1.340× 102 1.667× 102 −2.065× 102 1.705× 102

f11 −3.075× 101 6.542× 101 4.459× 101 2.526× 102 −6.964× 10−1 6.575× 101 −2.717× 102 6.812× 101 5.864× 101 2.546× 101

f12 9.651× 101 9.620× 101 1.801× 102 1.224× 102 1.075× 102 9.883× 101 −1.220× 102 1.322× 102 2.464× 102 9.036× 101

f13 2.109× 102 8.637× 101 1.928× 102 6.228× 101 2.107× 102 3.399× 101 3.677× 102 2.510× 101 4.740× 102 8.296× 101

f14 4.273× 103 2.557× 102 4.842× 103 5.817× 102 4.104× 103 9.185× 102 4.700× 103 1.243× 103 4.042× 103 7.894× 102

f15 5.052× 103 8.422× 102 5.141× 103 5.472× 102 5.034× 103 7.398× 102 6.796× 103 6.856× 102 4.164× 103 4.034× 102

f16 2.017× 102 1.251× 10−1 2.018× 102 4.934× 10−1 2.019× 102 2.589× 10−1 2.031× 102 4.220× 10−1 2.001× 102 9.824× 10−3

f17 8.016× 102 1.781× 101 7.657× 102 9.839× 101 8.041× 102 1.602× 102 5.307× 102 6.321× 101 5.902× 102 4.096× 101

f18 −1.400× 103 1.234× 102 −1.400× 103 6.813× 101 −1.400× 103 1.521× 102 −1.400× 103 3.373× 101 −1.400× 103 3.636× 101

f19 5.376× 102 2.506× 100 5.354× 102 1.096× 101 5.411× 102 1.258× 104 7.718× 102 2.636× 102 8.160× 102 1.041× 102

f20 6.141× 102 3.202× 10−1 6.148× 102 0.000× 100 6.143× 102 2.859× 10−1 6.150× 102 2.070× 10−1 6.150× 102 0.000× 100

f21 9.921× 102 1.015× 102 1.010× 103 1.011× 102 1.022× 103 5.158× 102 1.966× 103 9.324× 101 1.802× 103 3.018× 102

f22 6.094× 103 1.778× 102 7.029× 103 2.347× 103 6.695× 103 6.135× 102 4.935× 103 1.091× 103 7.558× 103 5.074× 102

f23 6.744× 103 3.037× 102 6.830× 103 1.250× 102 7.040× 103 5.494× 102 5.966× 103 9.310× 102 7.168× 103 3.226× 102

f24 1.309× 103 1.512× 10−1 1.312× 103 2.055× 101 1.310× 103 9.063× 100 1.261× 103 9.877× 100 1.475× 103 2.512× 101

f25 1.423× 103 4.902× 100 1.426× 103 1.610× 101 1.423× 103 6.504× 100 1.434× 103 1.388× 101 1.517× 103 4.805× 100

f26 1.401× 103 1.252× 10−1 1.569× 103 1.125× 10−1 1.401× 103 5.385× 100 1.513× 103 8.005× 100 1.600× 103 6.586× 101

f27 2.553× 103 3.378× 101 2.586× 103 1.570× 102 2.609× 103 5.054× 101 2.581× 103 9.709× 101 2.534× 103 1.671× 102

f28 3.934× 103 4.812× 101 2.436× 103 2.133× 103 3.893× 103 1.410× 103 2.967× 103 6.269× 102 5.766× 103 4.762× 102

win - 20 - 19 - 17 - 21 -

Description “win” quantifies the number of times AROA outperformed its competitors in terms of the evaluation metric “Mean”

Symmetry 2023, 15, 2077 17 of 31

Table 3. Assessment result 2.

Title AROA’s Mean and Std Comparison Results with DE, CSO, BOA, BA, and SCA after Running 30 Times on CEC2013 Test Functions.

Function DE Mean/Std CSO Mean/Std BOA Mean/Std BA Mean/Std SCA Mean/Std

f1 −7.661× 102 1.092× 102 −1.393× 103 1.567× 101 4.925× 104 3.577× 103 −1.394× 103 7.706× 10−1 1.308× 104 2.429× 103

f2 3.607× 108 6.874× 107 2.329× 107 1.225× 107 8.454× 108 5.469× 108 6.033× 106 2.581× 106 2.614× 108 1.864× 107

f3 2.164× 1010 4.806× 109 1.191× 1010 4.578× 109 9.954× 1020 6.171× 1019 5.981× 108 1.393× 109 1.179× 1011 2.627× 1010

f4 1.418× 105 1.837× 104 3.187× 104 6.877× 103 5.622× 104 6.599× 103 9.798× 104 3.502× 104 5.223× 104 2.740× 103

f5 −9.413× 102 7.524× 100 −7.880× 102 5.554× 101 2.607× 104 1.130× 104 −9.977× 102 2.820× 10−1 2.522× 103 7.964× 102

f6 −7.180× 102 1.962× 101 −7.569× 102 4.606× 101 1.149× 104 2.180× 103 −8.529× 102 2.670× 101 5.368× 102 2.494× 102

f7 −6.447× 102 1.926× 101 −6.277× 102 4.571× 101 6.423× 105 4.454× 106 1.353× 106 5.606× 105 −5.184× 102 4.736× 101

f8 −6.789× 102 5.789× 10−2 −6.789× 102 3.649× 10−2 −6.790× 102 6.249× 10−2 −6.789× 102 5.445× 10−2 −6.789× 102 8.050× 10−2

f9 −5.582× 102 1.167× 100 −5.659× 102 1.881× 100 −5.603× 102 1.489× 100 −5.609× 102 3.522× 100 −5.583× 102 9.072× 10−1

f10 1.264× 103 3.653× 102 −3.626× 102 9.060× 101 8.269× 103 1.918× 103 −4.973× 102 4.770× 10−1 1.930× 103 6.819× 102

f11 −1.958× 102 1.673× 101 −5.594× 101 5.828× 101 4.037× 102 7.406× 101 5.029× 102 2.096× 102 4.082× 101 4.233× 101

f12 2.018× 101 1.680× 101 2.674× 101 7.685× 101 5.077× 102 6.738× 101 5.689× 102 1.327× 102 1.382× 102 2.003× 101

f13 1.161× 102 1.645× 101 1.871× 102 5.751× 101 5.863× 102 4.375× 101 7.715× 102 1.297× 102 2.434× 102 3.819× 101

f14 4.478× 103 2.300× 102 4.411× 103 5.923× 102 7.946× 103 5.364× 102 5.035× 103 8.332× 102 7.328× 103 3.995× 102

f15 8.089× 103 3.666× 102 4.172× 103 6.122× 102 8.061× 103 2.095× 102 5.352× 103 6.707× 102 8.033× 103 3.994× 102

f16 2.031× 102 3.598× 10−1 2.013× 102 6.950× 10−1 2.032× 102 2.713× 10−1 2.027× 102 3.775× 10−1 2.030× 102 4.818× 10−1

f17 6.364× 102 5.173× 101 6.294× 102 5.982× 101 1.149× 103 3.023× 101 1.815× 103 2.222× 102 8.932× 102 5.558× 101

f18 8.145× 102 4.821× 101 6.708× 102 4.541× 101 1.236× 103 5.412× 101 1.960× 103 1.643× 102 9.955× 102 4.659× 101

f19 5.911× 102 3.396× 101 5.307× 102 1.013× 101 5.005× 105 1.681× 105 5.437× 102 7.380× 100 1.293× 104 1.889× 104

f20 6.137× 102 2.061× 10−1 6.143× 102 1.552× 10−1 6.150× 102 4.130× 10−6 6.150× 102 0.000× 100 6.145× 102 1.577× 10−1

f21 2.037× 103 2.694× 102 1.105× 103 7.157× 101 3.173× 103 7.168× 101 1.069× 103 8.736× 101 2.820× 103 3.430× 101

f22 6.531× 103 4.574× 102 6.492× 103 3.973× 102 9.446× 103 3.506× 102 7.471× 103 9.922× 102 8.990× 103 4.800× 102

f23 9.161× 103 1.693× 102 6.798× 103 9.760× 102 9.653× 103 3.784× 102 7.321× 103 9.536× 102 9.255× 103 2.418× 102

f24 1.309× 103 2.748× 100 1.321× 103 1.405× 101 1.376× 103 3.195× 101 1.379× 103 5.038× 101 1.326× 103 6.262× 100

f25 1.413× 103 4.366× 100 1.459× 103 1.919× 101 1.440× 103 1.600× 101 1.397× 103 6.761× 100 1.438× 103 4.150× 100

f26 1.551× 103 5.321× 101 1.419× 103 5.363× 101 1.467× 103 6.059× 101 1.582× 103 9.942× 101 1.433× 103 4.584× 100

f27 2.675× 103 3.282× 101 2.509× 103 1.443× 102 3.070× 103 1.056× 102 2.769× 103 1.238× 102 2.727× 103 5.072× 101

f28 2.744× 103 1.269× 102 4.797× 103 1.482× 103 6.663× 103 3.937× 102 7.739× 103 1.113× 103 4.617× 103 1.987× 102

win 18 - 17 - 27 - 23 - 27 -

Description “win” quantifies the number of times AROA outperformed its competitors in terms of the evaluation metric “Mean”

Symmetry 2023, 15, 2077 18 of 31

This study juxtaposed the enhanced algorithm, AROA, with its predecessor, ROA,
while also drawing comparisons with eight other optimization algorithms. These en-
compass the Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA),
Gravitational Search Algorithm (GSA), Differential Evolution (DE), Cat Swarm Optimiza-
tion (CSO), Butterfly Optimization Algorithm (BOA), Bat Algorithm (BA), and the Sine
Cosine Algorithm (SCA).

All experiments were conducted using MATLAB 2021a software. For algorithm evalu-
ation, the CEC2013 [27] benchmark test functions were employed to assess the performance
of AROA. The CEC2013 [28] test function set serves as a standard benchmark for evaluating
the efficacy of optimization algorithms. Comprising 28 distinct test functions, the suite
encompasses unimodal, multimodal, and some intricate test functions. These are designed
to simulate various types of optimization problems, ensuring a comprehensive appraisal of
an algorithm’s capabilities. Throughout the testing procedure, the dimensionality of the
test functions was set at D = 30. Consistent parameter settings were maintained, with a
population size of N (where (N = 30)), and the evaluation was executed 1000 times for
the algorithm.

Tables 2 and 3 present the results of the algorithm on the test function suite. A compar-
ative assessment, based on the average values obtained after 30 independent runs, revealed
performance differences between AROA, ROA, and nine other intelligent optimization
algorithms. As depicted in the data, the AROA algorithm outperformed the ROA algorithm
on 20 of the CEC2013 test functions, predominantly emerging superior. Comparable results
were observed for the functions F5, F10, F16, F19 and F20. When pitted against the PSO
algorithm, AROA outshone in 19 test functions. Against WOA, AROA excelled in 17 test
functions. AROA demonstrated superior performance in 21 functions when contrasted
with GSA and in 17 functions each against DE and CSO. In comparisons with BOA and
SCA, AROA prevailed in 27 functions and outperformed BA in 23 functions. Collectively,
this assessment underscores AROA’s enhanced performance across the test functions.

To offer a more discernible visualization of the experimental outcomes, convergence
curves were plotted for a random selection of three diverse function types (unimodal,
multimodal, and complex). Twelve test functions were selected: F1, F2, F6, F9, F10, F11,
F12, F13, F21, F23, F27, and F28. The graphical depictions of these convergence outcomes
are presented in Figure 3a–l.

0 100 200 300 400 500 600 700 800 900 1000

Function Calls

-2

0

2

4

6

8

10

12

F
it
n

e
s
s
 f

u
n

c
ti
o

n
 v

a
lu

e

10
4

AROA

ROA

PSO

SCA

WOA

GSA

DE

CSO

BOA

BA

(a) Convergence curves on test function F1.

0 100 200 300 400 500 600 700 800 900 1000

Function Calls

0

1

2

3

4

5

6

F
it
n

e
s
s
 f

u
n

c
ti
o

n
 v

a
lu

e

10
9

AROA

ROA

PSO

SCA

WOA

GSA

DE

CSO

BOA

BA

(b) Convergence curves on test function F2.

0 100 200 300 400 500 600 700 800 900 1000

Function Calls

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

F
it
n

e
s
s
 f

u
n

c
ti
o

n
 v

a
lu

e

10
4

AROA

ROA

PSO

SCA

WOA

GSA

DE

CSO

BOA

BA

(c) Convergence curves on test function F6.

Figure 3. Cont.

Symmetry 2023, 15, 2077 19 of 31

0 100 200 300 400 500 600 700 800 900 1000

Function Calls

-600

-500

-400

-300

-200

-100

0

F
it
n

e
s
s
 f

u
n

c
ti
o

n
 v

a
lu

e

AROA

ROA

PSO

SCA

WOA

GSA

DE

CSO

BOA

BA

(d) Convergence curves on test function F9.

0 100 200 300 400 500 600 700 800 900 1000

Function Calls

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

F
it
n

e
s
s
 f

u
n

c
ti
o

n
 v

a
lu

e

AROA

ROA

PSO

SCA

WOA

GSA

DE

CSO

BOA

BA

(e) Convergence curves on test function F10.

0 100 200 300 400 500 600 700 800 900 1000

Function Calls

-400

-200

0

200

400

600

800

1000

1200

1400

1600

F
it
n

e
s
s
 f

u
n

c
ti
o

n
 v

a
lu

e

AROA

ROA

PSO

SCA

WOA

GSA

DE

CSO

BOA

BA

(f) Convergence curves on test function F11.

0 100 200 300 400 500 600 700 800 900 1000

Function Calls

-200

0

200

400

600

800

1000

1200

1400

1600

1800

F
it
n

e
s
s
 f

u
n

c
ti
o

n
 v

a
lu

e

AROA

ROA

PSO

SCA

WOA

GSA

DE

CSO

BOA

BA

(g) Convergence curves on test function F12.

0 100 200 300 400 500 600 700 800 900 1000

Function Calls

0

200

400

600

800

1000

1200

1400

1600

1800

2000

F
it
n

e
s
s
 f

u
n

c
ti
o

n
 v

a
lu

e

AROA

ROA

PSO

SCA

WOA

GSA

DE

CSO

BOA

BA

(h) Convergence curves on test function F13.

0 100 200 300 400 500 600 700 800 900 1000

Function Calls

0

1000

2000

3000

4000

5000

6000

7000

8000

F
it
n

e
s
s
 f

u
n

c
ti
o

n
 v

a
lu

e

AROA

ROA

PSO

SCA

WOA

GSA

DE

CSO

BOA

BA

X 873

Y 1000.5

X 979

Y 900.031

(i) Convergence curves on test function F21.

0 100 200 300 400 500 600 700 800 900 1000

Function Calls

0

2000

4000

6000

8000

10000

12000

14000

F
it
n

e
s
s
 f

u
n

c
ti
o

n
 v

a
lu

e

AROA

ROA

PSO

SCA

WOA

GSA

DE

CSO

BOA

BA

(j) Convergence curves on test function F23.

0 100 200 300 400 500 600 700 800 900 1000

Function Calls

0

500

1000

1500

2000

2500

3000

3500

4000

F
it
n

e
s
s
 f

u
n

c
ti
o

n
 v

a
lu

e

AROA

ROA

PSO

SCA

WOA

GSA

DE

CSO

BOA

BA

(k) Convergence curves on test function F27.

0 100 200 300 400 500 600 700 800 900 1000

Function Calls

0

2000

4000

6000

8000

10000

12000

14000
F

it
n

e
s
s
 f

u
n

c
ti
o

n
 v

a
lu

e

AROA

ROA

PSO

SCA

WOA

GSA

DE

CSO

BOA

BA

(l) Convergence curves on test function F28.

Figure 3. Convergence curves of the 10 algorithm on selected CEC2013 benchmark test functions.

4.2. Experimental Analysis

Upon analyzing the experimental data, it can be discerned that the integration of
Adaptive Weight Updating and Diversity Maintenance Strategies typically exerts a positive
influence on algorithmic performance.

Primarily, the Diversity Maintenance Strategy enhances particle diversity. When an
algorithm maintains a diverse particle swarm, it is more apt to encompass a larger search
space. This proves particularly beneficial in circumventing local optima and potentially
discovering the global optimum.

Additionally, adaptive weight updates facilitate exploration during the algorithm’s
early stages. Broad-ranging searches, or exploration, are paramount in these initial phases.
Such a strategy ensures that the algorithm does not become confined to a specific region
prematurely, granting it the opportunity to discern promising regions within the entirety
of the search space. This aspect becomes particularly salient when scrutinized alongside
specific CEC2013 test functions.

For unimodal problems, adaptive weight updating aids the algorithm in swiftly
pinpointing the global optimum. During the algorithm’s nascent stages, a preference
for higher weight values is observed to boost exploration. As iterations increase, this

Symmetry 2023, 15, 2077 20 of 31

weight gradually diminishes, accentuating exploitation and steering the algorithm closer
to the global optimum. Even though the search space of unimodal problems is relatively
straightforward, retaining diversity is essential to ensure the algorithm does not succumb
prematurely to potential local optima or suboptimal zones.

The complexity of multimodal problems stems from the presence of numerous local
optima. In the early stages, a substantial weight is required for extensive exploration. As
the algorithm progresses, the weight may gradually decrease. Adaptive weight updat-
ing assists the algorithm in conducting precise searches within discerned peak regions.
Thus, in multimodal problems, maintaining diversity is pivotal. It ensures that the algo-
rithm comprehensively scours the search space and does not become easily enamored by
local optima.

Complex functions may exhibit diverse characteristics, such as local optima, plateaus,
peaks, and valleys. Adaptive weight updating enables the algorithm to adapt to these
features at various stages, broadly exploring initially and conducting precise searches in
promising regions later on. To eschew complexity pitfalls, upholding diversity ensures
the algorithm does not become ensnared within any specific region throughout the search,
retaining the potential to unearth novel, promising areas.

In summation, the inclusion of adaptive weight updating and diversity maintenance
strategies empowers the algorithm to adeptly balance exploration and exploitation, result-
ing in enhanced performance across diverse problem types. For unimodal problems, the
algorithm can identify the global optimum more swiftly. In the context of multimodal and
complex functions, the algorithm is less prone to being trapped in local optima, having
a heightened chance of locating the global optimum. To vividly illustrate convergence
efficacy, we have also selected several illustrative convergence plots from each category of
test functions for display.

5. Application

This section predominantly elucidates the contextual relationship between the ROA
and other metaheuristic algorithms with engineering optimization problems. A com-
parative performance evaluation of various algorithms across six distinct engineering
optimization problems is undertaken, followed by an analytical appraisal of the gath-
ered data.

5.1. Application Background

Metaheuristic algorithms emulate the evolutionary processes observed in nature.
These algorithms are conceived through observing behaviors in nature and abstracting
them into computational methodologies. Natural evolution has been proven to be an
effective optimization process; thus, leveraging these strategies to address engineering
challenges becomes intuitively appealing. In terms of search capabilities, nature-inspired
algorithms are often endowed with robust global search abilities. This suggests that they
can explore various regions of the solution space without easily succumbing to local optima.
Such a capability is paramount for specific engineering optimization problems, given that
they frequently exhibit multiple local optima and intricate search spaces. Metaheuristic
algorithms, aptly equipped in this domain, proffer an efficacious approach. Pertaining
to adaptability, metaheuristic algorithms typically demonstrate high adaptability. This
denotes their capacity to self-adjust to tackle disparate problems and dynamic environ-
ments. In engineering optimization, this becomes a salient trait, as real-world problems
can evolve over time. Addressing multi-objectivity and constraint handling, myriad engi-
neering challenges are multi-objective and encompass diverse constraints. Nature-inspired
algorithms often incorporate inherent mechanisms to manage these multi-objectives and
constraints, rendering them ideal solutions for such quandaries. In practical engineering
problem solving, due to their intuitive and flexible nature, these nature-inspired algorithms
have been successfully applied across various real-world engineering domains, ranging
from aerospace engineering to power system optimization.

Symmetry 2023, 15, 2077 21 of 31

The ROA algorithm, introduced herein, is inspired by the pollen dissemination mech-
anism. This mechanism permits the algorithm to extensively scour the solution space,
enhancing its likelihood of pinpointing the global optimum. Moreover, the ROA algorithm
can be seamlessly extended to multi-objective optimization problems, concurrently han-
dling multiple constraints. It contemplates multiple objectives and identifies solutions
that satisfy all constraints. The advanced version, AROA, as iterations unfold, can au-
tonomously adjust its search strategy and adaptively update weights, thereby seeking
optimal solutions more efficiently. Furthermore, the algorithm is not reliant on specific
problem characteristics, bestowing it with commendable versatility, making it apt for a
gamut of engineering optimization challenges. Conclusively, leveraging the attributes of
the King Protea Optimization Algorithm, its integration with engineering optimization
challenges can substantially aid in discerning optimal solutions.

5.2. Applied Experiments

For the initial five engineering applications, the performance of the Enhanced Raffle-
sia Optimization Algorithm (AROA), the original Rafflesia Optimization Algorithm [29]
(ROA), Whale Optimization Algorithm (WOA), Grey Wolf Optimizer (GWO), Harris Hawk
Optimizer [30] (HHO), and Osprey Optimization Algorithm [31] (OOA) were assessed.
The evaluation results are delineated in Table 1. For the sixth engineering application [32],
the performance of the Enhanced Rafflesia Optimisation Algorithm (AROA), the original
Rafflesia Optimisation Algorithm (ROA), Grey Wolf Optimizer (GWO), Dung Beetle Opti-
mizer [33] (DBO), Dandelion Optimization [34] (DO), Harris Hawk Optimizer (HHO), and
Snake Swarm Optimization [35,36] (SO) were evaluated.

In each engineering application, the efficacy of the novel algorithm (AROA) was
gauged by contrasting its optimal values against those derived from other algorithms. In
this segment, a total of 12 tabulated datasets are provided, detailing the constraints and
objective functions for six engineering application problems, along with the optimal values
obtained by various algorithms across these six applications, as portrayed in Tables 4–15.
Through a close inspection of the optimal values, it was discerned that the AROA algorithm
frequently surpassed its counterparts, thereby underscoring its superior performance in
practical applications.

Table 4. Engineering optimization problem 1.

Name Function

Consider x = [x1x2x3] = [d D N]

Minimize f (x) = (x3 + 2) · x2 · (x2
1)

Subject to g1(x) = 1− (x3
2)·x3

71785·(x4
1)
≤ 0

g2(x) = 4·(x2
2)−x1·x2

12566·(x2·(x3
1)−(x4

1))
+ 1

5108·(x2
1)
− 1 ≤ 0

g3(x) = 1− 140.45·x1
(x2

2)·x3
≤ 0

g4(x) = (x1+x2)
1.5 − 1 ≤ 0

Parametersrange 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

Table 5. Engineering optimization problem 1 results.

Algorithm x1 x2 x3 fbest

WOA 5.890× 10−2 5.563× 10−1 5.018× 100 1.355× 10−2

HHO 5.000× 10−2 3.137× 10−1 1.453× 101 1.297× 10−2

GWO 5.000× 10−2 3.173× 10−1 1.406× 101 1.274× 10−2

OOA 5.659× 10−2 4.865× 10−1 6.398× 100 1.308× 10−2

AROA 5.089× 10−2 3.377× 10−1 1.250× 101 1.268× 10−2

ROA 6.257× 10−2 6.791× 10−1 3.516× 100 1.466× 10−2

Symmetry 2023, 15, 2077 22 of 31

5.2.1. Tension/Compression Spring Design Problems

The design of tension and compression springs [37,38] is a pivotal concern within
the realm of engineering optimization. Such challenges encompass the design and opti-
mization of springs utilized for regulating force, displacement, or energy to meet specific
performance and constraint demands inherent to certain engineering applications. These
springs find extensive deployment across diverse sectors, including automotive suspension
systems, architectural structures, mechanical apparatuses, and electronic devices.

In addressing the tension/compression spring design quandary, engineers are initially
compelled to select an apt spring material. This selection process is intrinsically governed
by considerations such as the material’s modulus of elasticity, yield strength, and density,
ensuring the spring’s optimal performance and durability. Subsequently, the choice of
geometric parameters is paramount, with attributes such as wire diameter, outer diameter,
coiling cycles, coiling diameter, and spring length, all of which directly impinge upon the
spring’s rigidity and displacement characteristics.

To discern the most propitious amalgamation of design parameters, engineers typically
resort to engineering optimization techniques, including genetic algorithms, particle swarm
optimization, and simulated annealing. These algorithms are adept at autonomously
traversing the design space to satisfy the stipulated performance and constraint criteria.
The selection of an optimization algorithm hinges on the intricacy of the problem and the
availability of computational resources.

The primary objective of this particular optimization endeavor for tension/compression
spring design is to effectuate weight minimization by selecting three variables: wire diame-
ter (d), mean coil diameter (D), and the number of active coils (N). The objective function is
delineated as follows.

5.2.2. The Problem of Pressure Vessel Design

The task of designing pressure vessels [39] stands as one of the cardinal undertakings in
the engineering domain. This encompasses the apparatuses designated for the containment
and transport of diverse gases, liquids, or vapors. Their design must be meticulously
calibrated, adhering stringently to engineering standards and regulatory frameworks,
thereby ensuring safety and reliability.

Foremost, the material selection for pressure vessels is paramount. Engineers are
compelled to contemplate the strength, corrosion resistance, temperature attributes, and
cost implications of prospective materials. Common materials such as stainless steel,
carbon steel, and aluminum alloys are typically employed, with the specific choice being
contingent upon the vessel’s intended application and the surrounding environment.

Subsequently, the vessel’s geometric design is inextricably linked to its performance.
The shape and dimensions must be harmoniously orchestrated, balancing volumetric
demands, structural strength criteria, and spatial availability. This design trajectory often
encompasses stress analyses, ensuring the vessel’s robustness against potential failures
when subjected to internal or external pressures.

Pressure vessels must be congruent with regulatory standards, exemplified by the likes
of the American ASME Pressure Vessel Code, which underpins their safety and legitimacy.
These standards stipulate the design, fabrication, and inspection requisites for the vessels,
anchoring their safety across myriad operational scenarios.

Lastly, consideration must be extended to the vessel’s life span and requisite main-
tenance. Internal facets of the vessel might be vulnerable to corrosion, wear, or fatigue,
mandating periodic assessments and upkeep to vouchsafe its enduring reliability. Rational
design, coupled with rigorous quality control, is indispensable for guaranteeing the vessel’s
safe and reliable operation.

The primary objective in this optimization endeavor for pressure vessel design is the
minimization of manufacturing costs while preserving vessel functionality, achieved by
calibrating four variables: shell thickness (Ts), head thickness (Th), inner radius (R), and cylin-
drical section length, excluding the head (L). The objective function is delineated as follows:

Symmetry 2023, 15, 2077 23 of 31

Table 6. Engineering optimization problem 2.

Name Function

Consider x = [x1x2x3x4] = [Ts Th R L]

Minimize f (x) = 0.6224 · x1 · x3 · x4 + 1.7781 · x2 · x2
3 + 3.1661 · x2

1 · x4 + 19.84 · x2
1 · x3

Subject to g1(x) = −x1 + 0.0193 · x3 ≤ 0
g2(x) = −x2 + 0.00954 · x3 ≤ 0

g3(x) = −π · x2
3 · x4 − 4

3 π · x3
3 + 1296000 ≤ 0

g4(x) = x4 − 240 ≤ 0
Parameter ranges 0 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200

Table 7. Engineering optimisation problem 2 results.

Algorithm x1 x2 x3 x4 fbest

WOA 1.439× 100 7.641× 10−1 6.523× 101 1.000× 101 9.108× 103

HHO 9.918× 10−1 5.057× 10−1 5.123× 101 8.889× 101 6.448× 103

GWO 7.801× 10−1 3.860× 10−1 4.036× 101 1.996× 102 5.901× 103

OOA 7.478× 100 3.362× 101 5.517× 101 6.200× 101 2.701× 105

AROA 7.782× 10−1 3.847× 10−1 4.032× 101 2.000× 102 5.885× 103

ROA 8.588× 10−1 4.250× 10−1 4.449× 101 1.491× 102 6.041× 103

5.2.3. The Triple Rod Truss Design Problem

The problem of designing a three-bar truss [40] presents a significant challenge within
the realm of structural engineering. It encompasses the design and optimization of a
three-bar truss structure to meet specific structural strength, stability, and load-bearing
requisites. Such truss configurations are typically assembled from multiple bars and nodes,
serving as the foundational supports for edifices such as buildings, bridges, towers, and
other engineered structures. When grappling with this design conundrum, engineers are
necessitated to deliberate over myriad pivotal considerations such as material selection,
geometric design, structural analysis, and load computations, all to ensure that the resultant
truss configuration operates with impeccable safety and reliability under diverse conditions.
This entails a meticulous balance between the truss’s structural integrity and its weight,
aiming to fulfill engineering mandates whilst endeavoring to minimize the consumption
of structural materials. By harnessing computational tools and optimization algorithms,
engineers are capacitated to pinpoint the optimal bar dimensions, node configurations,
and material selections. This, in turn, ensures compliance with performance metrics and
structural constraints, thereby bolstering the efficiency and reliability of the engineering
system. The implications of the three-bar truss design quandary resonate profoundly
across fields such as bridge construction, architectural endeavors, aerospace initiatives, and
myriad other engineering domains, holding paramount significance in safeguarding the
stability and safety of engineered structures.

The primary goal of this optimization exercise centers around minimizing the overall
weight of the structure by modulating two parameter variables: x1 and x2, with x1 being
synonymous with x2. The optimization objective is expounded as follows.

Table 8. Engineering optimization problem 3.

Name Function

Consider x = [x1x2] ; l = 100 cm; P = 2 kN/(cm²); q = 2 kN/(cm²)

Minimize f (x1, x2) = l · (2
√

2x1 + x2)

Subject to g1(x1, x2) =
P(
√

2x1+x2)√
2x2

1+2x1x2
− q ≤ 0

g2(x1, x2) =
Px2√

2x2
1+2x1x2

− q ≤ 0

g3(x1, x2) =
P√

2x2+x1
− q ≤ 0

Parameters fall in the range 0 ≤ x1, x2 ≤ 1

Symmetry 2023, 15, 2077 24 of 31

Table 9. Engineering optimization problem 3 results.

Algorithm x1 x2 fbest

WOA 7.662× 10−1 4.760× 10−1 2.643× 102

HHO 7.840× 10−1 4.217× 10−1 2.639× 102

GWO 7.875× 10−1 4.116× 10−1 2.639× 102

OOA 7.632× 10−1 4.856× 10−1 2.644× 102

AROA 7.880× 10−1 4.101× 10−1 2.639× 102

ROA 7.910× 10−1 4.017× 10−1 2.639× 102

5.2.4. Welded Beam Design Problems

The challenge of designing a welded beam [41,42] encompasses the design and opti-
mization of beam structures constituted by welding connections tailored to meet specific
engineering criteria and performance benchmarks. Such configurations are ubiquitously
employed across a myriad of engineering domains, spanning architecture, bridge con-
struction, manufacturing, and beyond, functioning primarily to support and convey loads.
In navigating this design puzzle, engineers are compelled to weigh a series of pivotal
elements, including material selection, structural geometric design, welding techniques,
strength analysis, and load estimations. The aim is to guarantee, through judicious design
and optimization, that the welded beam structures exhibit ample strength, rigidity, and
stability under diverse operational conditions, while simultaneously striving to diminish
the structure’s weight and overall cost. Leveraging computational tools and engineering
optimization techniques, engineers are equipped to identify the optimal design parame-
ters, such as welding positions, material attributes, geometric parameters of the beam, and
welding processes, ensuring compliance with both performance and design constraints.
The intricacies of welded beam design hold extensive applicability in various engineering
endeavors and are indispensable in assuring the quality and safety of engineering structures.

The principal objective of this optimization endeavor is to minimize economic costs
by finetuning four parameter variables: the beam’s thickness (h), length (l), height (t), and
width (b). The optimization goal is elucidated as follows:

Table 10. Engineering optimization problem 4.

Name Function

Consider x = [x1x2x3x4] = [h l t b]

Minimize f (x1, x2, x3, x4) = 1.10471 · (x2
1) · x2 + 0.04811 · x3 · x4 · (14 + x2)

Subject to g1(x1, x2, x3, x4) = t− tmax ≤ 0
g2(x1, x2, x3, x4) = σx − σmax ≤ 0
g3(x1, x2, x3, x4) = δx − δmax ≤ 0
g4(x1, x2, x3, x4) = x1 − x4 ≤ 0
g5(x1, x2, x3, x4) = P− Pc ≤ 0
g6(x1, x2, x3, x4) = 0.125− x1 ≤ 0

g7(x1, x2, x3, x4) = 1.10471 · (x2
1) · x2 + 0.04811 · x3 · x4 · (14 + x2)− 5 ≤ 0

Parameter range 0.1 ≤ x1, x2 ≤ 2, 0.1 ≤ x3, x4 ≤ 10

Table 11. Engineering optimization problem 4 results.

Algorithm x1 x2 x3 x4 fbest

WOA 2.173× 10−1 3.260× 100 8.487× 100 2.333× 10−1 1.814× 100

HHO 5.171× 10−1 2.306× 100 4.576× 100 8.024× 10−1 3.561× 100

GWO 1.796× 10−1 4.374× 100 9.245× 100 2.047× 10−1 1.829× 100

OOA 4.620× 10−1 4.413× 100 5.594× 100 5.408× 10−1 3.720× 100

AROA 1.924× 10−1 3.423× 100 9.393× 100 2.076× 10−1 1.775× 100

ROA 2.761× 10−1 3.114× 100 6.884× 100 3.591× 10−1 2.298× 100

Symmetry 2023, 15, 2077 25 of 31

5.2.5. The Problem of Gearbox Design

The task of designing mechanical reducers [43,44] occupies a paramount role in the
realm of mechanical engineering. The central objective lies in designing and optimizing
mechanical gear reducers to effectively reduce the output speed of rotating machinery
and simultaneously enhance torque. Such mechanical devices are ubiquitously utilized
across various engineering sectors, encompassing industrial manufacturing, automotive
engineering, aerospace, wind power generation, and robotic technology, among others.

In addressing the complexities of reducer design [43,44], engineers are mandated to
holistically evaluate a multitude of key factors. Foremost, the load requirements must be
explicitly ascertained, delineating the required output torque and speed of the reducer in
accordance with specific application demands, thus ensuring the fulfillment of the mechan-
ical system’s performance criteria. Moreover, the selection of the transmission ratio—the
speed proportion between the input and output shafts—stands as a critical determinant,
shaping the efficacy of the reducer. Material choices, encompassing gears, bearings, and
casings also exert a profound influence on the reducer’s design. It is imperative to ensure
that these components exhibit sufficient strength and wear-resistance.

The main objective of this study revolves around seven design variables: the face
width (x1), modules (x2), the number of teeth in the smaller gear (x3), the length between
bearings on the first shaft (x4), the length between bearings on the second shaft (x5), the
diameter of the first shaft (x6), and the diameter of the second shaft (x7). The principal aim
is to minimize the overall weight of the reducer by optimizing these seven parameters. The
underlying mathematical formula is presented as follows:

Table 12. Engineering optimization problem 5.

Name Function

Consider x = [x1x2x3x4x5x6x7]

Minimize f (x1, x2, x3, x4, x5, x6, x7) = 0.7854 · x1 · x2
2 · (3.3333 · x2

3

+14.9334 · x3 − 43.0934)− 1.508 · x1 · (x2
6 + x2

7) + 7.4777 · (x3
6 + x3

7)

+0.7854 · (x4 · x2
6 + x5 · x2

7)

Subject to g1(x1, x2, x3) =
27

x1·x2
2 ·x3
− 1 ≤ 0

g2(x1, x2, x3) =
397.5

x1·x2
2 ·x2

3
− 1 ≤ 0

g3(x2, x3, x4, x6) =
1.93·x3

4
x2·x3·x4

6
− 1 ≤ 0

g4(x2, x3, x5, x7) =
1.93·x3

5
x2·x3·x4

7
− 1 ≤ 0

g5(x2, x3, x4, x6) =
1

110·x3
6

((
745·x4
x2·x3

)2
+ 16.9× 106

)0.5
− 1 ≤ 0

g6(x2, x3, x5, x7) =
1

85·x3
7

((
745·x5
x2·x3

)2
+ 157.5× 106

)0.5
− 1 ≤ 0

g7(x2, x3) =
x2·x3

40 − 1 ≤ 0

g8(x1, x2) =
5·x2
x1
− 1 ≤ 0

g9(x1, x2) =
x1

12·x2
− 1 ≤ 0

g10(x4, x6) =
1.5·x6+1.9

x4
− 1 ≤ 0

g11(x5, x7) =
1.1·x7+1.9

x5
− 1 ≤ 0

Parameter range 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5

Symmetry 2023, 15, 2077 26 of 31

Table 13. Engineering optimization problem 5 results.

Algorithm x1 x2 x3 x4 x5 x6 x7 fbest

WOA 3.510× 100 7.000× 10−1 1.700× 101 7.639× 100 7.926× 100 3.556× 100 5.287× 100 3.062× 103

HHO 3.590× 100 7.000× 10−1 1.700× 101 7.300× 100 8.052× 100 3.475× 100 5.287× 100 3.070× 103

GWO 3.501× 100 7.000× 10−1 1.700× 101 7.924× 100 8.210× 100 3.364× 100 5.287× 100 3.015× 103

OOA 3.600× 100 7.506× 10−1 2.461× 101 8.294× 100 7.851× 100 3.900× 100 5.500× 100 1.971× 1098

AROA 3.500× 100 7.000× 10−1 1.700× 101 7.669× 100 7.715× 100 3.351× 100 5.287× 100 2.998× 103

ROA 3.501× 100 7.000× 10−1 1.700× 101 8.290× 100 8.053× 100 3.353× 100 5.287× 100 3.012× 103

5.2.6. The Problem of Gear Train Design

The challenge of gear system design [45] is a pivotal issue within the sphere of me-
chanical engineering. The objective at its heart is to design and optimize mechanical gear
transmission systems to meet specific motion and power transmission requirements. Such
transmission systems, composed of varying types of gears, serve to modify rotational speed,
torque, and direction, thereby catering to an array of engineering applications ranging from
automobile transmissions, industrial machinery and aerospace equipment to wind power
generation in the energy sector.

Key considerations in gear system design encompass the clear articulation of trans-
mission needs, the selection of appropriate gear types, the design and optimization of
the gears’ geometric parameters, and the choice of suitable gear materials. Furthermore,
determining the layout and arrangement of gears, maximizing transmission efficiency
to minimize energy losses, and addressing concerns related to noise and vibrations are
crucial to enhance the comfort and reliability of the operational environment. With the
assistance of computational tools, CAD software, and specialized gear transmission analy-
sis tools, engineers are equipped to simulate, analyze, and optimize gear system designs,
tailoring them to the unique demands of diverse applications. The successful resolution of
gear system design challenges is quintessential for the smooth implementation of various
engineering applications and the reliability of mechanical systems.

The primary objective of this optimization issue is to reduce the specific transmission
costs of the gear system. Variables encompass the number of teeth on four gears, labeled as
Na(x1), Nb(x2), Nd(x3), and Nf(x4). The underlying mathematical formula is delineated
as follows.

Table 14. Engineering optimization problem 6.

Name Function

Consider x = [x1x2x3x4]

Minimize f (x1, x2, x3, x4) =
(

1
6.931 −

x(2)·x(3)
x(1)·x(4)

)2

Parameter range 12 ≤ x1, x2, x3, x4 ≤ 60

Table 15. Engineering optimization problem 6 results.

Algorithm x1 x2 x3 x4 fbest

DBO 5.875× 101 1.200× 101 3.900× 101 5.511× 101 3.300× 10−9

HHO 4.846× 101 1.702× 101 2.219× 101 5.372× 101 1.166× 10−10

GWO 4.699× 101 1.578× 101 2.533× 101 5.873× 101 9.746× 10−10

SO 4.265× 101 2.103× 101 1.265× 101 4.427× 101 1.545× 10−10

DO 6.000× 101 1.713× 101 2.822× 101 5.526× 101 1.362× 10−9

AROA 5.650× 101 3.061× 101 1.273× 101 4.881× 101 9.940× 10−11

ROA 5.942× 101 3.897× 101 1.200× 101 5.550× 101 3.300× 10−9

Symmetry 2023, 15, 2077 27 of 31

6. Discussion

This section primarily addresses the applicability of optimization algorithms, delves
into the time complexity associated with solving application problems using these algo-
rithms, and emphasizes the performance of some benchmark algorithms.

6.1. Discussion on the Applicability of the AROA

Optimization algorithms are widely recognized for their broad applicability. In this
paper, we delve into the efficacy and potential of the optimization algorithm, AROA, within
the realm of engineering applications. In fact, even prior to our study, scholars had exten-
sively investigated engineering problems that bear resemblance to the issues addressed in
this manuscript. For instance, some research successfully integrated basic Variable Neigh-
borhood Search with Particle Swarm Optimization [46], aiming to proficiently address
sustainable routing and fuel tank management in maritime vessels. Moreover, given the
fuel costs associated with container terminal ports, there exists literature that has employed
chemical reaction optimization techniques to proffer innovative strategies for dynamic
berth allocation [47]. Other studies have honed in on the challenge of sustainable maritime
inventory routing with time window constraints [48]. These cutting-edge studies not only
furnished a robust theoretical foundation for our exploration but also further corroborated
the wide applicability of metaheuristic algorithms across diverse application scenarios.

In this study, the AROA has been applied to six engineering scenarios. However,
heuristic algorithms are often noted for their intrinsic adaptability, and the AROA is no
exception, boasting a certain degree of universality. Notably, the AROA was not solely
restricted to engineering applications within this investigation. The algorithm was also
tested against the standard optimization test functions, specifically cec2013. These tests
further attest to the algorithm’s versatility.

A literature review revealed that the ROA algorithm has been extended to several
non-linear domains. For instance, the continuous form of ROA was modified into a
binary version, known as BROA (Binary Rafflesia Optimization Algorithm), and was
successfully applied to feature selection tasks. The original ROA was implemented to tackle
the locational decision-making challenges in logistics distribution centers. Additionally,
an ROA variant improved via a reverse learning strategy was employed for optimizing
both pipe diameter selections and construction costs within water supply networks, and
the results were promising.

However, while the ROA algorithm might exhibit exemplary performance in certain
scenarios, its limitations cannot be overlooked. Future research must entail rigorous testing
against a broader and diverse set of optimization challenges. This approach will not
only solidify its extensive applicability but also highlight any requisite modifications or
adjustments to enhance its efficacy.

6.2. Discussion of Time Complexity of AROA

In both engineering problems and various practical applications, computational time
serves as a pivotal metric for evaluating algorithmic performance. Especially in complex
scenarios, an algorithm’s utility can be questioned if, despite yielding superior solutions, it
requires prohibitively long durations for execution. Every strategic addition or modification
to an algorithm potentially escalates its computational complexity. For instance, with the
AROA algorithm, two strategies were incorporated into its original design, potentially
leading to prolonged execution times. In certain instances, more intricate strategies might
offer enhanced optimization outcomes but at the expense of extended computational
durations. It is imperative to assess this trade-off between performance and time to discern
the worthiness of embedding new strategies.

Taking the design of pressure vessels as a specific engineering example, which inher-
ently involves numerous parameters and constraints, optimization becomes increasingly
intricate. We revisited the time required by the algorithm to optimize this particular issue,
and the results are delineated in Table 16. Upon examining the experimental data, it was

Symmetry 2023, 15, 2077 28 of 31

discerned that the AROA algorithm outperformed three other algorithms in execution time,
namely, WOA, HHO, and OOA, and was slightly outpaced by the GWO and the original
ROA algorithms. However, the differences were marginal. The AROA operated within
what can be deemed an “acceptable computational timeframe,” justifying the inclusion of
the new strategies. By incorporating these strategies, the AROA algorithm not only located
high-quality solutions swiftly but also did so without consuming excessive time, rendering
it viable in real-world engineering contexts. Therefore, when tackling problems, the delicate
balance between solution quality and computational efficiency must be diligently observed.
If an algorithm can furnish a satisfactory solution within an “acceptable computational
timeframe,” it can better address real-world challenges.

Table 16. Table of time complexity.

Title Time complexity analysis for a specific engineering application problem.
Algorithm WOA HHO GWO OOA AROA ROA
Time (s) 1.301× 10−01 2.862× 10−01 6.995× 10−02 2.203× 10−01 9.552× 10−02 9.231× 10−02

6.3. Discussion of the Performance Capabilities of Algorithms

Upon analyzing our experimental data, it was observed that the AROA algorithm
attained the optimal average fitness values (Mean) in unimodal function F1, multimodal
functions F6 and F9, and complex functions F21, F24, and F26. In contrast, other algorithms,
such as PSO, secured sub-optimal average fitness values (Mean) in multimodal functions
F8 and F12 and in the complex function F26, achieving the best average fitness value
(Mean) for F8. This highlights the PSO algorithm’s commendable explorative capabilities,
demonstrating its proficiency in evading local optima and navigating toward optimal
fitness values in both multimodal and complex functions. Likewise, the DE algorithm
showcased sub-optimal average fitness values (Mean) in multimodal functions F11 and
F12 and in the complex function F25. Additionally, it reached peak average fitness values
(Mean) for F13, F20, and F28, reinforcing its promising convergence properties and its
resilience against entrapment in local optima.

6.4. Discussions of General Optimization Challenges

In the realms of modern analytical and pharmaceutical chemistry, precise mathematical
modeling is indispensable for addressing real-world issues, such as the analysis of acid–
base reactions [49] and the optimization of structure–activity relationship (SAR) models [50]
for compounds.

When it comes to the complex issue of acid–base reaction modeling, particularly
when considering the nonlinear dynamics and multivariate interactions underlying it,
optimization algorithms can offer unique resolution strategies. Techniques such as Genetic
Algorithms [51] (GA) are commonly employed to tackle problems that are intractable
through analytical methods, especially in the simulation of chemical reactions. For instance,
simulating acid–base reactions requires consideration of ion dissociation, mixing, and
potential complex coordination reactions. The dynamic nature of these processes renders
the creation of precise models particularly challenging. Optimization algorithms, such as
GAs [52], assist in finding optimal model parameters within a vast parameter space that
can replicate the experimentally observed acid–base properties under various conditions,
such as pH and pOH values.

In applying GAs, key steps include encoding the solutions to the problem (which
in chemistry might be a set of reaction rate constants or concentrations), selecting an
appropriate fitness function (which could be the disparity between model predictions and
experimental data), and determining a suitable set of genetic operations (including selection,
crossover, and mutation). Selection and crossover processes filter for more fit genotypes,
while mutation introduces new genetic diversity. The algorithm will then determine
through survival strategies which individuals should be preserved, thus simulating the

Symmetry 2023, 15, 2077 29 of 31

process of natural selection. As depicted in Figure 2 of Reference [12], the combination of
different survival strategies and selection tactics can lead to diverse evolutionary outcomes.
For example, various selection tactics might lead to faster convergence, while different
survival strategies might promote genetic diversity. The fine-tuning of these strategies
demonstrates the GA’s capacity to find solutions for multivariate linear regression problems
and reveals how algorithm adjustments could potentially impact the final model’s accuracy
and reliability. All these steps require careful design to ensure the algorithm can find a
viable solution within a reasonable timeframe.

In summary, the application of optimization algorithms to acid–base reaction mod-
eling not only showcases the potential of computational approaches to chemical issues
but also offers an opportunity to discuss and assess the adaptability and efficiency of
these algorithmic design choices for specific problems. Whether it is the dissociation and
mixing of acids and bases or the understanding of the structure–activity relationships of
compounds, these optimization challenges are formidable due to the necessity of man-
aging extensive data, complex chemical interactions, and the need for both accuracy and
efficiency in modeling. GA optimization of Multivariate Linear Regression (MLR) models
reveals the relationships between the structure of compounds and their activities. SAR
models are crucial in drug design and discovery as they can aid scientists in predicting
the biological activity of new compounds. GAs select molecular descriptors by simulating
natural selection and survival strategies, constructing SARs. This approach offers a natural
and effective means of searching for optimized structure–activity models, addressing the
challenge of finding the most relevant descriptor set within a vast search space.

7. Conclusions

This study primarily investigates the enhancement of the Rafflesia Optimisation Algo-
rithm through the incorporation of diversity maintenance strategies and adaptive weight
update mechanisms. An assessment was conducted by comparing this improved algorithm
against nine other intelligent optimization algorithms on the CEC2013 benchmark test
functions. The evaluation results indicate that the modified Rafflesia Optimisation Algo-
rithm exhibits superior performance on multiple test functions, achieving commendable
results. To gauge the algorithm’s efficacy in real-world applications, it was tested on six
engineering optimization problems. These problems included tension/compression spring
design, pressure vessel design, three-bar truss design, welded beam design, speed reducer
design, and gear train design. The results demonstrate that the new algorithm exhibits
robust performance in practical applications as well. Intelligent optimization algorithms
have evolved to be potent tools in the engineering domain for addressing intricate problems
and optimizing system designs. Drawing inspiration from intelligent behaviors observed
in nature and advancements in computer science, these algorithms assist engineers by
mimicking and optimizing processes, thus confronting an array of challenging issues, en-
hancing system performance, efficiency, and reliability. Not only have they augmented the
efficiency, reliability, and sustainability of engineering systems, they also offer engineers a
powerful arsenal for tackling complex problems, holding promise for further advancements
in the engineering sector in the future.

Author Contributions: Conceptualization, J.-S.P. and S.-C.C.; data curation, Z.-J.L.; formal analy-
sis, J.-S.P. and S.-C.C.; investigation, J.-S.P. and Z.Z.; methodology, J.-S.P., Z.Z., S.-C.C. and Z.-J.L.;
resources, Z.Z. and W.L.; software, Z.Z. and S.-C.C.; validation, J.-S.P., S.-C.C. and W.L.; writing—
original draft, Z.Z.; writing—review and editing, J.-S.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Symmetry 2023, 15, 2077 30 of 31

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [CrossRef]
2. Blum, C. Ant colony optimization: Introduction and recent trends. Phys. Life Rev. 2005, 2, 353–373. [CrossRef]
3. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
4. Bahrami, M.; Bozorg-Haddad, O.; Chu, X. Cat swarm optimization (CSO) algorithm. In Advanced Optimization by Nature-Inspired

Algorithms; Springer: Singapore, 2018; pp. 9–18.
5. Yang, X.S. Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Comput. 2011, 3, 267–274. [CrossRef]
6. Yang, X.S.; He, X. Bat algorithm: Literature review and applications. Int. J. Bio-Inspired Comput. 2013, 5, 141–149. [CrossRef]
7. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
8. Pan, J.S.; Zhang, L.G.; Wang, R.B.; Snášel, V.; Chu, S.C. Gannet optimization algorithm: A new metaheuristic algorithm for

solving engineering optimization problems. Math. Comput. Simul. 2022, 202, 343–373. [CrossRef]
9. Neshat, M.; Sepidnam, G.; Sargolzaei, M.; Toosi, A.N. Artificial fish swarm algorithm: A survey of the state-of-the-art,

hybridization, combinatorial and indicative applications. Artif. Intell. Rev. 2014, 42, 965–997. [CrossRef]
10. Zhang, C.; Zhang, F.M.; Li, F.; Wu, H.S. Improved artificial fish swarm algorithm. In Proceedings of the 2014 9th IEEE Conference

on Industrial Electronics and Applications, Hangzhou, China, 9–11 June 2014; pp. 748–753.
11. He, X.; Wang, W.; Jiang, J.; Xu, L. An improved artificial bee colony algorithm and its application to multi-objective optimal

power flow. Energies 2015, 8, 2412–2437. [CrossRef]
12. Chu, S.C.; Feng, Q.; Zhao, J.; Pan, J.S. BFGO: Bamboo Forest Growth Optimization Algorithm. J. Internet Technol. 2023, 24, 1–10.
13. Pan, J.S.; Fu, Z.; Hu, C.C.; Tsai, P.W.; Chu, S.C. Rafflesia Optimization Algorithm Applied in the Logistics Distribution Centers

Location Problem. J. Internet Technol. 2022, 23, 1541–1555.
14. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
15. Rezaei, H.; Bozorg-Haddad, O.; Chu, X. Grey wolf optimization (GWO) algorithm. In Advanced Optimization by Nature-Inspired

Algorithms; Springer: Singapore, 2018; pp. 81–91.
16. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
17. Rana, N.; Latiff, M.S.A.; Abdulhamid, S.M.; Chiroma, H. Whale optimization algorithm: A systematic review of contemporary

applications, modifications and developments. Neural Comput. Appl. 2020, 32, 16245–16277. [CrossRef]
18. Pan, J.S.; Liu, L.F.; Chu, S.C.; Song, P.C.; Liu, G.G. A New Gaining-Sharing Knowledge Based Algorithm with Parallel Opposition-

Based Learning for Internet of Vehicles. Mathematics 2023, 11, 2953. [CrossRef]
19. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
20. Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential evolution algorithm with strategy adaptation for global numerical

optimization. IEEE Trans. Evol. Comput. 2008, 13, 398–417. [CrossRef]
21. Karaboğa, D.; Ökdem, S. A simple and global optimization algorithm for engineering problems: Differential evolution algorithm.

Turk. J. Electr. Eng. Comput. Sci. 2004, 12, 53–60.
22. Chu, S.C.; Tsai, P.W.; Pan, J.S. Cat swarm optimization. In PRICAI 2006: Trends in Artificial Intelligence, Proceedings of the 9th Pacific

Rim International Conference on Artificial Intelligence, Guilin, China, 7–11 August 2006; Springer: Berlin/Heidelberg, Germany, 2006;
pp. 854–858.

23. Dai, C.; Lei, X.; He, X. A decomposition-based evolutionary algorithm with adaptive weight adjustment for many-objective
problems. Soft Comput. 2020, 24, 10597–10609. [CrossRef]

24. Dong, Z.; Wang, X.; Tang, L. MOEA/D with a self-adaptive weight vector adjustment strategy based on chain segmentation. Inf.
Sci. 2020, 521, 209–230. [CrossRef]

25. Ruan, G.; Yu, G.; Zheng, J.; Zou, J.; Yang, S. The effect of diversity maintenance on prediction in dynamic multi-objective
optimization. Appl. Soft Comput. 2017, 58, 631–647. [CrossRef]

26. Chen, B.; Lin, Y.; Zeng, W.; Zhang, D.; Si, Y.W. Modified differential evolution algorithm using a new diversity maintenance
strategy for multi-objective optimization problems. Appl. Intell. 2015, 43, 49–73. [CrossRef]

27. Liang, J.J.; Qu, B.; Suganthan, P.N.; Hernández-Díaz, A.G. Problem definitions and evaluation criteria for the CEC 2013 special
session on real-parameter optimization. Comput. Intell. Lab. Zhengzhou Univ. Zhengzhou China Nanyang Technol. Univ. Singap. Tech.
Rep. 2013, 201212, 281–295.

28. Tvrdík, J.; Poláková, R. Competitive differential evolution applied to CEC 2013 problems. In Proceedings of the 2013 IEEE
Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 1651–1657.

29. Pan, J.S.; Shi, H.J.; Chu, S.C.; Hu, P.; Shehadeh, H.A. Parallel Binary Rafflesia Optimization Algorithm and Its Application in
Feature Selection Problem. Symmetry 2023, 15, 1073. [CrossRef]

30. Bandyopadhyay, R.; Basu, A.; Cuevas, E.; Sarkar, R. Harris Hawks optimisation with Simulated Annealing as a deep feature
selection method for screening of COVID-19 CT-scans. Appl. Soft Comput. 2021, 111, 107698. [CrossRef] [PubMed]

31. Dehghani, M.; Trojovskỳ, P. Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering
optimization problems. Front. Mech. Eng. 2023, 8, 1126450. [CrossRef]

32. Pan, J.S.; Sun, B.; Chu, S.C.; Zhu, M.; Shieh, C.S. A parallel compact gannet optimization algorithm for solving engineering
optimization problems. Mathematics 2023, 11, 439. [CrossRef]

http://doi.org/10.1016/j.chemolab.2015.08.020
http://dx.doi.org/10.1016/j.plrev.2005.10.001
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1504/IJBIC.2011.042259
http://dx.doi.org/10.1504/IJBIC.2013.055093
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.matcom.2022.06.007
http://dx.doi.org/10.1007/s10462-012-9342-2
http://dx.doi.org/10.3390/en8042412
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1007/s00521-020-04849-z
http://dx.doi.org/10.3390/math11132953
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1109/TEVC.2008.927706
http://dx.doi.org/10.1007/s00500-019-04565-4
http://dx.doi.org/10.1016/j.ins.2020.02.056
http://dx.doi.org/10.1016/j.asoc.2017.05.008
http://dx.doi.org/10.1007/s10489-014-0619-9
http://dx.doi.org/10.3390/sym15051073
http://dx.doi.org/10.1016/j.asoc.2021.107698
http://www.ncbi.nlm.nih.gov/pubmed/34276262
http://dx.doi.org/10.3389/fmech.2022.1126450
http://dx.doi.org/10.3390/math11020439

Symmetry 2023, 15, 2077 31 of 31

33. Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2023,
79, 7305–7336. [CrossRef]

34. Elhammoudy, A.; Elyaqouti, M.; Arjdal, E.H.; Hmamou, D.B.; Lidaighbi, S.; Saadaoui, D.; Choulli, I.; Abazine, I. Dandelion
Optimizer algorithm-based method for accurate photovoltaic model parameter identification. Energy Convers. Manag. X 2023, 19,
100405. [CrossRef]

35. Hashim, F.A.; Hussien, A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022,
242, 108320. [CrossRef]

36. Klimov, P.V.; Kelly, J.; Martinis, J.M.; Neven, H. The snake optimizer for learning quantum processor control parameters. arXiv
2020, arXiv:2006.04594.

37. Tzanetos, A.; Blondin, M. A qualitative systematic review of metaheuristics applied to tension/compression spring design
problem: Current situation, recommendations, and research direction. Eng. Appl. Artif. Intell. 2023, 118, 105521. [CrossRef]

38. Çelik, Y.; Kutucu, H. Solving the Tension/Compression Spring Design Problem by an Improved Firefly Algorithm. IDDM 2018,
1, 1–7.

39. Yang, X.S.; Huyck, C.; Karamanoglu, M.; Khan, N. True global optimality of the pressure vessel design problem: A benchmark
for bio-inspired optimisation algorithms. Int. J. Bio-Inspired Comput. 2013, 5, 329–335. [CrossRef]

40. Liu, T.; Deng, Z.; Lu, T. Design optimization of truss-cored sandwiches with homogenization. Int. J. Solids Struct. 2006,
43, 7891–7918. [CrossRef]

41. Kamil, A.T.; Saleh, H.M.; Abd-Alla, I.H. A multi-swarm structure for particle swarm optimization: Solving the welded beam
design problem. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1804, p. 012012.

42. Almufti, S.M. Artificial Bee Colony Algorithm performances in solving Welded Beam Design problem. Comput. Integr. Manuf.
Syst. 2022, 28, 225–237.

43. Deb, K.; Jain, S. Multi-speed gearbox design using multi-objective evolutionary algorithms. J. Mech. Des. 2003, 125, 609–619.
[CrossRef]

44. Hall, J.F.; Mecklenborg, C.A.; Chen, D.; Pratap, S.B. Wind energy conversion with a variable-ratio gearbox: Design and analysis.
Renew. Energy 2011, 36, 1075–1080. [CrossRef]

45. Golabi, S.; Fesharaki, J.J.; Yazdipoor, M. Gear train optimization based on minimum volume/weight design. Mech. Mach. Theory
2014, 73, 197–217. [CrossRef]

46. Meng, Z.; Zhong, Y.; Mao, G.; Liang, Y. PSO-sono: A novel PSO variant for single-objective numerical optimization. Inf. Sci. 2022,
586, 176–191. [CrossRef]

47. De, A.; Pratap, S.; Kumar, A.; Tiwari, M. A hybrid dynamic berth allocation planning problem with fuel costs considerations for
container terminal port using chemical reaction optimization approach. Ann. Oper. Res. 2020, 290, 783–811. [CrossRef]

48. De, A.; Kumar, S.K.; Gunasekaran, A.; Tiwari, M.K. Sustainable maritime inventory routing problem with time window
constraints. Eng. Appl. Artif. Intell. 2017, 61, 77–95. [CrossRef]

49. Bolboacă, S.D.; Roşca, D.D.; Jäntschi, L. Structure-activity relationships from natural evolution. MATCH Commun. Math. Comput.
Chem. 2014, 71, 149–172.

50. JÄNtschi, L. Modelling of acids and bases revisited. Stud. Univ. Babes-Bolyai Chem. 2022, 67, 73–92. [CrossRef]
51. Dasari, S.K.; Fantuzzi, N.; Trovalusci, P.; Panei, R.; Pingaro, M. Optimal Design of a Canopy Using Parametric Structural Design

and a Genetic Algorithm. Symmetry 2023, 15, 142. [CrossRef]
52. Fan, H.; Ren, X.; Zhang, Y.; Zhen, Z.; Fan, H. A Chaotic Genetic Algorithm with Variable Neighborhood Search for Solving

Time-Dependent Green VRPTW with Fuzzy Demand. Symmetry 2022, 14, 2115. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11227-022-04959-6
http://dx.doi.org/10.1016/j.ecmx.2023.100405
http://dx.doi.org/10.1016/j.knosys.2022.108320
http://dx.doi.org/10.1016/j.engappai.2022.105521
http://dx.doi.org/10.1504/IJBIC.2013.058910
http://dx.doi.org/10.1016/j.ijsolstr.2006.04.010
http://dx.doi.org/10.1115/1.1596242
http://dx.doi.org/10.1016/j.renene.2010.08.037
http://dx.doi.org/10.1016/j.mechmachtheory.2013.11.002
http://dx.doi.org/10.1016/j.ins.2021.11.076
http://dx.doi.org/10.1007/s10479-018-3070-1
http://dx.doi.org/10.1016/j.engappai.2017.02.012
http://dx.doi.org/10.24193/subbchem.2022.4.05
http://dx.doi.org/10.3390/sym15010142
http://dx.doi.org/10.3390/sym14102115

	Introduction
	Meta-Heuristic Algorithms
	Algorithmic Features or Principles

	Related Works
	ROA
	Attracting Insects Stage
	Insectivorous Stage
	Seed Dispersal Stages

	Adaptive Weight Adjustment Strategy
	The Diversity Maintenance Strategy
	Operational Content and Mechanisms of the Two Optimization Strategies
	Areas of Optimization and Challenges
	Recommendations for Improving the Optimization Process

	Method
	Improvement Details
	Adaptive Weight Adjustment Improvement
	Diversity Maintenance Improvement

	Role and Necessity of Strategy

	Experiments
	Experiments Results
	Experimental Analysis

	Application
	Application Background
	Applied Experiments
	Tension/Compression Spring Design Problems
	The Problem of Pressure Vessel Design
	The Triple Rod Truss Design Problem
	Welded Beam Design Problems
	The Problem of Gearbox Design
	The Problem of Gear Train Design

	Discussion
	Discussion on the Applicability of the AROA
	Discussion of Time Complexity of AROA
	Discussion of the Performance Capabilities of Algorithms
	Discussions of General Optimization Challenges

	Conclusions
	References

