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Abstract: The distribution of real noise in images can disrupt the inherent symmetry present in many
natural visuals, thus making its effective removal a paramount challenge. However, traditional
denoising methods often require tedious manual parameter tuning, and a significant portion of
deep learning-driven techniques have proven inadequate for real noise. Moreover, the efficiency of
end-to-end algorithms in restoring symmetrical patterns in noisy images remains questionable. To
harness the principles of symmetry for improved denoising, we introduce a dual deep learning model
with a focus on preserving and leveraging symmetrical patterns in real images. Our methodology
operates in two stages. In the first, we estimate the noise level using a four-layer neural network,
thereby aiming to capture the underlying symmetrical structures of the original image. To enhance the
extraction of symmetrical features and overall network performance, a dual attention mechanism is
employed before the final convolutional layer. This innovative module adaptively assigns weights to
features across different channels, thus emphasizing symmetry-preserving elements. The subsequent
phase is devoted to non-blind denoising. It integrates the estimated noise level and the original image,
thus targeting the challenge of denoising while preserving symmetrical patterns. Here, a multi-scale
architecture is used, thereby amalgamating image features into two branches. The first branch taps
into dilation convolution, thus amplifying the receptive field without introducing new parameters
and making it particularly adept at capturing broad symmetrical structures. In contrast, the second
branch employs a standard convolutional layer to focus on finer symmetrical details. By harnessing
varied receptive fields, our method can recognize and restore image symmetries across different
scales. Crucial skip connections are embedded within this multi-scale setup, thus ensuring that
symmetrical image data is retained as the network deepens. Experimental evaluations, conducted on
four benchmark training sets and 12 test datasets, juxtaposed with over 20 contemporary models
based on the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics, underscore
our model’s prowess in not only denoising but also in preserving and accentuating symmetrical
elements, thereby setting a new gold standard in the field.

Keywords: deep learning; image denoising in real-world scenarios; attention mechanism; noise level
assessment; multi-scale unit

1. Introduction

Within the domain of low-level vision applications, symmetry, as a fundamental aes-
thetic and structural principle, plays a pivotal role, and its preservation becomes especially
crucial when it comes to image denoising. The meticulous restoration of symmetry is
paramount in pre-processing, which is an essential step that leads to high-resolution image
quality, accurate segmentation, precise detection, and flawless defect pinpointing. In real-
world images, where symmetry is often a desired trait, noise can disrupt this inherent
balance. Such disturbances predominantly arise from the innate constraints of digital
devices, thereby compromising our ability to perceive and appreciate the symmetrical
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essence of images. Historical examinations of image denoising literature indicate that early
endeavors have been mainly focused on eradicating additive Gaussian white noise [1].
However, distinguishing this artificially induced noise from the asymmetry and distortions
present in real-world images is crucial [2]. Despite technological advancements yielding
cameras capable of capturing high-fidelity symmetrical visuals, challenges persist. External
factors such as sensor limitations, uneven lighting conditions, and transmission errors
can introduce asymmetry, and often, these disturbances are beyond control during the
image acquisition process. The symmetry-disrupting complexity of noise only intensifies
during the image transmission phase, thus getting influenced by the particularities of the
transmission medium. Lastly, in-camera processing stages like demosaicing, grayscale
adjustments, and data compression might either introduce new asymmetries or exacerbate
existing ones [3]. Therefore, recognizing and restoring the balance and symmetry in images
amidst these challenges is a cornerstone of contemporary image denoising endeavors.

In the process of confronting the complexities associated with image denoising, re-
searchers have consistently emphasized the advancement of image denoising methodolo-
gies. Within this context, traditional denoising algorithms can be broadly categorized into
two types: spatial domain filtering (SDF) [4] and frequency domain filtering (FDF) [5].
The SDF approach operates directly within the spatial domain of images by employing
templates. In this method, the value of each pixel is determined by computing it based on
the input pixel values through the template. On the other hand, FDF works by multiplying
the image information within the frequency domain with specific algorithmic functions,
thereby utilizing the Fourier transform [6] as its basis. Despite their utility, traditional
denoising methods have inherent limitations. They can inadvertently omit crucial details,
thus leading to outcomes that may not always meet the desired performance standards.
Recognizing this limitation, researchers have explored alternatives. One such alternative in-
volves the use of image prior models for denoising. A noteworthy contribution in this area
is by Xu et al. [7], who introduced the non-local means (NLMs) denoising technique. This
method capitalizes on the redundant information typically present in natural images. It
identifies and averages similar regions within an image, using image blocks as the primary
units, and subsequently removes the Gaussian noise present. Building on the concept of
non-local denoising, Dabov [8] presented the BM3D algorithm. This innovative approach
not only incorporates the principles of the non-local denoising method, but also synergizes
it with wavelet transform domain denoising. As a result, it has demonstrated superior
performance in various applications. However, a persistent challenge with these advanced
methods is their reliance on pre-defined noise models. In the past, denoising algorithms
typically used pre-defined noise models. These models are mathematical tools designed
to represent common noise types in digital images, like Gaussian noise, salt-and-pepper
noise, and speckle noise [9]. They work best when the noise’s origin and characteristics
are known, the noise remains uniform, and external factors introducing the noise can be
predicted or controlled. This is often the case in lab settings or specific sectors where noise
remains constant. However, as imaging technology changes, so does the nature of the noise.
In real-world settings, especially outdoors, various unpredictable factors like changing
lighting or movement can cause unique noise patterns. These can differ from the standard
models, thereby making traditional denoising methods less effective. This highlights the
need for techniques that can handle both established and unexpected noise types. Besides,
it is evident that image denoising constraints manifest in various forms, which include, but
are not limited to, total variation (TV) models [10,11], sparse models, and models incorpo-
rating self-similarity features. In particular, sparse representation methods have gained
prominence for their ability to encapsulate the structural features of an image efficiently
using an over-complete dictionary [12]. This approach has been especially fruitful in build-
ing effective variational models for denoising, thus yielding commendable results. Despite
their flexibility and ease of interpretability, variational model-based algorithms are not
without limitations. One significant challenge lies in the manual adjustment of parameters
in the minimization process, which often necessitates expert knowledge. Furthermore,
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these algorithms frequently employ prior constraints tailored to specific structural elements
within images. This bespoke design approach compromises the generality of variational
models, thus limiting their applicability across a broad range of image types. Elad et al. [1]
emphasized that the effectiveness of a denoising algorithm is directly correlated with the
performance of the subsequent tasks. Fundamentally, the objective of image denoising is
to recover and reconstruct the inherent data within the image [13]. In the realm of image
denoising, algorithms that leverage variational models have been a staple in traditional
approaches. At the heart of these methods is the transformation of the image denoising
challenge into an optimization problem governed by Bayesian principles, specifically a
maximum posteriori probability formulation. This probabilistic problem is then recast as
a minimization task, wherein the objective function is regularized using pre-established
information about the image. The efficacy of these variational methods is profoundly
influenced by the nature of the prior assumptions introduced into the model.

In recent times, the advancements in deep learning have significantly impacted var-
ious disciplines, including computer vision, pattern recognition, and image processing.
These advances have also precipitated a marked improvement in the field of image de-
noising. Deep learning-based methodologies manifest superior adaptative capabilities,
thus accommodating multi-faceted noise distributions while ensuring computational effi-
ciency. The nascent phases of deep learning for image denoising witnessed the adoption
of reinforcement learning strategies, such as policy gradients [14] and Q-learning [15],
in the training of recursive neural architectures. However, the computational overhead and
the inefficiency in optimization associated with these strategies were evident drawbacks.
Modern deep learning denoising algorithms leverage architectural innovations such as
skip connections, attention modules, and multi-scale feature integration to augment their
feature representational capacity. Notwithstanding, the depth of these architectures oc-
casionally culminates in training challenges, including gradient explosion or dissipation.
A contemporary trend involves techniques like the AINDNet [16] and MPI_DA_CNN [17]
adopting transfer learning paradigms [18] coupled with model compression strategies.
This facilitates the transference of learned parameters from comprehensive models to more
efficient architectures, thereby optimizing training processes and effectively circumventing
gradient-related challenges. Furthermore, denoising strategies underpinned by graph neu-
ral networks (GNNs), exemplified by the GCDN [19] and GRDN [20], have underscored
their merit, particularly in handling non-structured data, as well as capitalizing on the
intrinsic topological attributes of graph networks.

Unlike their variational model-based counterparts, deep learning algorithms offer
the advantage of being data-driven, thereby obviating the need for pre-defined prior as-
sumptions. They are capable of autonomously learning relevant parameters from extensive
datasets. However, a glaring drawback of these models is their lack of rigorous mathemat-
ical formulation, thus resulting in a deficit of interpretability. This poses a challenge in
understanding the inner workings of these algorithms, which is crucial for their further
refinement and application in diverse scenarios. The noise in real-world images is thus
influenced by a confluence of both internal and external variables. This makes the noise
profile particularly challenging to characterize and differs markedly from the noise that
follows a specific distribution. In recent times, most deep learning-based denoising algo-
rithms have been engineered to tackle additive Gaussian white noise, thus owing to its
relative simplicity in both representation and removal. Training these algorithms often
involves adding known levels of this specific noise to clean images, thus generating datasets
comprising noisy and clean image pairs. However, such algorithms are specialized and
tend to excel only at removing noise that follows the particular distribution [21]. This is a
critical limitation, given that the distribution of noise in real-world images is rarely known
a priori. Utilizing a denoising algorithm that assumes an incorrect noise level can have
detrimental effects, which range from incomplete noise removal to the loss of important
image details like edges [22].
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To address these challenges, this paper introduces a novel neural network-based
model specifically tailored for effective image denoising in complex, real-world scenarios.
Our approach employs a two-stage network architecture that is optimized for both compu-
tational efficiency and denoising effectiveness. The model has been rigorously evaluated
on commonly used image denoising datasets and has demonstrated robust performance in
both quantitative metrics and visual assessment.

The main ideas and findings presented in this article are the following:

• We present a two-stage denoising network that is explicitly designed for denoising
images captured in real-world scenarios. The first stage focuses on accurate noise level
estimation, while the second stage performs targeted, non-blind denoising.

• We adopted a comprehensive approach that combined channel and spatial attention,
thus leading to a new dual attention module. This module filters out less important
information, thereby allowing essential data to be processed and conveyed with
greater accuracy.

• Our design includes a specially crafted module that can extract features at multiple
scales. This adaptability lets us tailor the network for various real-world scenarios by
adjusting the quantities of these modules, thus balancing denoising efficiency with
reduced network complexity.

• Based on our analysis of 16 benchmark datasets and using two metrics, when com-
pared with over 20 traditional and contemporary algorithms, our proposed method
proves to be both robust and adaptable. Furthermore, it quickly adjusts noise-
degraded images and is suitable for a wide range of vision-based applications.

Through these contributions, this paper aims to advance the state of the art in image
denoising, thus offering a robust, flexible, and efficient solution to an enduring challenge in
low-level vision research.

2. Related Work
2.1. Traditional Denoising Algorithms

According to the characteristics of denoising methods, traditional denoising methods
are divided into four categories:

Denoising using filtering: Commonly used techniques for image denoising include
filtering methods [23,24]. Teng and Wang et al. [25,26] proposed an improved curvature
filtering algorithm that uses a projection operator instead of the traditional curvature
filter’s minimum triangular cutting plane projection operator. They also modified the
regular energy function to enhance the denoising ability. This algorithm has a good ef-
fect in removing strong noise but cannot adaptively adjust the projection operator in the
neighborhood, and its operation time is longer. Moreover, Abazari et al. [27] developed a
hybrid technique that combines the shearlet transform method with Yaroslavsky’s filter for
diverse image characteristics, including thin features and textures. Accordingly, the image
is processed using the shearlet transform, followed by the application of the Yaroslavsky’s
filter, which is weighted based on pixel similarities from the previously denoised image.
Goyal et al. [28] presented a computationally efficient algorithm that is based on non-local
means combined with a non-subsampled shearlet transform (NSST). The source image is
first decomposed using an NSST into coarser and finer layers. With two decomposition lev-
els of the NSST, there is one set of low-frequency coefficients and four sets of high-frequency
coefficients. The overall results are improved, but complex noise remains challenging to
address. Liu et al. [29] completed image denoising by setting appropriate adjustment
parameters, thereby dynamically selecting fixed thresholds and adding adjustment factors
to reduce the constant deviation between the original wavelet coefficient and the estimated
wavelet coefficient. Furthermore, You et al. [30] developed an image removal model that
utilizes an enhanced wavelet transform combined with edge detection. This approach aids
in increasing the image’s signal-to-noise ratio while preserving as much edge information
as possible. Al-Shamasneh et al. [31] introduced a method that uses local fractional en-
tropy for estimating image pixel probability and employs quantum calculus to determine
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the convolution window mask for image denoising. However, this model only removes
Gaussian noise.

Denoising using sparse coding: Kumar et al. [32] introduced a model that employed
weights to harmonize the varying scales of components within each group. These ad-
ditional weights enhance the model’s reconstruction accuracy and stability. However,
the texture appears overly smoothed in the final result. Jia et al. [33] enhanced the BM3D
algorithm by focusing on three areas: adaptive estimation of noise variance, domain trans-
formation filtering, and non-linear filtering. While the model yielded improved visual
outcomes, it resulted in excessively smooth edges. Mahdaoui et al. [34] presented a model
using a compressed sensing reconstruction approach, thus the merging total variation
regularization with the non-local self-similarity constraint. They optimized this method
with an augmented Lagrangian, thereby sidestepping the challenges of non-linearity and
non-differentiability inherent in the regularization terms. However, the trade-off is a mi-
nor increase in computational complexity relative to the image size, but this does not
compromise real-time processing.

Denoising using external priors: Liu et al. [35] proposed a denoising algorithm that
initially uses a shearlet to represent the input image sparsely. Then, it integrates non-
local priors as constraints for image denoising with sparse representation. An alternating
minimization algorithm is employed to solve this constrained denoising issue, thus yielding
the denoised image. However, this algorithm has not been tested on other types of coherent
images. Bhargava et al. [36] used singular value decomposition and hard thresholding
methods to collaboratively denoise the obtained multi-scale similar matrix. Qi et al. [37]
introduced image structural priors and sparse priors into image restoration processing by
proposing two improved algorithms based on TV and sparse representation. Xie et al. [38]
proposed a deep learning-based approach for reducing noise in images. This method
employs an optimization function that includes non-local regularizers. These regularizers
have two parts: a spatial filter and a frequency domain filter. Their purpose is to encourage
the sparsity of gradients in the solution. The symmetric U-Net achieved better results.

Denoising using low-rank representation: Fan et al. [39] imposed a TV norm con-
straint on the coefficient matrix in the low-rank representation model, thereby proposing a
novel image denoising method. Luo et al. [40] integrated relative total variation (RTV) into
a weighted nuclear norm minimization (WNNM), thus imposing an RTV norm constraint
on the WNNM low-rank representation model. However, the construction of the image
denoising model and the optimization process have high computational costs, thereby
leading to a longer processing time. Buades [41] introduced an algorithm that uses the
redundant information commonly found in natural images. Unlike commonly used bilinear
filtering and median filtering that utilize local image information for filtering, it uses the
entire image for denoising. It searches for similar areas in the image based on image blocks,
averages these areas, and effectively removes Gaussian noise present in the image.

Regarding traditional denoisers, they often use only noisy images for training and
denoising. Many effective denoising algorithms are based on the BM3D algorithm. This
algorithm’s idea is somewhat similar to NL-Means. The BM3D algorithm is currently
the most effective traditional image denoising method. However, due to the special and
complex nature of image noise, there are few similar blocks in complex texture areas that
are mostly edge areas, thereby resulting in suboptimal denoising effects and leading to the
loss of detail, blurring, and other phenomena.

2.2. Advances in Deep Learning-Based Denoising Algorithms

Based on the type of noise present in the image, deep learning denoising algorithms
can be categorized into four distinct classes:

Denoising Additive Gaussian White Noise Images: Zhang et al. [42] introduced
a convolutional neural network (CNN) model that integrates batch normalization with
residual learning techniques. While this method yielded notable results, the algorithm
necessitates extensive iterations to secure an optimal training model, thus compromising
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its efficiency and convergence rate. Valsesia et al. [19] developed a method utilizing graph
convolution operations to establish a non-local receptive field. This model, termed graph–
convolutional image denoising (GCDN), leverages dynamic similarity calculations within
hidden features. Nonetheless, the proposed architecture remains unextended to other
inverse problems, such as super-resolution. Subsequently, Wang et al. [43] presented a
streamlined image denoising network featuring an innovative four-channel interaction
transformation. They adjusted both the input and output images to include four channels,
thus adding an extra channel filled with zeros. This added channel, set to approach zero
during training, guides the training procedure and boosts the network’s resilience to errors.

Denoising Real-World Noise Images: Yan et al. [44] innovatively extracted noise
patterns directly from degraded images, thereby achieving unsupervised noise modeling
and successfully denoising unpaired real noise images. Their framework is constructed
on the self-consistent generative adversarial network (SCGAN) paradigm. Meanwhile,
Zhao et al. [45] offered a solution for dark burst images by employing a recurrent fully
convolutional network (RFCN), thus directly mapping raw burst imagery to standard
red–green–blue (sRGB) outputs. While this approach boasts considerable flexibility, it has
not been adapted for video denoising, and its portability remains a challenge.

Denoising Blind Noise Images: Yang et al. [46] proposed a pioneering strategy us-
ing a multi-column CNN for estimating the noise level function from singular images.
This technique, however, has yet to be applied to natural image denoising. Yu et al. [47]
introduced a deep iterative down-up CNN capable of cyclically adjusting the resolution
of feature maps, thereby allowing it to manage various noise intensities using a singular
model without the need for supplementary noise information. Chen et al. [48] presented the
GAN–CNN-based blind denoiser, which exploits the GAN for noise distribution modeling,
thus generating noise samples and collaborating with clean image datasets to train a de-
noising network. A limitation to consider is its presupposition of zero-mean additive noise.
Moreover, Bian et al. [49] introduced a denoising algorithm comprising four components:
sparse representation, initial feature fusion, attention mechanism, and residual module.
The sparse representation component extracts local features from the image, while the
feature fusion component merges both global and local features, thereby augmenting the
network’s ability to represent the image.

Denoising Mixed Noise Images: Zhang [50] devised a tri-layered super-resolution
network furnished with a dimensional augmentation strategy, thus creating a versa-
tile framework competent in addressing numerous or spatially varying degradations.
Shah et al. [51] presented a two-stage model that is based on patch transformation specif-
ically for mixed noise elimination. They combined this with a bilateral filtering method
to preserve image edges. This was integrated into a cognitive neural network model
aimed at denoising images. The network’s inherent adaptability detects the presence of
mixed noise and creates a training dataset consisting of both noisy and denoised patches.
An area warranting further investigation is the trade-off between the network complexity
and performance. Several existing methods employ deep networks with numerous layers,
thus inevitably leading to protracted training periods. Conversely, shallow networks may
compromise denoising performance. Recent innovations, therefore, focus on developing
two-stage real image denoisers that utilize channel attention mechanisms for improved
noise level estimation, along with multi-scale modules for non-blind denoising, which aim
to reconcile effective denoising with computational efficiency.

3. Theoretical Foundation

To thoroughly comprehend the algorithmic architecture proposed in this study, it is
imperative to anchor our methodology within recognized theoretical tenets. Denoising
algorithms, particularly those leveraging CNNs, are underpinned by the conventional
convolution operation and CNNs’ inherent capability to hierarchically discern feature rep-
resentations from datasets. Owing to their architectural design, CNNs intrinsically discern
patterns across multiple scales and complexities, thereby rendering them especially suited



Symmetry 2023, 15, 2073 7 of 27

for endeavors such as image denoising. The preliminary phases of our model, as depicted
in Figure 1, are premised on the understanding that noise in authentic images predom-
inantly emerges as stochastic perturbations in pixel intensities. Traditionally, scholars
have characterized this noise as Gaussian, given its ubiquity and amenable mathematical
attributes. The decision to split the denoising process into two stages, noise measurement
and targeted denoising, comes from the understanding that noise in real-world settings
is not consistent, thus requiring accurate assessment for effective removal. The dual at-
tention module, illustrated in Figure 2, is rooted in the paradigm of ’attention’ in neural
processing [52]. The human cerebrum does not equitably process every piece of incoming
information; rather, it prioritizes specific stimuli contingent upon context, antecedent expe-
riences, or intrinsic relevance. In parallel, attention mechanisms within neural networks
are designed to differentially weight input features, thereby empowering the network to
accentuate pertinent attributes, which are paramount for the given task. Dilated convolu-
tions [53], as showcased in Figure 3, stem from the objective of amplifying the receptive
purview of convolutional procedures. Within standard convolution, each resultant element
is contingent upon a limited proximate region in the input. By interspersing gaps, dilated
convolutions allow each output component to consider an expansive input domain, thus
effectively augmenting the contextual view without escalating computational demands.

Conclusively, the paradigm of residual learning, exemplified in Figure 4, is predi-
cated on the assertion that discerning residual mappings, i.e., disparities or deviations,
is frequently more straightforward and efficacious than direct mappings. Residual path-
ways, by facilitating direct interconnections across layers, alleviate the vanishing gradient
dilemma, thus capacitating the training of more profound networks with efficiency. With the
theoretical underpinnings of our methodology articulated, the ensuing sections delineate
the specific algorithmic enhancements and their practical realizations.

Figure 1. Overall structure of the proposed model.
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Figure 2. Representation of the dual attention module.

Figure 3. Graphical representation of mulit-scale structure.

Figure 4. Graphical representation of residual structure.
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4. Algorithmic Framework

Denoising algorithms specifically engineered for mitigating noise within predeter-
mined distribution levels, such as the DnCNN [42] and FFDNet [54], commonly adopt
an end-to-end computational paradigm to directly attenuate noise artifacts in image data.
However, it should be emphasized that the distribution level of noise in real-world image
scenarios is inherently uncertain. This intrinsic ambiguity poses considerable challenges
to the effectiveness of a solitary end-to-end algorithmic process in successfully denoising
authentic images.

To circumvent this limitation, an initial step that focuses on the quantitative estimation
of the noise distribution level present in the real-world images is indispensable. Subse-
quently, this quantitatively estimated noise level is combined with the original image and
fed into the subsequent stages of the algorithmic process. By doing so, the complex problem
of denoising real-world images can be reduced to the more tractable issue of eradicating
Gaussian noise at a specified distribution level. It is important to highlight that existing
denoising algorithms have shown significant effectiveness in reducing noise within certain
distribution parameters. This proven performance provides essential prior knowledge
that can be used to fine-tune the denoising method discussed in this paper. Therefore,
the denoising approach outlined in this research is divided into two main stages. The first
stage focuses on estimating the noise level in the noisy images. Following this is the second
stage, which carries out the targeted denoising of the images. A visual diagram of this
approach is available in Figure 1.

4.1. Dataset Pre-Processing

In deep learning-based techniques, dataset pre-processing is essential for enhancing
the reliability and uniformity of the input data, which in turn guarantees that the models
are trained using dependable and characteristic examples. Due to the intrinsic high res-
olution of the images in the SIDD dataset, there is a necessity for image pre-processing
to facilitate efficient model training. To this end, each original image was segmented
into multiple non-overlapping patches of size (256 × 256) pixels. Our decision to adopt
the (256 × 256) resolution is based on initial experiments, which assessed the model’s
efficacy over a range of resolutions spanning from 128 × 128 to 512 × 512. The selected
size strikes an optimal balance between computational demands and model precision.
This resolution aptly represents a considerable number of use cases within our intended
application domain. To accommodate real-world images of varying sizes, we employ a pre-
processing strategy to adjust them to the chosen resolution. This size has been selected after
preliminary experiments, which showed a balanced trade-off between retaining essential
details and computational feasibility. However, to validate the performance and robustness
of the proposed model for image denoising, we employed a diverse set of benchmark
datasets specifically designed for this purpose. These datasets cover a wide range of noise
types, intensities, and real-world scenarios, thus ensuring a comprehensive evaluation
of the model’s capabilities. A detailed description of the characteristics and origins of
these datasets is provided in the following subsections that illuminate their relevance and
significance within the context of our study.

4.1.1. Training Datasets

The training dataset [13] is bifurcated into two primary categories: grayscale noise-
affected images and their color counterparts. The dataset for grayscale-noise-impacted
images is designed for the training of both Gaussian and blind denoising algorithms.
Within this classification, two notable datasets are present: the BSD400 and the Waterloo
Exploration. The former, BSD400, encompasses 400 images stored in the .png format.
These images have been resized to 200 × 200 pixels to suit the requirements of denoising
model training. On the other hand, the Waterloo Exploration dataset is comprised of
4744 authentic images, which are also in the .png format. As for color-noise-affected images,
they are represented in the BSD432, Waterloo Exploration, and polyU datasets. Delving
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into specifics, the polyU dataset houses 100 genuine noisy images of 2784 × 1856 pixel
dimensions, which have been sourced from five different camera models. These cameras
include the Nikon D800, Canon 5D Mark II, Sony A7 II, Canon 80D, and the Canon 600D.

4.1.2. Test Datasets

As delineated in reference [13], our evaluation datasets span a variety of image collec-
tions, which are marked by both grayscale and color noise. The grayscale-noise-affected
image collection amalgamates three distinct datasets: Set5, Set12 and BSD68. Specifically,
Set12 incorporates 12 distinct scene images, whereas BSD68 aggregates a compilation of
68 natural images. These collections are instrumental in gauging the efficacy of Gaussian
denoising techniques and blind noise attenuation algorithms. Pertaining to the color image
dataset, we assimilated an eclectic mix of datasets, namely: CBSD68, Kodak24, Urban100,
McMaster, CC15, DND, NC12, SIDD, and CC60. Of these, the Kodak24 and McMaster
datasets comprise 24 and 18 color-noise-affected images, respectively. The DND dataset is
distinguished by its 50 authentic noisy images, with their pristine counterparts sourced
from minimal ISO settings. Conversely, the NC12 dataset houses 12 noisy images, but
it notably lacks their clean equivalents. The SIDD dataset is particularly noteworthy; it en-
capsulates genuine noisy images acquired via smartphones, thus amounting to 320 paired
sets of noisy images and their pristine counterpart images. Concluding our collection,
the Nam dataset integrates 11 unique scenes, which are all archived in the JPEG format.

4.2. Quality Metrics

The assessment of image quality depends on utilizing quality metrics, which offer
objective evaluations of their performance. These metrics are essential for evaluating the
efficacy of denoising methods and for comparing various techniques. By measuring the
amount of noise reduction and the resemblance between the denoised and the original,
noise-free image, these metrics offer important information about the visual quality and
fidelity of the denoised images. In this paper, the quality of the denoised images is
evaluated using the PSNR and SSIM metrics, which are shown in Equations (1) and (2),
respectively [55]. In general, higher values of the PSNR and SSIM indicate improved visual
quality of the enhanced results.

PSNRdB = 20× log10

(
MAX[N(i, j)]

1
HW ∑H

i=1 ∑W
j=1[N(i, j)− K(i, j)]2

)
(1)

SSIM =
(2u1u2 + c1)(2σ1,2 + c2)(

u2
1 + u2

2 + c1
)(

σ2
1 + σ2

2 + c2
) (2)

where N(i, j) represents the pixel value at position (i, j) of the original noise-free image,
and K(i, j) is the pixel value at position (i, j) of the denoised image. H and W represent
the height and width of the image, respectively. u1 and u2 are the means of N(i, j) and
K(i, j), respectively. σ1 and σ2 represent the variances of N(i, j) and K(i, j), respectively. σ1,2
indicates the covariance between N(i, j) and K(i, j). The constants c1 = 0.01 and c2 = 0.02
are introduced to maintain system stability.

4.3. Phase of Noise Level Estimation in Image Data

The principal objective of this particular phase is to rigorously estimate the level of
noise that is inherently present in real-world images. A mathematical model to describe
real-world noisy images can be formalized as (y = x+ n(x)), where y symbolizes the image
corrupted by noise, x stands for the original, uncorrupted image, and n(x) refers to the
actual noise modeled as a Gaussian distribution N(0, σ2(x)). It is noteworthy to mention
that in the subsequent non-blind denoising phase of the neural network, the target is to
eliminate the noise, represented by n(x), from the noisy images. However, the challenge
lies in the unknown status of the parameter σ that describes the level of noise distribution,
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which subsequently hinders the network’s ability to establish a precise mapping from noisy
to clean images. Therefore, the results emanating from this initial noise level estimation
phase are imperative; they serve as the crucial distribution level parameter σ that feeds into
the non-blind denoising stage.

To address this complex issue, this study proposes a specialized sub-network solely
dedicated to the task of noise level estimation. This segment employs a fully connected
CNN, consisting of four layers, to make estimations regarding the noise level in the given
input image. Importantly, this section forgoes the use of pooling layers and does not engage
in batch normalization procedures, thus maintaining the complexity and feature richness
of the original data. Instead, it opts for convolutional layers with a kernel size of 3× 3 and
systematically conducts padding operations subsequent to each convolutional layer. This
is to ensure the conservation of the feature dimensions across different layers. Moreover,
recognizing the proven efficacy of attention mechanisms in the extraction of salient features
and the consequent enhancement of network performance, we added a dual attention
mechanism; the details are given in the subsequent sections.

4.3.1. Dual Attention Mechanism

Neural networks traditionally handle spatial and channel features indiscriminately,
which can inhibit their capability to recognize and prioritize essential features. Such an
indiscriminate approach could potentially curtail the potential depth and richness of the
networks’ representations. Given that not all features significantly influence the denoising
capacity of a network, it is paramount for such networks to allocate more computational fo-
cus to pivotal features. Integrating attention mechanisms has been identified as an effective
approach to address this concern. Originating from the domain of machine translation [56],
attention mechanisms have been seamlessly embedded into contemporary neural architec-
tures, thus finding widespread applications across natural language processing, statistical
learning, and computer vision disciplines. A helpful analogy is the human visual system:
our eyes tend to concentrate on significant segments of visual input, thus sidelining the
less pertinent regions.

To accentuate the importance of this, during the intricate processes of encoding and
decoding, emphasizing key features can substantially elevate the denoising efficacy of the
network. Recent breakthroughs, especially the infusion of attention mechanisms in primary
vision tasks [57], have provided the motivation for this study. We embarked on a holistic
approach that amalgamated channel attention (CA) [58] and spatial attention (SA) [59],
thereby resulting in a novel dual attention module. This integrated module is meticulously
designed to inhibit less critical information, thus paving the way for vital data to be
processed and transmitted with enhanced fidelity, as depicted in Figure 2. The governing
principle behind this is articulated as follows:

Dout = Din + Conv1([SA(F) ∗ CA(F)]) (3)

where the feature map represented as F ∈ RH×W×C is derived from the dual attention
module, post the dual convolution process on the input tensor Din ∈ RH×W×C. The term
Conv1 signifies a convolution layer characterized by a 1× 1 kernel size.

4.3.2. Channel Attention (CA)

The essence of CA can be conceptualized as dynamically weighting each channel.
A channel with a pronounced weight underscores its heightened relevance to pivotal
information. As feature maps scale in dimensionality, the spatial dimensions shrink,
yet the number of channels proliferates. This surge can challenge the neural network’s
proficiency in distinguishing salient channel information. Nevertheless, adopting the CA
mechanism can spotlight channels that are of paramount importance, thereby often yielding
commendable outcomes.

The CA branch of our module operates on the principle of squeezing and exciting
inter-channel correlations in convolutional feature mappings. The initial step involves
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spatially compressing features, which is succeeded by an excitation phase, which astutely
captures the intricacies of inter-channel dynamics [60]. Utilizing the global average pooling
(GAP) operation on the feature map F effectuates this compression, thus morphing the
H ×W × C feature dimensions into Fz ∈ R1×1×C. The simplicity of the global average
pooling operation ensures a universal receptive field, thereby allowing even the lower
echelons of the network to harness global insights. Subsequent to this, the excitation process
calibrates Fz via dual convolution layers, followed by a sigmoid activation function to yield
normalized weights in the 0 to 1 range, thus culminating in weights S ∈ R1×1×C. Conclu-
sively, these weights undergo multiplication with the original feature map F to recalibrate
the features in the channel dimension, thus producing the output of the CA branch.

4.3.3. Spatial Attention (SA)

In CNNs, each layer’s output typically conforms to the dimensions H×W×C, with C
signifying channels, and H and W representing the dimensionally reduced height and
width, respectively. SA addresses all channels in a two-dimensional spatial configuration,
thus engendering a weight matrix for a feature map of the dimensions H ×W. Each
pixel assimilates a distinct weight, thus symbolizing the prominence of its spatial location.
Appending this weight matrix to the prototypical feature map augments valuable features
and diminishes the less significant ones [61].

In line with this, the SA branch seeks to recalibrate the input feature map F based on its
spatial interrelationships, thus formulating a dedicated spatial attention map. To generate
this map, both the global average pooling and global maximum pooling (GMP) are applied
to the feature map F across its channel dimension. The resulting outputs are concatenated
to produce the feature map FP ∈ RH×W×2, which is then funneled through a convolution
layer and a sigmoid activation function. This generates the spatial attention map that
then recalibrates the original feature map F, thus leading to the final output of the spatial
attention branch.

4.4. Non-Blind Denoising Stage
4.4.1. Multi-Scale Denoising Module Architecture

Within the framework of the non-blind denoising stage, a nuanced multi-scale archi-
tecture is developed. This architecture is dichotomized into two distinct branches. The first
branch is characterized by two convolutional layers, with each employing a kernel size of
3× 3. Concurrently, the second branch also incorporates two convolutional layers with
identical kernel dimensions of 3× 3. However, what demarcates the second branch from
the first is the deliberate utilization of a dilated convolutional strategy.

Dilated convolution is instrumental in augmenting the receptive field by interpolating
gaps into the feature map. This approach has the potential to capture more comprehensive
and large-scale contextual information from the input data. In the context of our design,
both layers in the second branch exhibit a dilation rate of two and adhere to specific padding
strategies to ensure the size consistency of the resulting feature maps across layers.

Subsequent to this, the feature maps derived from these parallel branches are sub-
ject to fusion. This composite feature map is then combined with residual connections,
thus serving as the input for succeeding layers in the neural network architecture. This
architecture is ingenious in its ability to harness the extensive feature information gathered
through dilated convolution while simultaneously preserving the integrity of local features.
The amalgamation of these divergent types of feature information culminates in a feature
set that is robust and comprehensive.

The structural design of this multi-scale module is delineated in Figure 3. In this
schematic representation, layers rendered in lighter hues indicate the employment of
dilated convolution. The symbol “(⊕)” is employed to signify the element-wise addition
of corresponding channels in the feature map, thereby emphasizing the integration aspect
of this architectural design.
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4.4.2. Residual Structure

The role of preserving intricate details in images is paramount, particularly in problems
requiring restoration processes such as image denoising. Conventional approaches utilizing
batch normalization for dimensionality reduction within neural networks have been found
to compromise pixel-level information [62]. While normalization techniques have become
ubiquitous in a plethora of computer vision tasks, the indiscriminate application of these
methods does not necessarily yield favorable outcomes. Specifically, empirical evidence
suggests that batch normalization fails to contribute to performance enhancement in super-
resolution applications [63].

In addressing these limitations, our research deploys specialized residual blocks for
feature extraction, the architecture of which is depicted in Figure 5. Post-processing via
these residual blocks enables the propagation of feature maps to subsequent computa-
tional modules in the network. Contrary to conventional residual blocks, our modified
architecture deliberately omits the batch normalization layer. Instead, we introduced a
half-instance normalization (HIN) strategy. This innovative approach bifurcates the feature
maps along the channel dimension: the first sub-set of channels undergoes normalization
via the instance normalization (IN) technique, whereas the second sub-set is designed to
retain contextual information intrinsic to the image [64]. The residual structure can be seen
in Figure 4.

Figure 5. Comparison of visual results between previous methods and our proposed approach.
The images in the first three rows are sourced from the BSD68, while the images in the last three rows
are sourced from the Kodak24.

The duality of this configuration serves a dual purpose; it allows for the normalization
of essential features while preserving contextual cues that are vital for image restoration
tasks. This union of normalized and non-normalized features is achieved through channel-
wise concatenation. Furthermore, we employ leaky rectified linear units (Leaky ReLUs)
as the activation function within our residual blocks, thereby setting the negative slope
parameter to 0.2. The architecture culminates in the utilization of 3× 3 convolutional layers,
which are designed to compute the residual outputs essential for image reconstruction.
This novel approach not only safeguards the retention of critical image details, but also
paves the way for enhanced restoration capabilities.
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4.4.3. Loss Function Selection: A Case for L1 Loss

In the context of image denoising, `1 and `2 loss functions are ubiquitously utilized.
The `1 loss function computes the aggregate absolute deviations between the true and
predicted pixel values in an image. Conversely, the `2 loss function, which squares the
errors, tends to amplify any discrepancies between the true and predicted pixel values,
thus leading to a heightened penalty for larger errors. Given that the `2 function is prone to
produce artifacts such as blurring and loss of detailed features, we chose to employ the `1
loss function for model optimization. Let Ireal represent the real image and Ipred represent
the predicted or denoised image. Both Ireal and Ipred have the same dimensions: height H
and width W. The pixel values at location (i, j) in the images are given by Ireal(i, j) and
Ipred(i, j), respectively. The mathematical representation of our chosen loss function is the
following:

L1(Ireal , Ipred) =
1

H ×W

H

∑
i=1

W

∑
j=1
|Ireal(i, j)− Ipred(i, j)| (4)

In conclusion, the architecture and loss function employed in our model have been meticu-
lously chosen to optimize performance, especially under challenging conditions.

5. Experimental Results
5.1. Implementation Details

Model Training: Our neural network underwent a rigorous training process, which
was characterized by the following:

• Training Duration: The model was trained extensively over a span of 4000 epochs.
This duration was determined based on the convergence behavior observed during
preliminary runs.

• Learning Rate Adaptation: An initial learning rate of (10−4) was set for the first
1500 epochs. Post this, to ensure finer weight updates and to stabilize convergence,
the learning rate was decayed by a factor of one-tenth every subsequent 1000 epochs.

Computational Details: The training and other computational tasks were orchestrated
using the following setup:

• Hardware: We relied on the robust NVIDIA GTX 2080ti GPU, which ensured efficient
parallel processing and reduced training times.

• Software Framework: All neural network components, including layers, optimizers,
and loss functions, were implemented using the PyTorch framework, which provided
flexibility and ease of experimentation.

5.2. Qualitative and Quantitative Assessment

To assess the denoising performance of traditional techniques in comparison with deep
neural network-based methods, we executed both quantitative and qualitative evaluations
on a wide range of datasets. Our quantitative assessment employed pivotal metrics like the
PSNR and SSIM, thereby offering a numerical evaluation of the denoised image quality.
Concurrently, our qualitative evaluation utilized visual representations to demonstrate the
restored images, thereby providing an intuitive sense of their visual quality and accuracy.
This holistic assessment method ensured a thorough insight into the denoising capabilities
of different techniques over various datasets, thus marking a significant contribution to
image processing research.

5.2.1. Denoising Color Images

In this subsection, we performed experiments to evaluate the efficacy of our proposed
model, thus contrasting it with existing models. We initially tested our model’s proficiency
on color images utilizing two datasets: the BSD68 and Kodak24. To maintain an equitable
comparison, our evaluation encompassed six blind denoising techniques: the AVMF [65],
DeGAN [66], SFAA [67], NNF [68], FCNN [69], and DIBS [70].
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Furthermore, we pitted it against three non-blind denoising methods: the BM3D [71],
TWSC [72], and FFDNet [54]. Visual comparisons, as depicted in Figure 5, elucidate
our findings. Notably, when tested on the SIDD dataset, the FFDNet, TWSC, BM3D,
and DeGAN fell short of effectively counteracting real noise. Conversely, while the DIBS
and FCNN demonstrated noise mitigation capabilities, they tended to compromise on
image texture nuances and edge details. In juxtaposition, our method showcased superior
visual results, thus marking it as a notable advancement.

In a second phase of our experiment, we further evaluated the performance of the
proposed model by applying it to color images from the SIDD dataset. Figure 6 provides
insightful visual comparisons, thus highlighting the challenges faced by several established
denoising methods when tackling the SIDD dataset, such as the FFDNet, TWSC, BM3D,
and DeGAN, which struggled to effectively eliminate genuine noise. It is worth noting
that while the DIBS and FCNN were successful in noise reduction, they tended to sacrifice
essential image texture details and edge information. In contrast, our approach consis-
tently demonstrated superior visual results, thus making it a promising solution for noise
reduction in diverse images.

Figure 6. Denoising results of prior and proposed approaches on SIDD dataset.

As a third step in our evaluation, we extended our assessment of the proposed model’s
performance to color images obtained from the DND dataset. In Figure 7, the results
clearly illustrate that our method exceled in maintaining image details without introducing
unwanted artifacts. In contrast, the other methods tended to sacrifice the integrity of the
edge structures and finer texture details, thus highlighting the effectiveness of our approach
for preserving image quality and detail in images.
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Figure 7. Denoising results of prior and proposed approaches on the DND dataset.

As a continuation of our evaluation, we extended our analysis to encompass color
images sourced from the RNI15 dataset. Figure 8 presents compelling evidence of our
method’s superior performance. It not only exceled in noise reduction, but also effectively
mitigated artifacts, preserved essential edge information, and produced images that are
not only clearer, but also more visually appealing. In addition, the other prior models such
as the S2S-LSD [73], FCNN [69], DnCNN [42], and NNF [68] also obtained quality results.
However, the proposed model’s findings underscore the versatile benefits of our proposed
methodology in enhancing image quality and minimizing undesirable elements in diverse
datasets, thereby establishing its credibility as a valuable tool for image enhancement
and restoration.
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Figure 8. Denoising outcomes of previous and proposed approaches on the RNI15 dataset.

Upon quantitative evaluation of the proposed model across three distinct datasets,
insightful patterns in denoising performance emerge. Table 1 showcases the PSNR values
of the various methodologies for different noise levels. For the CBSD68 dataset, our method
consistently outperformed all other techniques across the tested noise levels, thereby
achieving a PSNR of 34.89, 31.79, and 28.89 for noise levels of 15, 25, and 50, respectively.
This superiority was mirrored in the Kodak24 and McMaster datasets. Particularly in the
Kodak24 dataset, our model surpassed the other approaches, with a notable difference at a
noise level of 50, where our method attained a PSNR of 29.86. Similarly, in the McMaster
dataset, our approach continued its dominance by achieving the highest PSNR values
for all the noise levels: 35.88, 33.23, and 30.01, respectively. These findings underline the
effectiveness of our proposed technique in comparison to other state-of-the-art methods,
such as the BM3D, DnCNN, DIBS, FFDNet, S2S-LSD, and NNF.

In addition, we employed a paired t test to compare the PSNR values of our method
with those of other methods at each noise level. A paired t test is a statistical test commonly
used to compare the means of two paired samples. It is particularly suitable when the
paired samples are not independent, such as when different methods are applied to denoise
the same set of images. We selected the paired t test for this analysis due to its robustness
and insensitivity to violations of the assumption of normality. The results of the paired
t tests are presented in Table 1. The calculated p values on the CBSD68 dataset demonstrate
that our approach significantly outperformed the BM3D, DnCNN, DIBS, S2S-LSD, and NNF
methods in terms of performance. However, there was no significant difference in perfor-
mance between our method and the FFDNet method. Furthermore, our method exhibited
a significant improvement over the BM3D method on the Kodak24 dataset. However, there
was no significant difference in performance between our method and the DnCNN, DIBS,
FFDNet, S2S-LSD, and NNF methods. Finally, when analyzing the McMaster dataset, our
method performed similarly to the BM3D and DIBS methods. However, the comparison
between our method and the DnCNN, FFDNet, S2S-LSD, and NNF methods did not yield
conclusive results.
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Table 1. Quantitative evaluation of various methods based on PSNR across three datasets.

Datasets Noise level BM3D [71] DnCNN [42] DIBS [70] FFDNet [54] S2S-LSD [73] NNF [68] Ours

CBSD68 15 33.42 33.81 33.79 33.91 34.11 33.88 34.89
25 30.71 31.11 31.17 31.19 31.39 31.29 31.79
50 27.41 27.89 27.79 27.96 28.09 28.04 28.89
p value 0.009475 0.01719 0.027771 0.019703 0.036744 0.034747

Kodak24 15 34.32 34.6 34.69 34.63 34.88 34.76 35.31
25 32.18 32.09 32.19 22.11 32.51 32.28 32.89
50 28.51 28.89 28.91 29.01 29.31 29.45 29.86
p value 0.031629 0.008397 0.016818 0.344042 0.012156 0.012579

McMaster 15 34.06 33.39 34.58 34.77 35.28 35.22 35.88
25 32.66 31.52 32.21 32.45 32.85 32.66 33.23
50 28.62 28.72 28.82 29.28 29.62 29.42 30.01
p value 0.075244 0.034982 0.004811 0.018127 0.023792 0.023792

5.2.2. Denoising Grayscale Images

In the domain of grayscale image processing, particularly during the denoising phase,
we embarked on a rigorous evaluation of the proposed model using images from three
renowned datasets: Set12, Set14, and BSD68. The visual outcomes of these models, pre-
sented in Figure 9, have been derived after training them with a plethora of noisy images
at noise intensities of 25 and 50. Our analytical lens is further broadened by juxtaposing
our method against established approaches like the S2S-LSD [73] and DnCNN [42]. Dis-
tinctive trends can be observed: the S2S-LSD [73] often led to overly smoothed outputs,
thus sacrificing edge clarity and texture details, whereas the DnCNN [42] was prone to
generating darker, more blurred denoised images. Contrarily, our proposed technique
stood out by proficiently preserving sharp contours and rich details while simultaneously
ensuring aesthetic coherence in smoother areas of the images.

Furthermore, we collected various traditional and learning-based approaches to val-
idate their performance outcomes against the proposed model. Figure 10 displays the
average PSNR results of the different methods on the Set5, Set12, and NC12 datasets
with noise levels of 15, 25, and 50. When σ = 15, the BM3D [71], EPLL [74], TNRD [75],
and DnCNN [42] attained lower PSNR scores compared to the ADNet [76], FOCNet [77],
GCDN [19], NNF [68], and S2S-LSD [73]. However, our method attained a score of 33.25,
which was the highest among the evaluated methods. It was closely followed by the
S2S-LSD [73] with a score of 33.16 and the GCDN [19] at 33.14. For σ = 25, our method
remained in the lead, scoring 30.94, whereas the S2S-LSD [73] and GCDN [19] were close
competitors with scores of 30.81 and 30.78, respectively. At σ = 50, our approach continued
to hold the leading position with a score of 27.82, while the FOCNet [77] scored 27.68 and
the S2S-LSD [73] scored 27.64. The consistent superiority of our method implies enhanced
generalization ability across various noise levels, as indicated by the different sigma values,
in contrast to the other examined techniques.
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Figure 9. Visual outcomes of grayscale images.

(a) Denoising results with noise level σ = 15

(b) Denoising results with noise level σ = 25 (c) Denoising results with noise level σ = 30

Figure 10. Quantitative assessment of proposed and prior approaches.

Deep learning techniques for denoising images with mixed types of noise present
a substantial challenge in real-world scenarios. This is because images with damage
often have a variety of noise, thereby complicating the restoration of the original, clean
image. To combat this issue, the idea of multi-degradation leveraging deep learning
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technology is introduced. This article presents the performance of such a multi-degradation
model for image denoising. In Table 2, we provide a comparative assessment of various
denoising methods based on the PSNR and SSIM metrics, with a particular focus on the
Bicubic downsampling degradation [78]. The results, taken from four datasets, i.e., Set5,
Set14, BSD100, and Urban100, illustrate that our method exhibited competitive or superior
performance across different scales when compared to other state-of-the-art techniques.

We conducted a statistical analysis using paired t tests to compare our method with
previous approaches. In order to determine the superior method, we examined the p values
of each method in relation to a pre-determined significance level, typically set at 0.05.
If the p value is less than 0.05, we reject the null hypothesis and conclude that there is a
statistically significant difference in performance between our method and the method
being compared. Conversely, if the p value is greater than 0.05, we fail to reject the null
hypothesis and conclude that there is insufficient evidence to suggest a significant difference
in performance. Based on the SSIM values and the measured p values obtained from the
Set5 dataset, we are unable to conclude that our method is significantly superior or inferior
to the NNF, FCNN, DnCNN, and S2S-LSD methods. The p values indicate that there
is no significant difference in performance between our method and the other methods.
However, when considering the provided p values from the Set14 dataset, our method
performed significantly better than the NNF method. Nevertheless, there was no significant
difference in performance between our method and the FCNN, DnCNN, and S2S-LSD
methods. Similarly, when examining the p values from the Urban100 dataset, our method
outperformed the NNF method significantly. However, there was no significant difference
in performance between our method and the FCNN, DnCNN, and S2S-LSD methods.
Finally, with regard to the BSD100 dataset, our method performed significantly better than
the NNF and FCNN methods. However, there was no significant difference in performance
between our method and the DnCNN and S2S-LSD methods.

When considering the PSNR values and the measured p values, our method demon-
strated a significant improvement in performance compared to the NNF, FCNN, and DnCNN
on the Set5 dataset. However, there was no significant difference in performance between
our method and the S2S-LSD. Similarly, on the Set14 dataset, our method outperformed
the NNF, FCNN, and DnCNN significantly, but there was no significant difference in
performance between our method and the S2S-LSD. On the Urban100 dataset, we cannot
definitively determine whether our method is significantly better or worse than the NNF,
FCNN, and S2S-LSD. However, our method did exhibit a statistically significant differ-
ence in performance compared to the DnCNN. Lastly, on the BSD100 dataset, our method
demonstrated a significant improvement over the NNF and FCNN. However, there was no
significant difference in performance between our method and the DnCNN or S2S-LSD.

In addition, Figure 11 showcases the PSNR and SSIM metrics for the various denoising
methods applied to the CC15, CC60, and Nam datasets. It is noteworthy that the TWSC
and BM3D often held their own against deep neural network-based methods like the
CycleISP [79], DnCNN [42], FFDNet [54], NNF [68], DANet [80], and S2S-LSD [73] across
these datasets. The performance of learning-based techniques is not always superior to
that of their traditional counterparts, which may be due to constraints in the training data.
The complexity of real-world noise means it does not always follow expected patterns. This
unpredictability has spurred the development of blind denoising techniques, especially
those rooted in deep learning. Evaluating the efficacy of previous methods, including
the DnCNN [42], FFDNet [54], NNF [68], and DANet [80], yielded commendable results.
Yet, in contrast to these learning-based techniques, our approach demonstrated superior
denoising performance.
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Table 2. Quantitative comparison of various denoising methods using PSNR and SSIM metrics across Set5, Set14, BSD100, and Urban100 datasets under different
scale factors.

Datasets Scale Factor NNF [68] FCNN [69] DnCNN [42] S2S-LSD [73] Ours

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Set5 2 0.929 33.64 0.953 36.62 0.959 37.58 0.959 37.66 0.969 37.79

3 0.868 30.39 0.908 32.74 0.922 33.75 0.923 33.93 0.925 32.45
4 0.81 28.42 0.863 30.48 0.885 31.4 0.886 31.58 0.893 31.96

p value 0.040788 0.034573 0.043145291 0.286164818 0.078202309 0.786163382 0.113155947 0.634808932

Set14 2 0.868 30.22 0.906 32.42 0.913 33.03 0.913 33.19 0.915 33.32
3 0.774 27.53 0.821 29.27 0.832 29.81 0.834 29.94 0.837 30.04
4 0.702 25.99 0.751 27.48 0.767 28.04 0.77 28.18 0.777 28.35

p value 0.016861 0.00715 0.074865608 0.002147566 0.135841435 0.007463862 0.12011731 0.022352567

Urban 100 2 0.841 26.66 0.897 29.53 0.914 30.74 0.916 31.02 0.92 31.33
3 0.737 24.46 0.801 26.25 0.828 27.15 0.833 27.38 0.84 27.57
4 0.657 23.14 0.722 24.52 0.752 25.2 0.758 25.35 0.773 25.68

p value 0.011694 0.032585 0.043368568 0.017686966 0.096437539 0.009895742 0.118517445 0.02406957

BSD100 2 0.844 29.55 0.887 31.34 0.775 31.9 0.897 32.01 0.898 32.05
3 0.738 27.2 0.786 28.4 0.798 28.85 0.799 28.91 0.803 28.97
4 0.667 25.96 0.71 26.9 0.725 27.2 0.726 27.35 0.734 27.49

p value 0.004222 0.022013 0.043897929 0.004882648 0.359176086 0.070531418 0.166049611 0.12011731
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(a) PSNR values on CC15 (b) PSNR values on CC60

(c) PSNR values on Nam (d) SSIM values on CC15

(e) SSIM values on CC60 (f) SSIM values on Nam

Figure 11. Comparative performance outcomes of PSNR and SSIM metrics for traditional and
learning-based methods on the CC15, CC60, and Nam datasets.

5.3. Computational Complexity

We selected certain deep learning algorithms for a comparative study with our pro-
posed algorithm. For the network configuration, we used an input image of size 256× 256
with three channels. Table 3 details the parameter count and computational complexity
for the entire network. Regarding execution time, we utilized a consistent environment to
denoise images of the same size. Our experiments show that, when benchmarked against
the DnCNN [42], ADNet [76], and NNF [68], our algorithm took less time. The increase in
running time can be attributed to the prior algorithm’s deeper network structure, which
inherently adds to its parameters and computational intricacy. Nonetheless, our method
demonstrates superior denoising capabilities compared to the alternatives.
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Table 3. Comparative analysis of parameters and execution times across various denoising algorithms.

Method Running Time/s
(Per Image)

Time to Train
the Model FLOPs (109) Parameter (106)

DnCNN [42] 0.98 - 1.46 0.55
ADNet [76] 0.86 - 1.36 0.52
NNF [68] 0.7 - 1.27 0.48
Ours 0.21 15 h 1.11 0.91

6. Discussion

Implications of the Results: Our newly developed deep learning network, designed
specifically for denoising real-world images, brings a new approach to image restoration.
The method divides the process into two stages: initially estimating the noise level and
subsequently focusing on targeted denoising. This systematic approach is crucial for
handling image denoising, especially when aware of the noise distribution, which is
a common issue in computer vision and image processing.

Strengths and Limitations: Our approach stands out due to the dual attention mech-
anism and the multi-scale structure, both of which are key in recognizing various image
features across different scales. The method of using dilation convolution to expand the
receptive field without adding extra parameters deserves mention. However, while our
model introduces several innovations, it does not surpass some of the highly advanced
models in the field. These advanced models can identify a wider range of image features
that our model may overlook.

Potential Applications: Our denoising model is versatile and can be applied to several
computer vision applications, such as image segmentation, object detection, and facial
recognition, wherein image clarity is crucial. Additionally, in areas like image compression
and enhancement, the effectiveness of our denoising technique proves valuable.

Future Directions: Even though our model demonstrates promising results, there is
room for improvement in future iterations. The aim would be to enhance the model to
ensure it captures vital image data while keeping the architecture simple and adaptable.
Exploring ways to merge our model’s strengths with the extensive feature recognition of
advanced networks holds promise for future research.

Concluding Remarks

This research introduces a novel deep learning network tailored for denoising real-
world images. Our approach adopts a two-stage process for image restoration. In the
initial stage, we determine the noise level using a neural network comprised of four layers.
To bolster feature extraction and elevate the network’s efficacy, we incorporate a dual
attention mechanism module preceding the ultimate convolutional layer. This module
dynamically allocates weights across various feature channels. The subsequent stage
zeroes in on non-blind denoising, thus leveraging both the deduced noise level and the
image. This addresses the unique challenge of denoising when the noise distribution is
known. We also introduce a multi-scale framework, thus fusing image features across twin
branches. One branch employs dilation convolution, thereby augmenting the receptive
field without introducing additional parameters, whereas the other adopts a conventional
convolutional layer. This strategy ensures the capture of diverse image traits across multiple
receptive fields. To mitigate information loss with increasing network depth, strategic skip
connections are embedded within the multi-scale framework. Through rigorous testing
on four benchmark training sets, 12 test datasets, and by juxtaposing our model with
over 20 established counterparts using PSNR and SSIM metrics, our technique sets a new
performance standard.

Although our two-stage blind denoising network is effectively and thoughtfully
crafted for image denoising, some intricate, sophisticated, learning-based models [81–83]
trained on complex noisy images might outperform simpler learning-based models. These
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advanced networks have high computational costs and are adept at recognizing a wider
range of image features. As a result, a crucial area for future research is to refine our
network’s architecture, thus balancing the retention of essential image information while
maintaining a design that is both simple and adaptive.

Author Contributions: Conceptualization, methodology, software, formal analysis, validation,
and data processing, Z.R.; writing—original draft preparation, Z.R. and M.A.; investigation, resources,
supervision, and project administration, Z.H. and Y.G.; writing—review and editing, visualization,
M.A. and J.A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This project is supported by the Huanggang Normal University: Project Number (2042022007).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The readers can view the details of the datasets in [13]. The source
code for the denoising models is available at https://github.com/CodingBro2008/DenoisingModel
(accessed on 12 November 2023).

Acknowledgments: The authors wish to thank the leaders of the Huanggang Normal University for
providing the scientific research facility in the department of computer science.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Elad, M.; Kawar, B.; Vaksman, G. Image denoising: The deep learning revolution and beyond—A survey paper. SIAM J. Imaging

Sci. 2023, 16, 1594–1654. [CrossRef]
2. Zhou, L.; Zhou, D.; Yang, H.; Yang, S. Multi-scale network toward real-world image denoising. Int. J. Mach. Learn. Cybern. 2023,

14, 1205–1216. [CrossRef]
3. Xu, S.; Chen, X.; Tang, Y.; Jiang, S.; Cheng, X.; Xiao, N. Learning from multiple instances: A two-stage unsupervised image

denoising framework based on deep image prior. Appl. Sci. 2022, 12, 10767. [CrossRef]
4. Budhiraja, S.; Goyal, B.; Dogra, A.; Agrawal, S. An efficient image denoising scheme for higher noise levels using spatial domain

filters. Biomed. Pharmacol. J. 2018, 11, 625–634.
5. Li, Z.; Liu, H.; Cheng, L.; Jia, X. Image denoising algorithm based on gradient domain guided filtering and NSST. IEEE Access

2023, 11, 11923–11933. [CrossRef]
6. Abuturab, M.R.; Alfalou, A. Multiple color image fusion, compression, and encryption using compressive sensing, chaotic-

biometric keys, and optical fractional Fourier transform. Opt. Laser Technol. 2022, 151, 108071. [CrossRef]
7. Xu, H.; Jia, X.; Cheng, L.; Huang, H. Affine non-local Bayesian image denoising algorithm. Vis. Comput. 2023, 39, 99–118.

[CrossRef]
8. Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE

Trans. Image Process. 2007, 16, 2080–2095. [CrossRef]
9. Chen, F.; Huang, M.; Ma, Z.; Li, Y.; Huang, Q. An iterative weighted-mean filter for removal of high-density salt-and-pepper

noise. Symmetry 2020, 12, 1990. [CrossRef]
10. Lai, R.; Mo, Y.; Liu, Z.; Guan, J. Local and nonlocal steering kernel weighted total variation model for image denoising. Symmetry

2019, 11, 329. [CrossRef]
11. Li, M.; Cai, G.; Bi, S.; Zhang, X. Improved TV Image Denoising over Inverse Gradient. Symmetry 2023, 15, 678. [CrossRef]
12. Ou, Y.; Swamy, M.; Luo, J.; Li, B. Single image denoising via multi-scale weighted group sparse coding. Signal Process. 2022,

200, 108650. [CrossRef]
13. Izadi, S.; Sutton, D.; Hamarneh, G. Image denoising in the deep learning era. Artif. Intell. Rev. 2023, 56, 5929–5974. [CrossRef]
14. Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; Whiteson, S. Counterfactual multi-agent policy gradients. Proc. AAAI Conf.

Artif. Intell. 2018, 32. [CrossRef]
15. Varga, B.; Kulcsár, B.; Chehreghani, M.H. Deep Q-learning: A robust control approach. Int. J. Robust Nonlinear Control. 2023,

33, 526–544. [CrossRef]
16. Kim, Y.; Soh, J.W.; Park, G.Y.; Cho, N.I. Transfer learning from synthetic to real-noise denoising with adaptive instance normaliza-

tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19
June 2020; pp. 3482–3492.

17. Zhang, H.; Li, Y.; Chen, H.; Gong, C.; Bai, Z.; Shen, C. Memory-efficient hierarchical neural architecture search for image
restoration. Int. J. Comput. Vis. 2022, 130, 157–178. [CrossRef]

18. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE
2020, 109, 43–76. [CrossRef]

https://github.com/CodingBro2008/DenoisingModel
http://doi.org/10.1137/23M1545859
http://dx.doi.org/10.1007/s13042-022-01694-5
http://dx.doi.org/10.3390/app122110767
http://dx.doi.org/10.1109/ACCESS.2023.3242050
http://dx.doi.org/10.1016/j.optlastec.2022.108071
http://dx.doi.org/10.1007/s00371-021-02316-x
http://dx.doi.org/10.1109/TIP.2007.901238
http://dx.doi.org/10.3390/sym12121990
http://dx.doi.org/10.3390/sym11030329
http://dx.doi.org/10.3390/sym15030678
http://dx.doi.org/10.1016/j.sigpro.2022.108650
http://dx.doi.org/10.1007/s10462-022-10305-2
http://dx.doi.org/10.1609/aaai.v32i1.11794
http://dx.doi.org/10.1002/rnc.6457
http://dx.doi.org/10.1007/s11263-021-01537-w
http://dx.doi.org/10.1109/JPROC.2020.3004555


Symmetry 2023, 15, 2073 25 of 27

19. Valsesia, D.; Fracastoro, G.; Magli, E. Deep graph-convolutional image denoising. IEEE Trans. Image Process. 2020, 29, 8226–8237.
[CrossRef]

20. Kim, D.W.; Ryun Chung, J.; Jung, S.W. Grdn: Grouped residual dense network for real image denoising and gan-based real-world
noise modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
Long Beach, CA, USA, 15–20 June 2019.

21. Yu, K.; Wang, X.; Dong, C.; Tang, X.; Loy, C.C. Path-restore: Learning network path selection for image restoration. IEEE Trans.
Pattern Anal. Mach. Intell. 2021, 44, 7078–7092. [CrossRef]

22. Chen, X.; Shen, J. Monte Carlo Noise Reduction Algorithm Based on Deep Neural Network in Efficient Indoor Scene Rendering
System. Adv. Multimed. 2022, 2022, 9169772. [CrossRef]

23. Halidou, A.; Mohamadou, Y.; Ari, A.A.A.; Zacko, E.J.G. Review of wavelet denoising algorithms. Multimed. Tools Appl. 2023, 82,
41539–41569. [CrossRef]

24. Wang, M.; Wang, S.; Ju, X.; Wang, Y. Image Denoising Method Relying on Iterative Adaptive Weight-Mean Filtering. Symmetry
2023, 15, 1181. [CrossRef]

25. Teng, L.; Li, H.; Yin, S. Modified pyramid dual tree direction filter-based image denoising via curvature scale and nonlocal mean
multigrade remnant filter. Int. J. Commun. Syst. 2018, 31, e3486. [CrossRef]

26. Wang, Y.; Pang, Z.F. Image denoising based on a new anisotropic mean curvature model. Inverse Probl. Imaging 2023, 17, 870–889.
[CrossRef]

27. Abazari, R.; Lakestani, M. A hybrid denoising algorithm based on shearlet transform method and Yaroslavsky’s filter. Multimed.
Tools Appl. 2018, 77, 17829–17851. [CrossRef]

28. Goyal, B.; Dogra, A.; Sangaiah, A.K. An effective nonlocal means image denoising framework based on non-subsampled shearlet
transform. Soft Comput. 2022, 26, 7893–7915. [CrossRef]

29. Liu, C.; Zhang, L. A Novel Denoising Algorithm Based on Wavelet and Non-Local Moment Mean Filtering. Electronics 2023,
12, 1461. [CrossRef]

30. You, N.; Han, L.; Zhu, D.; Song, W. Research on image denoising in edge detection based on wavelet transform. Appl. Sci. 2023,
13, 1837. [CrossRef]

31. Al-Shamasneh, A.R.; Ibrahim, R.W. Image Denoising Based on Quantum Calculus of Local Fractional Entropy. Symmetry 2023,
15, 396. [CrossRef]

32. Kumar, A.; Ahmad, M.O.; Swamy, M. An efficient denoising framework using weighted overlapping group sparsity. Inf. Sci.
2018, 454, 292–311. [CrossRef]

33. Jia, H.; Yin, Q.; Lu, M. Blind-noise image denoising with block-matching domain transformation filtering and improved guided
filtering. Sci. Rep. 2022, 12, 16195. [CrossRef] [PubMed]

34. Mahdaoui, A.E.; Ouahabi, A.; Moulay, M.S. Image denoising using a compressive sensing approach based on regularization
constraints. Sensors 2022, 22, 2199. [CrossRef]

35. Liu, S.; Hu, Q.; Li, P.; Zhao, J.; Wang, C.; Zhu, Z. Speckle suppression based on sparse representation with non-local priors.
Remote. Sens. 2018, 10, 439. [CrossRef]

36. Bhargava, G.U.; Sivakumar, V.G. An Effective Method for Image Denoising Using Non-local Means and Statistics based Guided
Filter in Nonsubsampled Contourlet Domain. Int. J. Intell. Eng. Syst. 2019, 12. [CrossRef]

37. Qi, G.; Hu, G.; Mazur, N.; Liang, H.; Haner, M. A novel multi-modality image simultaneous denoising and fusion method based
on sparse representation. Computers 2021, 10, 129. [CrossRef]

38. Xie, Z.; Liu, L.; Luo, Z.; Huang, J. Image denoising using nonlocal regularized deep image prior. Symmetry 2021, 13, 2114.
[CrossRef]

39. Fan, L.; Li, H.; Shi, M.; Hua, Z.; Zhang, C. Two-stage image denoising via an enhanced low-rank prior. J. Sci. Comput. 2022, 90, 57.
[CrossRef]

40. Lü, J.; Luo, X.; Qi, S.; Peng, Z. Image denoising using weighted nuclear norm minimization with preserving local structure. Laser
Optoelectron. Prog. 2019, 56, 161006.

41. Buades, A.; Coll, B.; Morel, J.M. Non-local means denoising. Image Process. Line 2011, 1, 208–212. [CrossRef]
42. Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising.

IEEE Trans. Image Process. 2017, 26, 3142–3155. [CrossRef]
43. Wang, J.; Lu, Y.; Lu, G. Lightweight image denoising network with four-channel interaction transform. Image Vis. Comput. 2023,

137, 104766. [CrossRef]
44. Yan, H.; Chen, X.; Tan, V.Y.; Yang, W.; Wu, J.; Feng, J. Unsupervised image noise modeling with self-consistent GAN. arXiv 2019,

arXiv:1906.05762.
45. Zhao, D.; Ma, L.; Li, S.; Yu, D. End-to-end denoising of dark burst images using recurrent fully convolutional networks. arXiv

2019, arXiv:1904.07483.
46. Yang, J.; Liu, X.; Song, X.; Li, K. Estimation of signal-dependent noise level function using multi-column convolutional neural

network. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September
2017; pp. 2418–2422.

47. Yu, S.; Park, B.; Jeong, J. Deep iterative down-up cnn for image denoising. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, CA, USA, 15–20 June 2019.

http://dx.doi.org/10.1109/TIP.2020.3013166
http://dx.doi.org/10.1109/TPAMI.2021.3096255
http://dx.doi.org/10.1155/2022/9169772
http://dx.doi.org/10.1007/s11042-023-15127-0
http://dx.doi.org/10.3390/sym15061181
http://dx.doi.org/10.1002/dac.3486
http://dx.doi.org/10.3934/ipi.2023007
http://dx.doi.org/10.1007/s11042-018-5648-7
http://dx.doi.org/10.1007/s00500-022-06845-y
http://dx.doi.org/10.3390/electronics12061461
http://dx.doi.org/10.3390/app13031837
http://dx.doi.org/10.3390/sym15020396
http://dx.doi.org/10.1016/j.ins.2018.05.001
http://dx.doi.org/10.1038/s41598-022-20578-w
http://www.ncbi.nlm.nih.gov/pubmed/36171466
http://dx.doi.org/10.3390/s22062199
http://dx.doi.org/10.3390/rs10030439
http://dx.doi.org/10.22266/ijies2019.0630.09
http://dx.doi.org/10.3390/computers10100129
http://dx.doi.org/10.3390/sym13112114
http://dx.doi.org/10.1007/s10915-021-01728-0
http://dx.doi.org/10.5201/ipol.2011.bcm_nlm
http://dx.doi.org/10.1109/TIP.2017.2662206
http://dx.doi.org/10.1016/j.imavis.2023.104766


Symmetry 2023, 15, 2073 26 of 27

48. Chen, J.; Chen, J.; Chao, H.; Yang, M. Image blind denoising with generative adversarial network based noise modeling. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 3155–3164.

49. Bian, S.; He, X.; Xu, Z.; Zhang, L. Hybrid Dilated Convolution with Attention Mechanisms for Image Denoising. Electronics 2023,
12, 3770. [CrossRef]

50. Zhang, K.; Zuo, W.; Zhang, L. Learning a single convolutional super-resolution network for multiple degradations. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 3262–3271.

51. Shah, V.H.; Dash, P.P. Two stage self-adaptive cognitive neural network for mixed noise removal from medical images. Multimed.
Tools Appl. 2023, 1–23. [CrossRef]

52. Obeso, A.M.; Benois-Pineau, J.; Vázquez, M.S.G.; Acosta, A.Á.R. Visual vs internal attention mechanisms in deep neural networks
for image classification and object detection. Pattern Recognit. 2022, 123, 108411. [CrossRef]

53. Anwar, S.; Barnes, N. Real image denoising with feature attention. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3155–3164.

54. Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image
Process. 2018, 27, 4608–4622. [CrossRef]

55. Tabassum, S.; Gowre, S.C. Optimal image Denoising using patch-based convolutional neural network architecture. Multimed.
Tools Appl. 2023, 82, 29805–29821. [CrossRef]

56. Mei, Y.; Fan, Y.; Zhou, Y. Image super-resolution with non-local sparse attention. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 3517–3526.

57. Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H.; Shao, L. Multi-stage progressive image restoration. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June
2021; pp. 14821–14831.

58. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

59. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

60. Wang, Y.; Song, X.; Chen, K. Channel and space attention neural network for image denoising. IEEE Signal Process. Lett. 2021, 28,
424–428 [CrossRef]

61. Zhang, Y.; Li, K.; Li, K.; Sun, G.; Kong, Y.; Fu, Y. Accurate and fast image denoising via attention guided scaling. IEEE Trans.
Image Process. 2021, 30, 6255–6265. [CrossRef]

62. Liu, Y.; Qin, Z.; Anwar, S.; Ji, P.; Kim, D.; Caldwell, S.; Gedeon, T. Invertible denoising network: A light solution for real noise
removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA,
20–25 June 2021; pp. 13365–13374.

63. Li, J.; Fang, F.; Mei, K.; Zhang, G. Multi-scale residual network for image super-resolution. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 517–532.

64. Chen, L.; Lu, X.; Zhang, J.; Chu, X.; Chen, C. Hinet: Half instance normalization network for image restoration. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021;
pp. 182–192.

65. Roy, A.; Singha, J.; Manam, L.; Laskar, R.H. Combination of adaptive vector median filter and weighted mean filter for removal
of high-density impulse noise from colour images. IET Image Process. 2017, 11, 352–361. [CrossRef]

66. Lyu, Q.; Guo, M.; Pei, Z. DeGAN: Mixed noise removal via generative adversarial networks. Appl. Soft Comput. 2020, 95, 106478.
[CrossRef]

67. Malinski, L.; Smolka, B. Self-tuning fast adaptive algorithm for impulsive noise suppression in color images. J. Real-Time Image
Process. 2020, 17, 1067–1087. [CrossRef]

68. Lone, M.R.; Khan, E. A good neighbor is a great blessing: Nearest neighbor filtering method to remove impulse noise. J. King
Saud-Univ.-Comput. Inf. Sci. 2022, 34, 9942–9952. [CrossRef]

69. Lu, X.; Li, F. Fine-tuning convolutional neural network based on relaxed Bayesian-optimized support vector machine for
random-valued impulse noise removal. J. Electron. Imaging 2023, 32, 013006. [CrossRef]

70. Satti, P.; Shrotriya, V.; Garg, B.; Surya Prasath, V. DIBS: Distance-and intensity-based separation filter for high-density impulse
noise removal. Signal Image Video Process. 2023, 17, 4181–4188. [CrossRef]

71. Ri, G.I.; Kim, S.J.; Kim, M.S. Improved BM3D method with modified block-matching and multi-scaled images. Multimed. Tools
Appl. 2022, 81, 12661–12679. [CrossRef]

72. Xu, J.; Zhang, L.; Zhang, D. A trilateral weighted sparse coding scheme for real-world image denoising. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 20–36.

73. Quan, Y.; Chen, M.; Pang, T.; Ji, H. Self2self with dropout: Learning self-supervised denoising from single image. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June
2020; pp. 1890–1898.

http://dx.doi.org/10.3390/electronics12183770
http://dx.doi.org/10.1007/s11042-023-15423-9
http://dx.doi.org/10.1016/j.patcog.2021.108411
http://dx.doi.org/10.1109/TIP.2018.2839891
http://dx.doi.org/10.1007/s11042-023-15014-8
http://dx.doi.org/10.1109/LSP.2021.3057544
http://dx.doi.org/10.1109/TIP.2021.3093396
http://dx.doi.org/10.1049/iet-ipr.2016.0320
http://dx.doi.org/10.1016/j.asoc.2020.106478
http://dx.doi.org/10.1007/s11554-019-00853-2
http://dx.doi.org/10.1016/j.jksuci.2021.12.020
http://dx.doi.org/10.1117/1.JEI.32.1.013006
http://dx.doi.org/10.1007/s11760-023-02650-8
http://dx.doi.org/10.1007/s11042-022-12270-y


Symmetry 2023, 15, 2073 27 of 27

74. Zoran, D.; Weiss, Y. From learning models of natural image patches to whole image restoration. In Proceedings of the 2011
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 479–486.

75. Chen, Y.; Pock, T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE
Trans. Pattern Anal. Mach. Intell. 2016, 39, 1256–1272. [CrossRef]

76. Tian, C.; Xu, Y.; Li, Z.; Zuo, W.; Fei, L.; Liu, H. Attention-guided CNN for image denoising. Neural Netw. 2020, 124, 117–129.
[CrossRef]

77. Jia, X.; Liu, S.; Feng, X.; Zhang, L. Focnet: A fractional optimal control network for image denoising. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–19 June 2019;
pp. 6054–6063.

78. Liang, Z.; Wang, Y.; Wang, L.; Yang, J.; Zhou, S. Light field image super-resolution with transformers. IEEE Signal Process. Lett.
2022, 29, 563–567. [CrossRef]

79. Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H.; Shao, L. Cycleisp: Real image restoration via improved data
synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
14–19 June 2020; pp. 2696–2705.

80. Yue, Z.; Zhao, Q.; Zhang, L.; Meng, D. Dual adversarial network: Toward real-world noise removal and noise generation. In
Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings,
Part X 16; Springer: Berlin/Heidelberg, Germany, 2020; pp. 41–58.

81. Kulikov, V.; Yadin, S.; Kleiner, M.; Michaeli, T. Sinddm: A single image denoising diffusion model. In Proceedings of the
International Conference on Machine Learning, PMLR, Honolulu, HI, USA, 23–29 July 2023; pp. 17920–17930.

82. Thakur, R.K.; Maji, S.K. Multi scale pixel attention and feature extraction based neural network for image denoising. Pattern
Recognit. 2023, 141, 109603. [CrossRef]

83. Zhang, D.; Zhou, F. Self-supervised image denoising for real-world images with context-aware transformer. IEEE Access 2023,
11, 14340–14349. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPAMI.2016.2596743
http://dx.doi.org/10.1016/j.neunet.2019.12.024
http://dx.doi.org/10.1109/LSP.2022.3146798
http://dx.doi.org/10.1016/j.patcog.2023.109603
http://dx.doi.org/10.1109/ACCESS.2023.3243829

	Introduction
	Related Work
	Traditional Denoising Algorithms
	Advances in Deep Learning-Based Denoising Algorithms

	Theoretical Foundation
	Algorithmic Framework
	Dataset Pre-Processing
	Training Datasets
	Test Datasets

	Quality Metrics
	Phase of Noise Level Estimation in Image Data
	Dual Attention Mechanism
	Channel Attention (CA)
	Spatial Attention (SA)

	Non-Blind Denoising Stage
	Multi-Scale Denoising Module Architecture
	Residual Structure
	Loss Function Selection: A Case for L1 Loss


	Experimental Results
	Implementation Details
	Qualitative and Quantitative Assessment
	Denoising Color Images
	Denoising Grayscale Images

	Computational Complexity

	Discussion
	References

