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Abstract: This paper introduces two novel concepts of mappings over soft topological spaces: “soft
somewhat-r-continuity” and “soft somewhat-r-openness”. We provide characterizations and discuss
soft composition and soft subspaces. With the use of examples, we offer numerous connections
between these two notions and their accompanying concepts. We also offer extension theorems for
them. Finally, we investigated a symmetry between our new concepts with their topological analogs.
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1. Introduction

In 1999, Molodtsov [1] introduced soft set theory as a novel technique for dealing
with partial information problems. This concept has been applied in a variety of fields,
including the “smoothness of function”, “Riemann integration”, “measurement theory”,
“probability theory”, “game theory”, and others. The nature of parameter sets, which give
a broad framework for modeling uncertain data, is critical to soft set theory. This has
made a significant contribution to the development of soft set theory in a relatively short
period of time. Maji et al. [2] thoroughly investigated the theoretical foundations of soft
set theory. They created operators and operations between soft sets, particularly for this
purpose. Then, other mathematicians rebuilt and proposed new kinds of the operators and
operations between soft sets provided by Maji et al.’s work; for a list of recent contributions
employing soft operators and operations, see [3].

Shabir and Naz [4] established the structure of the soft topology in 2011 as an extension
of the general topology. Following that, several generic topological ideas were expanded to
incorporate the soft topology. The soft continuity of functions was described by Nazmul
and Samanta [5] in 2013. Then, in the literature, many types of the soft continuity and soft
openness of functions were developed in [6–16], and others.

Different types of generalized continuity are explored in various branches of mathe-
matics, particularly in the theory of real functions. Our paper’s goal is to introduce soft
somewhat-r-continuous functions as a new type of generalized continuity in soft topologi-
cal spaces, as well as soft somewhat-r-open functions as a new type of soft open functions
in soft topological spaces.

This article is organized as follows:
Section 2 provides some basic ideas and results that will be utilized in the next sections.
Section 3 defines soft somewhat-r-continuous functions. We show that this class of

soft functions lies strictly between the classes soft complete continuity and soft somewhat-
continuity and independent of the class of soft δ-continuous functions. Moreover, regarding
soft somewhat-r-continuity, we introduce several characterizations, soft subspaces, soft
composition, and soft preservation theorems. In addition, we investigated the links between
this class of soft functions and its analogs in the general topology.
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Section 4 defines soft somewhat-r-open functions. We show that this class of soft
functions is a subclass of soft somewhat-open functions. With the help of examples, we
introduce various properties of this new class of soft functions.

Section 5 contains some findings and potential future studies.

2. Preliminaries

In this section, we introduce some essential concepts and outcomes that will be used
in the sequel.

Let L be an initial universe and S be a set of parameters. A soft set over L relative to S
is a function K : S −→ P(L). SS(L, S) denotes the collection of all soft sets over L relative
to S. Let K ∈ SS(L, S). If K(s) = ∅ for all s ∈ S, then K is called the null soft set over L
relative to S and denoted by 0S. If K(s) = L for all s ∈ S, then K is called the absolute soft
set over L relative to S and denoted by 1S. K is called a soft point over L relative to S and
denoted by ax if there exist a ∈ S and x ∈ L such that K(a) = {x} and K(s) = ∅ for all
s ∈ S− {a}. SP(L, S) denotes the collection of all soft points over L relative to S. If for
some a ∈ S and Y ⊆ L, we have K(a) = Y and K(s) = ∅ for all s ∈ S− {a}, then K will
be denoted by aY. If for some Y ⊆ L, K(s) = Y for all s ∈ S, then K will be denoted by
CY. If K(s) is a countable subset of L for all s ∈ S, then K is called a countable soft set. If
K ∈ SS(L, S) and ax ∈ SP(L, S), then ax is said to belong to K (notation: ax∈̃K) if x ∈ K(a).

For the sake of clarity, we employed the concepts and terminology from [17,18]
throughout this study.

Definition 1 ([4]). Let L be an initial universe and S be a set of parameters. Let Γ ⊆ SS(L, S).
Then, Γ is called a soft topology on L relative to S if:

(1) 0S, 1S ∈ Γ;
(2) Γ is closed under an arbitrary soft union;
(3) Γ is closed under a finite soft intersection.

The triplet (L, Γ, S) is called a soft topological space. The members of Γ are called soft
open sets in (L, Γ, S), and their complements are called soft closed sets in (L, Γ, S).

From now on, the topological space and the soft topological space are abbreviated as
TS and STS, respectively.

Let (L, α) be a TS, (L, Γ, S) be an STS, W ⊆ L, and T ∈ SS(L, S). Then, the closure of
W in (L, α), the interior of W in (L, α), the soft closure of T in (L, Γ, S), and the soft interior
of T in (L, Γ, S) will be denoted by Clα(W), Intα(W), ClΓ(T), and IntΓ(T), respectively,
and the family of all closed sets in (L, α) (respectively, soft closed sets in (L, Γ, S)) will be
denoted by αc (respectively, Γc).

Definition 2 ([18]). Let {αs : s ∈ S} be an indexed family of topologies on L. Then,
{K ∈ SS(L, S) : K(s) ∈ αs for all s ∈ S} defines a soft topology on L relative to S. This soft topol-
ogy is denoted by ⊕s∈Sαs.

Definition 3 ([18]). For any topological space (L, α) and any set of parameters S, the family
{K ∈ SS(L, S) : K(s) ∈ α for all s ∈ S} defines a soft topology on L relative to S. This soft topology
is denoted by τ(α).

Definition 4 ([19]). Let (L, α) be a TS, and let W ⊆ L. Then, W is called a:

(a) “Regular open set in (L, α)” if W = Intα(Clα(W)). RO(α) denotes the collection that
includes all regular open sets in (L, α).

(b) “Regular closed set in (L, α)” if L−W is a regular open set in (L, α). RC(α) denotes the
collection that includes all regular closed sets in (L, α).
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Definition 5. A function q : (L, α) −→ (M, φ) between the TSs (L, α) and (M, φ) is called:

(a) [20] “Somewhat-continuous” (s-c) if, for every W ∈ φ such that q−1(W) 6= ∅, we find
V ∈ α− {∅} such that V ⊆ q−1(W).

(b) [20] “Somewhat-open“ (s-o) if, for every V ∈ α− {∅}, we find W ∈ φ− {∅} such that
W ⊆ q(V).

(c) [21] “Completely continuous” if q−1(W) ∈ RO(α) for every W ∈ φ.
(d) [22] “δ-continuous“ if for every x ∈ L and W ∈ RO(φ) such that q(x) ∈ W, we find

U ∈ RO(α) such that x ∈ U and q(U) ⊆W.
(e) [23] “Somewhat-r-continuous” (s-r-c) if, for every W ∈ φ such that q−1(W) 6= ∅, we find

V ∈ RO(α)− {∅} such that V ⊆ q−1(W).
(f) [23] “Somewhat-r-open” (s-r-o) if, for every V ∈ α− {∅}, we find W ∈ RO(φ)− {∅} such

that W ⊆ q(V).

Definition 6 ([24]). Let (L, Γ, S) be an STS, and let H ∈ SS(L, S). Then, H is called a:

(a) “Soft regular open set in (L, Γ, S)” if H = IntΓ(ClΓ(H)). RO(Γ) denotes the collection that
includes all soft regular open sets in (L, Γ, S).

(b) “Soft regular closed set in (L, Γ, S)” if 1S − H ∈ RO(Γ). RC(Γ) denotes the collection that
includes all soft regular closed sets in (L, Γ, S).

Definition 7. A soft function fqv : (L, Γ, S) −→ (M,z, T) between the STSs (L, Γ, S) and
(M,z, T) is called:

(a) [25] “Soft δ-continuous” if, for each ax ∈ SP(L, S) and G ∈ RO(z) such that fqv(ax)∈̃G,
there exists H ∈ RO(Γ) such that ax∈̃H and fqv(H)⊆̃G.

(b) [26] “Soft somewhat-continuous” (soft s-c) if, for each K ∈ z such that f−1
qv (K) 6= 0S, there

exists N ∈ Γ− {0S} such that N⊆̃ f−1
qv (K).

(c) [26] “Soft somewhat-open” (soft s-o) if, for each K ∈ Γ− {0S}, there exists H ∈ z− {0T}
such that H⊆̃ fqv(K).

(d) [27] “Soft completely continuous” if f−1
qv (K) ∈ RO(Γ) for each K ∈ z.

Definition 8. An STS (L, Γ, S) is called:

(a) [28] “Soft locally indiscrete” if Γ ⊆ Γc.
(b) [29] A “soft D-space” if, for every G, H ∈ Γ− {0S}, G∩̃H 6= 0S.

Definition 9 ([11]). Let (L, Γ, S) and (L, Υ, S) be two STSs. Then, we say that “Γ is soft weakly
equivalent to Υ” if, for each A ∈ Γ− {0S}, we find B ∈ Υ− {0S} such that B⊆̃A and, for each
A ∈ Υ− {0S}, we find B ∈ Γ− {0S} such that B⊆̃A.

3. Soft Somewhat-r-Continuous Functions

In this section, we define soft somewhat-r-continuous functions. We show the soft
somewhat-r-continuity between the soft complete continuity and soft somewhat-continuity
and independent of the class of soft δ-continuity. Moreover, regarding soft somewhat-r-
continuity, we introduce several characterizations, soft subspaces, soft composition, and
soft preservation theorems. In addition, we investigated the links between this class of soft
functions and its analogs in general topology.

The basic concept of this section is defined as follows:

Definition 10. A soft function fqv : (L, Γ, S) −→ (M,z, T) is called soft somewhat-r-continuous
(soft s-r-c) if, for each K ∈ z such that f−1

qv (K) 6= 0S, there exists N ∈ RO(Γ)− {0S} such that
N⊆̃ f−1

qv (K).

In Theorems 1 and 2 and Corollaries 1 and 2, we investigate the correspondence
between the concepts soft somewhat-r-continuity and soft somewhat-continuity with their
analogous topological concepts:
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Theorem 1. Let {(L, Γs) : s ∈ S} and {(M,zt) : t ∈ T} be two collections of TSs. Let q :
L −→ M and v : S −→ T be functions where v is bijective. Then, fqv : (L,⊕s∈SΓs, S) −→
(M,⊕t∈Tzt, T) is soft s-r-c if and only if q : (L, Γs) −→

(
M,zv(s)

)
is s-r-c for all s ∈ S.

Proof. Necessity: Assume that fqv : (L,⊕s∈SΓs, S) −→ (M,⊕t∈Tzt, T) is soft s-r-c. Let
s ∈ S. Let W ∈ zv(s) such that q−1(W) 6= ∅. Then, (v(s))W ∈ ⊕t∈Tzt and f−1

qv ((v(s))W) =

sq−1(W) 6= 0S. Then, we find N ∈ RO(⊕s∈SΓs)− {0S} such that N⊆̃ sq−1(W). Thus, N(s) ⊆(
sq−1(W)

)
(s) = q−1(W). Since for all i ∈ S−{s}, N(i) ⊆

(
sq−1(W)

)
(i) = ∅, then N(s) 6= ∅.

Also, by Theorem 14 of [30], N(s) ∈ RO(Γs). This shows that q : (L, Γs) −→
(

M,zv(s)

)
is s-r-c.

Sufficiency: Assume that q : (L, Γs) −→
(

M,zv(s)

)
is s-r-c for all s ∈ S. Let K ∈

⊕t∈Tzt such that f−1
qv (K) 6= 0S. Choose a ∈ S such that

(
f−1
qv (K)

)
(a) = q−1(K(v(a))) 6= ∅.

Since K ∈ ⊕t∈Tzt, then K(v(a)) ∈ zv(a). Since q : (L, Γa) −→
(

M,zv(a)

)
is s-r-c, then

there exists X ∈ RO(Γa)− {∅} such that X ⊆
(

f−1
qv (K)

)
(a). Then, we have aX⊆̃ f−1

qv (K)
and aX 6= 0S. Also, by Theorem 14 of [30], aX ∈ RO(⊕s∈SΓs). This shows that fqv :
(L,⊕s∈SΓs, S) −→ (M,⊕t∈Tzt, T) is soft s-r-c.

Corollary 1. Let q : (L, α) −→ (M, φ) and v : S −→ T be two functions where v is a bijection.
Then, q : (L, α) −→ (M, φ) is s-r-c if and only if fqv : (L, τ(α), S) −→ (M, τ(φ), T) is soft s-r-c.

Proof. For each s ∈ S and t ∈ T, put Γs = α and zt = φ. Then, τ(α) = ⊕s∈SΓs and
τ(φ) = ⊕t∈Tzt. We obtain the result by using Theorem 1.

Theorem 2. Let {(L, Γs) : s ∈ S} and {(M,zt) : t ∈ T} be two collections of TSs. Let q :
L −→ M and v : S −→ T be functions where v is bijective. Then, fqv : (L,⊕s∈SΓs, S) −→
(M,⊕t∈Tzt, T) is soft s-c if and only if q : (L, Γs) −→

(
M,zv(s)

)
is s-c for all s ∈ S.

Proof. Necessity: Assume that fqv : (L,⊕s∈SΓs, S) −→ (M,⊕t∈Tzt, T) is soft s-c. Let s ∈ S.
Let W ∈ zv(s) such that q−1(W) 6= ∅. Then, (v(s))W ∈ ⊕t∈Tzt and f−1

qv ((v(s))W) =

sq−1(W) 6= 0S. So, we find N ∈ ⊕s∈SΓs − {0S} such that N⊆̃ sq−1(W). Then, N(s) ∈ Γs and

N(s) ⊆
(

sq−1(W)

)
(s) = q−1(W). Since, for all i ∈ S− {s}, N(i) ⊆

(
sq−1(W)

)
(i) = ∅, then

N(s) 6= ∅. This shows that q : (L, Γs) −→
(

M,zv(s)

)
is s-c.

Sufficiency: Assume that q : (L, Γs) −→
(

M,zv(s)

)
is s-c for all s ∈ S. Let K ∈ ⊕t∈Tzt

such that f−1
qv (K) 6= 0S. Choose a ∈ S such that

(
f−1
qv (K)

)
(a) = q−1(K(v(a))) 6= ∅. Since

K ∈ ⊕t∈Tzt, then K(v(a)) ∈ zv(a). Since q : (L, Γa) −→
(

M,zv(a)

)
is s-c, then there exists

X ∈ Γa − {∅} such that X ⊆
(

f−1
qv (K)

)
(a). Then, we have aX ∈ ⊕s∈SΓs, aX⊆̃ f−1

qv (K), and
aX 6= 0S. This is shown to be soft s-c.

Corollary 2. Let q : (L, α) −→ (M, φ) and v : S −→ T be two functions where v is a bijection.
Then, q : (L, α) −→ (M, φ) is s-c if and only if fqv : (L, τ(α), S) −→ (M, τ(φ), T) is soft s-c.

Proof. For each s ∈ S and t ∈ T, put Γs = α and zt = φ. Then, τ(α) = ⊕s∈SΓs and
τ(φ) = ⊕t∈Tzt. We obtain the result by using Theorem 2.

In Theorem 3 and Example 1, we discuss the relationships between the classes of soft
completely continuous functions and soft somewhat-r-continuous functions:

Theorem 3. Every soft completely continuous function is soft s-r-c.
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Proof. Let fqv : (L, Γ, S) −→ (M,z, T) be soft complete continuous. Let K ∈ z and
f−1
qv (K) 6= 0S. Since fqv is soft complete continuous, then f−1

qv (K) ∈ RO(Γ). Put N = f−1
qv (K).

Then, N ∈ RO(Γ)− {0S} and N = f−1
qv (K)⊆̃ f−1

qv (K). As a result, fqv is soft s-r-c.

In general, Theorem 3’s inverse does not have to be true.

Example 1. Let L = R, M = {c, d}, α be the standard topology on L, and φ be the discrete
topology on M. Define q : (L, α) −→ (M, φ) and v : Z −→ Z as follows:

q(x) =
{

c if x < 3
d if x ≥ 3

and v(z) = z for all z ∈ Z.

To see that q is s-r-c, let U ∈ φ such that q−1(U) 6= ∅. If U = {c}, then (−∞, 3) ∈
RO(α)− {∅} and (−∞, 3) ⊆ (−∞, 3) = q−1(U). If U = {d}, then (3, ∞) ∈ RO(α)− {∅}
and (3, ∞) ⊆ [3, ∞) = q−1(U). If U = M, then R ∈ RO(α)− {∅} and R ⊆ R = q−1(U).

Since {d} ∈ φ while q−1({d}) = [3, ∞) /∈ RO(α), then q is not completely continuous.
Therefore, by Corollary 1 and Corollary 1 of [27], fqv : (L, τ(α),Z) −→ (M, τ(φ),Z) is soft

s-r-c, but not soft completely continuous.

In Theorems 4 and 5 and Example 2, we discuss the relationships between the classes
of somewhat-r-continuous functions and soft somewhat-continuous functions:

Theorem 4. Soft s-r-c functions are soft s-c.

Proof. Let fqv : (L, Γ, S) −→ (M,z, T) be soft s-r-c. Let K ∈ z and f−1
qv (K) 6= 0S. Then,

there exists N ∈ RO(Γ)− {0S} such that N⊆̃ f−1
qv (K). Since RO(Γ) ⊆ Γ, then N ∈ Γ. This

ends the proof.

The opposite of Theorem 4 does not have to be true.

Example 2. Let L = {1, 2, 3, 4}, M = {5, 6, 7}, α = {∅, L, {1, 3}, {4}, {3}, {3, 4}, {1, 3, 4}},
and φ = {∅, M, {6}, {7}, {6, 7}}. Define q : L −→ M and v : N −→ N by q(1) = q(4) = 5,
q(2) = q(3) = 7, and v(n) = n for all n ∈ N.

To see that q : (L, α) −→ (M, φ) is s-c, let U ∈ φ such that q−1(U) 6= ∅. Then, {7} ⊆ U
and q−1({7}) = {2, 3} ⊆ q−1(U), and thus, we can choose {3} ∈ α− {∅} such that {3} ⊆
q−1(U).

Since {7} ∈ φ− {∅} such that q−1({7}) = {2, 3} 6= ∅ while there is no W ∈ RO(α)−
{∅} such that W ⊆ {2, 3}, then q is not s-r-c.

Therefore, by Corollaries 1 and 2, fqv : (L, τ(α),N) −→ (M, τ(φ),N) is soft s-c, but not soft
s-r-c.

Theorem 5. If fqv : (L, Γ, S) −→ (M,z, T) is soft s-c and (L, Γ, S) is soft locally indiscrete, then
fqv is soft s-r-c.

Proof. Let K ∈ z such that f−1
qv (K) 6= 0S. Then, we find N ∈ Γ − {0S} such that N⊆̃

f−1
qv (K). Since (L, Γ, S) is soft locally indiscrete, then Γ = RO(Γ), and so, N ∈ RO(Γ). This

shows that fqv is soft s-r-c.

From the above theorems, we have the following implications. However, Examples 1
and 2 show that the converses of these implications are not true.

Soft complete continuity −→ soft somewhat-r-continuity −→ soft somewhat-continuity.
In Theorem 6 and Corollary 3, we investigate the correspondence between the concept

of soft δ-continuity with its analogous topological concept:
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Theorem 6. Let {(L, Γs) : s ∈ S} and {(M,zt) : t ∈ T} be two collections of TSs. Let q : L −→
M and v : S −→ T be functions. Then, fqv : (L,⊕s∈SΓs, S) −→ (M,⊕t∈Tzt, T) is soft

δ-continuous if and only if q : (L, Γs) −→
(

M,zv(s)

)
is δ-continuous for all s ∈ S.

Proof. Necessity: Assume that fqv : (L,⊕s∈SΓs, S) −→ (M,⊕t∈Tzt, T) is soft δ-continuous.

Let s ∈ S. Let x ∈ L, and let W ∈ RO
(
zv(s)

)
such that q(x) ∈ W. Then, we have

fqv(sx) = (v(s))q(x)∈̃(v(s))W , and by Theorem 14 of [30], (v(s))W ∈ RO(⊕t∈Tzt). So, we

find N ∈ RO(⊕s∈SΓs) such that fqv(N)⊆̃(v(s))W and, thus, q(N(s)) ⊆
(

fqv(N)
)
(v(s)) ⊆

W. Moreover, by Theorem 14 of [30], N(s) ∈ RO(Γs). This shows that q : (L, Γs) −→(
M,zv(s)

)
is δ-continuous.

Sufficiency: Assume that q : (L, Γs) −→
(

M,zv(s)

)
is δ-continuous for all s ∈ S. Let

ax ∈ SP(L, S), and let K ∈ RO(⊕t∈Tzt) such that fqv(ax) = v(a)q(x)∈̃K. Then, we have

q(x) ∈ K(v(a)), and by Theorem 14 of [30], K(v(a)) ∈ RO
(
zv(a)

)
. Since q : (L, Γa) −→(

M,zv(a)

)
is δ-continuous, then we find W ∈ RO(Γa) such that x ∈ W and q(W) ⊆

K(v(a)). Now, we have ax∈̃aW , and by Theorem 14 of [30], aW ∈ RO(Γa). Also, it is not
difficult to check that fqv(aW)⊆̃K. Therefore, fqv : (L,⊕s∈SΓs, S) −→ (M,⊕t∈Tzt, T) is soft
δ-continuous.

Corollary 3. Let q : (L, α) −→ (M, φ) and v : S −→ T be two functions. Then, q : (L, α) −→
(M, φ) is δ-continuous if and only if fqv : (L, τ(α), S) −→ (M, τ(φ), T) is soft δ-continuous.

Proof. For each s ∈ S and t ∈ T, put Γs = α and zt = φ. Then, τ(α) = ⊕s∈SΓs and
τ(φ) = ⊕t∈Tzt. We obtain the result by using Theorem 6.

The following two examples demonstrate the independence of the concepts of soft
s-r-c and soft δ-continuous:

Example 3. Let fqv : (L, τ(α),Z) −→ (M, τ(φ),Z) be as in Example 1. Then, fqv is soft s-r-
c. Since {d} ∈ RO(φ) while q−1({d}) = [3, ∞) /∈ α, then q is not δ-continuous. Thus, by
Corollary 3, fqv is not soft δ-continuous.

Example 4. Let L = {1, 2, 3}, α = {∅, L, {1, 2}, {3}}, and φ = {∅, L, {3}}. Define q :
(L, α) −→ (L, φ) and v : N −→ N by q(1) = 2, q(2) = 3, q(3) = 1, and v(n) = n for all n ∈ N.

If U ∈ RO(φ) = {∅, L}, then q−1(U) ∈ {∅, L}. Hence, q is δ-continuous. Since {3} ∈
φ − {∅} such that q−1({3}) = {2} 6= ∅ while there is no W ∈ RO(α) − {∅} such that
W ⊆ {2}, then q is not s-r-c.

As a result of Corollaries 1 and 3, fqv : (L, τ(α),N) −→ (L, τ(φ),N) is soft δ-continuous,
yet not soft s-r-c.

In the following result, we give a sufficient condition for soft δ-continuous functions
to be soft somewhat-r-continuous:

Theorem 7. If fqv : (L, Γ, S) −→ (M,z, T) is soft δ-continuous and (M,z, T) is soft locally
indiscrete, then fqv is soft s-r-c.

Proof. Let K ∈ z such that f−1
qv (K) 6= 0S. Since (M,z, T) is soft locally indiscrete, then

K ∈ RO(z). Choose ax∈̃ f−1
qv (K). Then, fqv(ax)∈̃K. Since fqv is soft δ-continuous, we find

N ∈ RO(Γ) such that ax∈̃N and fqv(N)⊆̃K. Thus, we have N ∈ RO(Γ)− {0S} such that
N⊆̃ f−1

qv
(

fqv(N)
)
⊆̃ f−1

qv (K). This shows that fqv is soft s-r-c.
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Definition 11. Let (L, Γ, S) be an STS, and let H ∈ SS(L, S). Then, H is called soft r-dense in
(L, Γ, S) if there is no K ∈ RC(Γ)− {1S} such that M⊆̃K.

In Theorem 8 and Example 5, we discuss the relationships between the soft dense sets
and soft r-dense sets:

Theorem 8. In any STS (L, Γ, S), soft dense sets are soft r-dense sets.

Proof. Assume, on the other hand, that a soft dense set H exists in (L, Γ, S) that is not soft
r-dense in (L, Γ, S). Then, we find K ∈ RC(Γ)− {1S} such that H⊆̃K. Since RC(Γ) ⊆ Γc,
then K ∈ Γc. Hence, H is not soft dense in (L, Γ, S), which is a contradiction.

The following example demonstrates that the inverse of Theorem 8 is not true:

Example 5. Let L = R, S = R, and Γ = {0S, 1S, K}, where K(s) = {s + 1} for every s ∈ S. Let
H = 1S − K. Since RC(Γ) = {0S, 1S}, then H is soft r-dense in (L, Γ, S). On the other hand,
since H ∈ Γc, then H is not soft dense in (L, Γ, S).

The following result characterizes soft r-dense sets in terms of soft regular open sets:

Theorem 9. Let (L, Γ, S) be an STS, and let H ∈ SS(L, S). Then, H is soft r-dense in (L, Γ, S) if
and only if, for any G ∈ RO(Γ)− {0S}, G∩̃H 6= 0S.

Proof. Necessity: Assume that H is soft r-dense in (L, Γ, S) and, on the contrary, that there
exists G ∈ RO(Γ)− {0S} such that G∩̃H = 0S. Then, we have 1S − G ∈ RC(Γ)− {1S} and
H⊆̃1S − G. Hence, H is not soft r-dense in (L, Γ, S), which is a contradiction.

Sufficiency: Assume that G∩̃H 6= 0S for each G ∈ RO(Γ) − {0S}. Assume, on the
other hand, there exists K ∈ RC(Γ) − {1S} such that H⊆̃K. Then, we have 1S − K ∈
RO(Γ)− {0S} and (1S − K)∩̃H = 0S, which is a contradiction.

In Theorems 10 and 11, we give sufficient conditions for the soft composition of two
soft somewhat-r-continuous functions to be soft somewhat-r-continuous:

Theorem 10. If fq1v1 : (L, Γ, S) −→ (M,z, T) and fq2v2 : (M,z, T) −→ (R, Υ, B) are soft s-r-
c functions and fq1v1(1S) is soft r-dense in (M,z, T), then f(q2◦q1)(v2◦v1)

: (L, Γ, S) −→ (R, Υ, B)
is soft s-r-c.

Proof. Let H ∈ Υ such that f−1
(q2◦q1)(v2◦v1)

(H) 6= 0S. Then, f−1
q1v1

(
f−1
q2v2

(H)
)
= f−1

(q2◦q1)(v2◦v1)

(H) 6= 0S, and thus, f−1
q2v2

(H) 6= 0T . Since fq2v2 is soft s-r-c, we find G ∈ RO(z)− {0T}
such that G⊆̃ f−1

q2v2
(H). Since fq1v1(1S) is soft r-dense in (M,z, T), then by Theorem 9,

G∩̃ fq1v1(1S) 6= 0T , and thus, f−1
q1v1

(G) 6= 0S. Since fq1v1 is soft s-r-c, we find K ∈ RO(Γ)−
{0S} such that K⊆̃ f−1

q1v1
(G)⊆̃ f−1

q1v1

(
f−1
q2v2

(H)
)

= f−1
(p2◦p1)(u2◦u1)

(H). This shows that
f(q2◦q1)(v2◦v1)

is soft s-r-c.

Theorem 11. If fq1v1 : (L, Γ, S) −→ (M,z, T) is soft s-r-c and fq2v2 : (M,z, T) −→ (R, Υ, B)
is soft continuous, then f(q2◦q1)(v2◦v1)

: (L, Γ, S) −→ (R, Υ, B) is soft s-r-c.

Proof. Let H ∈ Υ such that f−1
(q2◦q1)(v2◦v1)

(H) 6= 0S. Since fq2v2 is soft continuous, then

f−1
q2v2

(H) ∈ z. Since fq1v1 is soft s-r-c and f−1
q1v1

(
f−1
q2v2

(H)
)
= f−1

(q2◦q1)(v2◦v1)
(H) 6= 0S, then

we find G ∈ RO(Γ)− {0S} such that G⊆̃ f−1
q1v1

(
f−1
q2v2

(H)
)
= f−1

(q2◦q1)(v2◦v1)
(H).

The soft composite of two soft s-r-c functions is not necessarily soft s-r-c:
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Example 6. Let L = {1, 2, 3}, α = {∅, L}, φ = {∅, L, {2}, {1, 3}}, and ρ = {∅, L, {1, 2}}.
Define q1 : (L, α) −→ (L, φ), q2 : (L, φ) −→ (L, ρ), and v : N −→ N by q1(1) = 1, q1(2) = 3,
q1(3) = 3, q2(l) = l for all l ∈ Land v(n) = n for all n ∈ N. Then, clearly, q1 is continuous
and q2 is s-r-c while q2 ◦ q1 : (L, α) −→ (L, ρ) is not s-r-c. So, by Theorem 5.31 of [18], fq1v1 :
(L, τ(α),N) −→ (L, τ(φ),N) is soft continuous, and by Corollary 1, fq2v2 : (L, τ(φ),N) −→
(L, τ(ρ),N) is soft s-r-c, but f(q2◦q1)(v2◦v1)

: (L, τ(α),N) −→ (L, τ(ρ),N) is not soft s-r-c.

The following result gives two characterizations of soft somewhat-r-continuous surjec-
tive functions:

Theorem 12. Let fqv : (L, Γ, S) −→ (M,z, T) be surjective. Then, the following are equivalent:

(a) fqv is soft s-r-c.
(b) For each A ∈ zc such that f−1

qv (A) 6= 1S, we find B ∈ RC(Γ)−{1S} such that f−1
qv (A)⊆̃B.

(c) For each soft r-dense set H in (L, Γ, S), fqv(H) is a soft dense set in (M,z, T).

Proof. (a) −→ (b): Let A ∈ zc such that f−1
qv (A) 6= 1S. Then, 1T − A ∈ z and f−1

qv (1T −
A) = 1S − f−1

pu (A) 6= 0S. Based on (a), we find R ∈ RO(Γ)− {0S} such that R⊆̃ f−1
qv (1T −

A) = 1S − f−1
pu (A). Let B = 1S − R. Then, B ∈ RC(Γ)− {1S} such that f−1

qv (A)⊆̃B.
(b) −→ (c): On the contrary, assume a soft r-dense set H exists in (L, Γ, S) such

that fqv(H) is not soft dense in (M,z, T). Then, there exists A ∈ zc − {1T} such that

fqv(H)⊆̃A. If f−1
qv (A) = 1S, then 1T = fqv(1S) = fqv

(
f−1
qv (A)

)
⊆̃A, and hence, A = 1T .

Therefore, f−1
pu (A) 6= 1S. So, by (b), we find B ∈ RC(Γ)− {1S} such that f−1

qv (A)⊆̃B, and
so, H⊆̃ f−1

qv
(

fqv(H)
)
⊆̃ f−1

qv (A)⊆̃B. This conflicts with the statement that H is a soft r-dense
set in (L, Γ, S).

(c) −→ (a): On the contrary, assume that fqv is not soft s-r-c. Then, we find H ∈ z
such that f−1

qv (H) 6= 0S, but there is no G ∈ RO(Γ)− {0S} such that G⊆̃ f−1
qv (H).

Claim 1. 1S − f−1
qv (H) is soft r-dense in (L, Γ, S).

Proof of Claim 1. Assume, however, that 1S − f−1
qv (H) is not soft r-dense in (L, Γ, S). Then,

by Theorem 9, there exists G ∈ RO(Γ) − {0S} such that G∩̃
(

1S − f−1
qv (H)

)
= 0S, and

hence, G⊆̃ f−1
qv (H), a contradiction.

Thus, by the above Claim 1 and (c), fqv(1S− f−1
qv (H)) = fqv( f−1

qv (1T−H)) is soft dense
in (M,z, T). Since fqv( f−1

qv (1T − H))⊆̃1T − H, then 1T − H is soft dense in (M,z, T), and
thus, 1T − H = Clz(1T − H) = 1T . Therefore, H = 0T , and hence, f−1

qv (H) = 0S. This is a
contradiction.

Theorems 13 and 14 discuss the behavior of soft somewhat-r-continuous functions
under soft subspaces:

Theorem 13. Let (L, Γ, S) and (M,z, T) be any two STSs. Let U ⊆ L such that CU ∈ RO(Γ).
If fqv : (U, ΓU , S) −→ (M,z, T) is soft s-r-c such that fqv(CU) is soft dense in (M,z, T), then
for each extension q1 : L −→ M, fq1v : (L, Γ, S) −→ (M,z, T) is soft s-r-c.

Proof. Let G ∈ z such that f−1
q1v(G) 6= 0S. Since fqv(CU) is soft dense in (M,z, T),

fqv(CU)∩̃G 6= 0T . Then, CU∩̃ f−1
qv (G) 6= 0S, and so, CU∩̃ f−1

qv (G) 6= 0S. Since fqv : (U, ΓU , S)
−→ (M,z, T) is soft s-r-c, then there exists H ∈ RO(ΓU) − {0S} such that H⊆̃ f−1

qv (G).
Since H ∈ RO(ΓU) and CU ∈ RO(Γ), then H ∈ RO(Γ). This shows that fq1v is soft
s-r-c.

Theorem 14. Let (L, Γ, S) and (M,z, T) be any two STSs, and let L = A ∪ B, where CA, CB ∈
RO(Γ). If fqv : (L, Γ, S) −→ (M,z, T) is a soft function such that the soft restrictions

(
fqv
)
|CA

:
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(A, ΓA, S) −→ (M,z, T) and
(

fqv
)
|CB

: (B, ΓB, S) −→ (M,z, T) are soft s-r-c, then fqv is
soft s-r-c.

Proof. Let G ∈ z such that f−1
qv (G)

6= 0S, then
((

fqv
)
|CA

)−1
(G) 6= 0S or

((
fqv
)
|CB

)−1
(G) 6= 0S. We can assume, without

loss of generality, that
((

fqv
)
|CA

)−1
(G) 6= 0S. Then, we find K ∈ RO(ΓA)− {0S} such

that K⊆̃
((

fqv
)
|CA

)−1
(G)⊆̃ f−1

qv (G). Since K ∈ RO(ΓA) and CA ∈ RO(Γ), then K ∈ RO(Γ).
This completes the proof.

Definition 12. An STS (L, Γ, S) is soft r-separable if there exists a countable soft set H ∈ SS(L, S)
such that H is soft r-dense in (L, Γ, S).

By Theorem 8, soft separable STSs are soft r-separable. The following is an example to
show that soft r-separability does not imply soft separability in general:

Example 7. Let L = R, S = {a}, and Γ = {0S} ∪ {aU : U ⊆ R and R−U is countable}. Then,
RC(Γ) = {0S, 1S}. So, any H ∈ RC(Γ)− {0S} is soft r-dense. In particular, a{1} is a countable
soft set and soft r-dense in (L, Γ, S), and hence, (L, Γ, S) is soft r-separable. On the other hand, it is
not difficult to show that (L, Γ, S) is not soft separable.

The following result shows that the soft somewhat-r-continuous image of a soft r-
separable space is soft separable:

Theorem 15. If fqv : (L, Γ, S) −→ (M,z, T) is soft s-r-c and (L, Γ, S) is soft r-separable, then
(M,z, T) is soft separable.

Proof. Let fqv : (L, Γ, S) −→ (M,z, T) be soft s-r-c such that (L, Γ, S) is soft r-separable.
Choose a countable soft set H ∈ SS(L, S) such that H is soft r-dense in (L, Γ, S). Then,
fqv(H) is a countable soft set, and by Theorem 12 (c), fqv(H) is soft dense in (M,z, T).
Therefore, (M,z, T) is soft separable.

Definition 13. Let (L, Γ, S) and (L, Υ, S) be two STSs. Then, Γ is called soft r-weakly equivalent
to Υ if, for each A ∈ RO(Γ)− {0S}, we find B ∈ RO(Υ)− {0S} such that B⊆̃A and, for each
A ∈ RO(Υ)− {0S}, we find B ∈ RO(Γ)− {0S} such that B⊆̃A.

Theorem 16. Let (L, Γ, S) and (L, Υ, S) be two STSs. Let q : L −→ L and v : S −→ S denote the
identities. Then, the following are equivalent:

(a) Γ is soft r-weakly equivalent to Υ.
(b) The soft functions fqv : (L, Γ, S) −→ (L, Υ, S) and fpu : (L, Υ, S) −→ (L, Γ, S) are both

soft s-r-c.

Proof. Obvious.

Theorem 17. Let fqv : (L, Γ, S) −→ (M,z, T) be soft s-r-c. If (L, Υ, S) is an STS such that Γ is
soft r-weakly equivalent to Υ, then fqv : (L, Υ, S) −→ (M,z, T) is soft s-r-c.

Proof. Let H ∈ z such that f−1
qv (H) 6= 0S. Since fqv : (L, Γ, S) −→ (M,z, T) is soft

s-r-c, then we find K ∈ RO(Γ) − {0S} such that K⊆̃ f−1
pu (H). Since Γ is soft r-weakly

equivalent to Υ, then we find G ∈ RO(Υ)− {0S} such that G⊆̃K⊆̃ f−1
pu (K). This shows that

fqv : (L, Υ, S) −→ (M,z, T) is soft s-r-c.
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Theorem 18. Let fqv : (L, Γ, S) −→ (M,z, T) be soft s-r-c and surjective. If (L, Υ, S) and
(M, Ψ, T) are STSs such that Γ is soft r-weakly equivalent to Υ and z is soft weakly equivalent to
Ψ, then fqv : (L, Υ, S) −→ (M, Ψ, T) is soft s-r-c.

Proof. Let G ∈ Ψ such that f−1
pu (G) 6= 0S. Since z is soft weakly equivalent to Ψ, then

we find R ∈ z− {0T} such that R⊆̃G. Since fqv is surjective, then f−1
pu (R) 6= 0S. Since

fqv : (L, Γ, S) −→ (M,z, T) is soft s-r-c, then we find H ∈ RO(Γ) − {0S} such that
H⊆̃ f−1

pu (R). Since Γ is soft r-weakly equivalent to Υ, then we find K ∈ RO(Υ)− {0S} such
that K⊆̃H⊆̃ f−1

pu (R)⊆̃ f−1
pu (G). This completes the proof.

Definition 14. An STS (L, Γ, S) is called a soft r-D-space if, for every G, H ∈ RO(Γ)− {0S},
G∩̃H 6= 0S.

Soft D-spaces are soft r-D-spaces. However, we raise the following question about
the converse:

Question 1. Is it true that every soft r-D-space is a soft D-space?

The following result shows that the soft somewhat-r-continuous image of a soft r-D-
space is a soft D-space:

Theorem 19. Let fqv : (L, Γ, S) −→ (M,z, T) be soft s-r-c and surjective. If (L, Γ, S) is a soft
r-D-space, then (M,z, T) is a soft D-space.

Proof. Let fqv : (L, Γ, S) −→ (M,z, T) be soft s-r-c and surjective such that (L, Γ, S) is a soft
r-D-space. To the contrary, assume that (L, Γ, S) is not a soft D-space. Then, we find K, H ∈
z− {0T} such that K∩̃H = 0T . Since fqv is surjective, then f−1

qv (K) 6= 0S and f−1
qv (H) 6=

0S. Since fqv : (L, Γ, S) −→ (M,z, T) is soft s-r-c, then we find G, R ∈ RO(Γ) − {0S}
such that G⊆̃ f−1

qv (K) and R⊆̃ f−1
qv (H). Therefore, G∩̃R⊆̃ f−1

qv (K)∩̃ f−1
qv (H) = f−1

qv (K∩̃H) =

f−1
qv (0T) = 0S. This shows that (L, Γ, S) is not a soft r-D-space, a contradiction.

4. Soft Somewhat-r-Open Functions

In this section, we define soft somewhat-r-open functions. We show that this class of
soft functions is a subclass of soft somewhat open functions. With the help of examples, we
introduce various properties of this new class of soft functions.

Definition 15. A soft function fqv : (L, Γ, S) −→ (M,z, T) is called soft somewhat-r-open (soft
s-r-o) if, for each K ∈ Γ− {0S}, there exists H ∈ RO(z)− {0T} such that H⊆̃ fqv(K).

In Theorems 20 and 21 and Corollaries 4 and 5, we investigate the correspondence
between the concepts of soft somewhat-r-openness and soft somewhat-openness with their
analogous topological concepts:

Theorem 20. Let {(L, Γs) : s ∈ S} and {(M,zt) : t ∈ T} be two collections of TSs. Let q :
L −→ M and v : S −→ T be functions where v is bijective. Then fqv : (L,⊕s∈SΓs, S) −→
(M,⊕t∈Tzt, T) is soft s-r-o if and only if q : (L, Γs) −→

(
M,zv(s)

)
is s-r-o for all s ∈ S.

Proof. Necessity: Assume that fqv : (L,⊕s∈SΓs, S) −→ (M,⊕t∈Tzt, T) is soft s-r-o. Let s ∈
S. Let U ∈ Γs−{∅}. Then, sU ∈ ⊕s∈SΓs−{0S}. So, we find H ∈ RO(⊕t∈Tzt)−{0T} such
that H⊆̃ fqv(sU) = (v(s))q(U). Thus, we have H(v(s)) ⊆

(
(v(s))q(U)

)
(v(s)) = q(U), and

by Theorem 14 of [30], H(v(s)) ∈ RO
(
zv(s)

)
. This shows that q : (L, Γs) −→

(
M,zv(s)

)
is s-r-o.
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Sufficiency: Assume that q : (L, Γs) −→
(

M,zv(s)

)
is s-r-o for all s ∈ S. Let K ∈

⊕s∈SΓs − {0S}. Choose a ∈ S such that K(a) 6= ∅. Since q : (L, Γa) −→
(

M,zv(a)

)
is s-r-o,

then we find W ∈ RO
(
zv(a)

)
− {∅} such that W ⊆ q(K(a)). Then, (v(a))W 6= 0T , and

by Theorem 14 of [30], (v(a))W ∈ RO(⊕t∈Tzt). Moreover, it is not difficult to check that
aW⊆̃ fqv(K). This shows that fqv : (L,⊕s∈SΓs, S) −→ (M,⊕t∈Tzt, T) is soft s-r-o.

Corollary 4. Let q : (L, α) −→ (M, φ) and v : S −→ T be two functions where v is a bijection.
Then, q : (L, α) −→ (M, φ) is s-r-o if and only if fqv : (L, τ(α), S) −→ (M, τ(φ), T) is soft s-r-o.

Proof. For each s ∈ S and t ∈ T, put Γs = α and zt = φ. Then, τ(α) = ⊕s∈SΓs and
τ(φ) = ⊕t∈Tzt. We obtain the result by using Theorem 20.

Example 8. Let L = {1, 2, 3}, α = {∅, L, {1}}, and φ = {∅, L, {2}, {3}, {2, 3}}. Define
q : L −→ L and v : Z −→ Z by q(1) = 3, q(2) = 1, q(3) = 2, and v(x) = x for every x ∈ Z.
Then, q : (L, α) −→ (L, φ) is s-r-o, and by Corollary 4, fqv : (L, τ(α),Z) −→ (L, τ(φ),Z) is soft
s-r-o.

Theorem 21. Let {(L, Γs) : s ∈ S} and {(M,zt) : t ∈ T} be two collections of TSs. Let q :
L −→ M and v : S −→ T be functions where v is bijective. Then, fqv : (L,⊕s∈SΓs, S) −→
(M,⊕t∈Tzt, T) is soft s-o if and only if q : (L, Γs) −→

(
M,zv(s)

)
is s-o for all s ∈ S.

Proof. Necessity: Assume that fqv : (L,⊕s∈SΓs, S) −→ (M,⊕t∈Tzt, T) is soft s-o. Let s ∈ S.
Let U ∈ Γs − {∅}. Then, sU ∈ ⊕s∈SΓs − {0S}. So, we find H ∈ ⊕t∈Tzt − {0T} such
that H⊆̃ fqv(sU) = (v(s))q(U). Thus, we have H(v(s)) ⊆

(
(v(s))q(U)

)
(v(s)) = q(U) and

H(v(s)) ∈ RO
(
zv(s)

)
. This shows that q : (L, Γs) −→

(
M,zv(s)

)
is s-o.

Sufficiency: Assume that q : (L, Γs) −→
(

M,zv(s)

)
is s-o for all s ∈ S. Let K ∈

⊕s∈SΓs − {0S}. Choose a ∈ S such that K(a) 6= ∅. Since q : (L, Γa) −→
(

M,zv(a)

)
is

s-o, then we find W ∈ zv(a) − {∅} such that W ⊆ q(K(a)). Then, (v(a))W ∈ ⊕t∈Tzt −
{0T}. Moreover, it is not difficult to check that (v(a))W⊆̃ fqv(K). This shows that fqv :
(L,⊕s∈SΓs, S) −→ (M,⊕t∈Tzt, T) is soft s-o.

Corollary 5. Let q : (L, α) −→ (M, φ) and v : S −→ T be two functions where v is a bijection.
Then, q : (L, α) −→ (M, φ) is s-o if and only if fqv : (L, τ(α), S) −→ (M, τ(φ), T) is soft s-o.

Proof. For each s ∈ S and t ∈ T, put Γs = α and zt = φ. Then, τ(α) = ⊕s∈SΓs and
τ(φ) = ⊕t∈Tzt. We obtain the result by using Theorem 21.

In Theorems 22 and 23 and Example 9, we discuss the relationships between the classes
of somewhat-r-open functions and soft somewhat-open functions:

Theorem 22. Every soft s-r-o function is soft s-o.

Proof. Let fqv : (L, Γ, S) −→ (M,z, T) be soft s-r-o. Let K ∈ Γ− {0S}. Since fqv is soft
s-r-o, then we find H ∈ RO(z) − {0T} such that H⊆̃ fpu(K). Since RO(z) ⊆ z, then
H ∈ z− {0T}. Therefore, fqv is soft s-o.

The converse of Theorem 22 does not have to be true in all cases.

Example 9. Let α be the cofinite topology on R. Consider the identities q : (R, α) −→ (R, α)
and v : [0, 1] −→ [0, 1]. Consider fqv : (R, τ(α), [0, 1]) −→ (R, τ(α), [0, 1]). Then, fqv is soft
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s-o. Since CR−{0} ∈ τ(α) while there is no H ∈ RO(τ(α)) −
{

0[0,1]

}
=
{

1[0,1]

}
such that

H⊆̃ fqv(CR−{0}) = CR−{0}, then fqv is not soft s-r-o.

Theorem 23. If fqv : (L, Γ, S) −→ (M,z, T) is soft s-o and (L, Γ, S) is soft locally indiscrete,
then fqv is soft s-r-o.

Proof. Let K ∈ Γ− {0S}. Since fqv is soft s-o, we find H ∈ z− {0T} such that H⊆̃ fqv(K).
Since (M,z, T) is soft locally indiscrete, then H ∈ RO(z). This shows that fqv is soft
s-r-o.

In Theorem 24, we give a sufficient condition for the soft composition of two soft
somewhat-r-open functions to be soft somewhat-r-open:

Theorem 24. If fq1v1 : (L, Γ, S) −→ (M,z, T) is soft open and fq2v2 : (M,z, T) −→ (R, Υ, B)
is soft s-r-o, then f(q2◦q1)(v2◦v1)

: (L, Γ, S) −→ (R, Υ, B) is soft s-r-o.

Proof. Let K ∈ Γ− {0S}. Since fq1v1 is soft open, then fq1v1(K) ∈ z− {0T}. Since fq2v2

is soft s-r-o, then we find H ∈ Υ− {0B} such that H⊆̃ fq2v2

(
fq1v1(K)

)
= f(q2◦q1)(v2◦v1)

(K).
This shows that f(q2◦q1)(v2◦v1)

is soft s-r-o.

In Theorems 25 and 26, we give characterizations of soft somewhat-r-open functions:

Theorem 25. Let fqv : (L, Γ, S) −→ (M,z, T) be a soft function. Then, the following are equivalent:

(a) fqv is soft s-r-o.
(b) If H is soft r-dense in (M,z, T), then f−1

qv (H) is soft dense in (L, Γ, S).

Proof. (a) =⇒ (b): Assume, on the other hand, that we find a soft r-dense set H in (M,z, T)
such that f−1

qv (H) is not soft dense in (L, Γ, S). Then, 1S − ClΓ
(

f−1
qv (H)

)
∈ Γ− {0S}. So, by

(a), we find K ∈ RO(z)− {0T} such that
K ⊆̃ fqv(1S − ClΓ

(
f−1
qv (H)

)
)

⊆̃ fqv(1S − f−1
qv (H))

= fqv( f−1
qv (1T − H))

⊆̃ 1T − H.
Thus, H∩̃K = 0T . Therefore, by Theorem 9, H is not soft r-dense in (M,z, T), which

is a contradiction.
(b) =⇒ (a): Assume, on the other hand, that there exists H ∈ Γ− {0S} such that, if

K ∈ RO(z) such that K⊆̃ fqv(H), then K = 0T .

Claim 2. 1T − fqv(H) is soft r-dense in (M,z, T).

Proof of Claim 2. Suppose to the contrary that 1T − fqv(H) is not soft r-dense in (M,z, T).
Then, by Theorem 5, there exists K ∈ RO(z)− {0T} such that K∩̃

(
1T − fqv(H)

)
= 0T , and

hence, K⊆̃ fqv(H), a contradiction.
Thus, by the above Claim 2 and (b), f−1

qv (1T − fqv(H)) is soft dense in (L, Γ, S). Since
f−1
qv (1T − fqv(H)) = 1S − f−1

qv
(

fqv(H
)
)⊆̃1S − H, then H∩̃ f−1

qv (1T − fqv(H)) = 0S, which
implies that f−1

qv (1T − fqv(H)) is not soft dense in (L, Γ, S), which is a contradiction.

Theorem 26. Let fqv : (L, Γ, S) −→ (M,z, T) be bijective. Then, the following are equivalent:

(a) fqv is soft s-r-o.
(b) If A ∈ Γc such that fqv(A) 6= 0T , then there exists B ∈ RC(z)−{0T} such that fqv(A)⊆̃B.

Proof. Since fqv is bijective, then fqv is soft s-r-o if and only if fq−1v−1 is soft s-r-c. So, we
obtain the result by using Theorem 12.
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Theorems 27 and 28 discuss the behavior of soft somewhat-r-open functions under
soft subspaces:

Theorem 27. If fqv : (L, Γ, S) −→ (M,z, T) is soft s-r-o and W ⊆ L such that CW ∈ Γ, then
the soft restriction

(
fqv
)
|CW

: (W, ΓW , S) −→ (M,z, T) is soft s-r-o.

Proof. Assume that fqv : (L, Γ, S) −→ (M,z, T) is soft s-r-o, and let W ⊆ L such that
CW ∈ Γ. Let H ∈ ΓW − {0S}. Since CW ∈ Γ, then ΓW ⊆ Γ, and thus, H ∈ Γ − {0S}.
Since fqv : (L, Γ, S) −→ (M,z, T) is soft s-r-o, then we find K ∈ RO(z)− {0T} such that
K⊆̃ fqv(H) =

(
fqv
)
|CW

(H).

Theorem 28. Let (L, Γ, S) and (M,z, T) be any two STSs. Let U ⊆ L such that CU is soft dense
in (L, Γ, S). If fqv : (U, ΓU , S) −→ (M,z, T) is soft s-r-o, then for any extension q1 : L −→ M,
fq1v : (L, Γ, S) −→ (M,z, T) is soft s-r-o.

Proof. Let H ∈ Γ − {0S}. Since CU is soft dense in (L, Γ, S), then H∩̃CU 6= 0S. Since
fqv : (U, ΓU , S) −→ (M,z, T) is soft s-r-o and H∩̃CU ∈ ΓU − {0S}, then we find K ∈
RO(z)− {0T} such that K⊆̃ fqu(H∩̃CU)⊆̃ fq1v(H). This completes the proof.

Theorem 29. Let fqv : (L, Γ, S) −→ (M,z, T) be soft s-r-o. If (L, Υ, S) and (M, Ψ, T) are
STSs such that Γ is soft weakly equivalent to Υ and z is soft r-weakly equivalent to Ψ, then
fqv : (L, Υ, S) −→ (M, Ψ, T) is soft s-r-o.

Proof. Let H ∈ Υ − {0S}. Since Γ is soft weakly equivalent to Υ, then we find G ∈
Γ− {0S} such that G⊆̃H. Since fqv : (L, Γ, S) −→ (M,z, T) is soft s-r-o, then we find R ∈
RO(z)− {0T} such that R⊆̃ fqv(G). Since z is soft r-weakly equivalent to Ψ, then we find
K ∈ RO(Ψ)− {0T} such that K⊆̃R⊆̃ fqv(G)⊆̃ fpu(H). This shows that fqv : (L, Υ, S) −→
(M, Ψ, T) is soft s-r-o.

5. Conclusions

The concepts of “soft somewhat-r-continuity” and “soft somewhat-r-openness” for
mappings over soft topological spaces were introduced in this research. We examined soft
composition (Theorems 10, 11, and 24) and soft subspaces (Theorems 13, 14, 27, and 28) and
presented characterizations (Theorems 12, 25, and 26). We provided several linkages
between these two concepts and their associated concepts in soft topology (Theorems 3,
4, and 22). We also provided soft preservation results (Theorems 15 and 19). Finally, we
looked at the correspondence between them and their topological analogs (Theorems 1, 2,
20, and 21 and Corollaries 1, 2, 4, and 5). Future research might look into the following
topics: (1) defining soft semi-continuity; (2) defining soft pre-continuity; (3) finding a use
for our new soft topological principles in a “decision-making problem”.
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