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Abstract: Aiming at the fuzzification of a decision environment and the challenge of determining
the weights associated with the interaction among decision-makers, this study offers an original
method for (p,q)-rung probabilistic hesitant orthopair fuzzy multi-objective group decision-making,
which is founded on the weight optimization principle. Firstly, the notion of a probabilistic hesitant
fuzzy set is expanded to a (p,q)-rung. Secondly, the determination of subjective and objective
weights is accomplished through the utilization of the Analytic Network Process (ANP) and the
Entropy Method. According to the degree of deviation and dispersion of each weight, an optimal
objective function is constructed, and the neural network is used to iteratively solve for the best
scheme of the comprehensive weight. Subsequently, the Elimination Et Choice Translating Reality
(ELECTRE) approach was refined and applied to decision-making in the (p,q)-rung probabilistic
hesitant orthopair fuzzy environment. Finally, comparative analysis was used to demonstrate the
new method’s effectiveness and superiority.

Keywords: multi-objective group decision making; weight optimization; ANP; neural network;
entropy method; ELECTRE approach; (p,q)-rung probabilistic hesitant orthopair fuzzy environment

1. Introduction

Since Zadeh [1] proposed a method based on fuzzy sets in 1965, it has been used
more and more in practical applications. Atanassov [2] introduced the concept of an
intuitionistic fuzzy set that takes a membership degree, non-membership degree, and
hesitant degree into consideration. Torra [3] proposed the hesitant fuzzy set theory in order
to more precisely define the membership function and resolve the issue of inconsistent
preferences among decision-makers. As an illustration, there are interval-valued hesitant
fuzzy sets [4], dual hesitant fuzzy sets [5], hesitant triangular fuzzy sets [6], and hesitant
linguistic fuzzy sets [7]. Xu et al. [8] proposed the definition of a probabilistic hesitant fuzzy
set in order to properly consider the probability of each membership degree. Yager [9]
introduced the concept of q-rung orthopair fuzzy sets in 2017, taking into account the
restricted value range of membership degrees and non-membership degrees in previous
fuzzy sets. In 2022, Seikh and Mandal [10] proposed the concept of p,q-quasirung orthopair
fuzzy sets to further expand the value range of a membership degree and non-membership
degree. However, none of the above-mentioned fuzzy sets can truly encompass fuzzy
information, and intuitionistic fuzzy sets do not account for the hesitation of actual decision-
makers. p,q-quasirung orthopair fuzzy sets and probabilistic hesitant fuzzy sets restrict
the preferences of decision makers for alternatives and the values of membership and non-
membership degrees, respectively. Consequently, in order to evaluate the overall qualities
of the alternatives specifically, the concept of (p,q)-rung probabilistic hesitant orthopair
fuzzy sets is introduced.

When experts make decisions on some schemes, determining the weight is a crucial
issue. Since it is challenging to precisely define the attribute weights in practical problems,

Symmetry 2023, 15, 2043. https://doi.org/10.3390/sym15112043 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15112043
https://doi.org/10.3390/sym15112043
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym15112043
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15112043?type=check_update&version=1


Symmetry 2023, 15, 2043 2 of 20

academicians have proposed a variety of solutions. Universal techniques for calculating
subjective weights include the Best-Worst Method (BWM), the Linear Barycentric Weighting
Approach (LBWA), the Full Consistency Method (FUCOM), and the Analytic Network
Process (ANP), among others. The BWM technique [11] is very simple to learn and apply,
but it has the potential to oversimplify complicated choice scenarios by focusing only on the
best and worst traits and ignoring other crucial considerations. The LBWA approach [12] is
straightforward, intuitive, and simple to understand; yet, this method relies too heavily on
the weight of the index and ignores the internal relationship and interactions between the
indicators. The FUCOM technique [13] is a fuzzy trade-off approach that helps decision-
makers weigh various decision criteria. However, the operation of this method is tedious
and easily affected by various factors, and the conclusion is not intuitive enough. The ANP
technique [14] is applied to complex decision situations in which the guidelines and plans
are interdependent from feedback. It allows decision-makers to properly comprehend
and analyze the interdependencies across criteria, making decision-making more realistic
and detailed. To some extent, this also helps to address the uncertainty of the outcomes
produced by changes in individual preferences. A typical objective weighting method is the
entropy method [15]. It determines the relative weight of each criterion based on its entropy
value, avoiding the problem of subjective weighting. This technique considers the amount
of information contained in each criterion and allows for a more comprehensive assessment
of each criterion’s value. Single subjective and objective procedures frequently have
inconsistent subjective preferences or objective rules; however, the integrated weighing
method can combine the benefits of the two methods while alleviating their drawbacks.
As a result, in order to account for the interaction of decision-makers as well as the link
between qualities, this research employs the ANP technique and the entropy method to
get the subjective and objective weights, respectively. Furthermore, taking the degree
of deviation and dispersion between subjective and objective weighting as the objective
function, a weighted optimal mathematical model is constructed, and the neural network
is used to iteratively solve for the optimal solution of the combination weight, taking into
account the influence of subjective and objective weights on the combination weight. This
method simulates the operation of the human brain nervous system by connecting and
calculating many nodes to achieve the combination and output of the nonlinear model.

For multi-attribute group decision-making problems, scholars have proposed a variety
of decision methods, such as the Vlse Kriterijumski Optimizacioni Racun (VIKOR), the
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), the Multi-
Attributive Border Approximation Area Comparison (MABAC), the Elimination Et Choice
Translating Reality (ELECTRE), etc. The VIKOR technique [16] is an easy-to-understand
and applicable multi-standard decision-making method, which enables decision-makers
to combine the priority of their choice with its weighting. However, it does not always
make it plain how to find a compromised solution, which might make the decision-making
process difficult to understand. The TOPSIS method [17] is an approach to the ideal so-
lution developed by Hwang and Yoon. Its flexibility is manifested in the fact that it can
use any indicator, any decision-maker opinion, and questions applicable to a variety of
domains. However, it requires a high standardization of the data and needs to transform
the indicator data into dimensionless relative indicators for comparison and ranking. This
may make certain assumptions and transformations on the data, leading to an increased
uncertainty and subjectivity of the results. The MABAC technique [18] is a multi-criteria
decision-making method that assesses and ranks alternatives based on a variety of fac-
tors. This method uses a geometric representation method called “edge approximation
domain”, which can visually compare the selection results and help to better understand
and communicate when making decisions. However, for the selection of large-scale data
sets, we must classify them and determine their scope, and the amount of calculations is
very large. As a result, it is unsuitable for complex choice issues. Almeida [19] created the
ELECTRE technique in 2005, which determines the ideal answer by establishing a series of
preference relations and evaluating the alternative solutions. This method can uniformly
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analyze a variety of criteria, analyze a large amount of information, and use quantitative
description or hierarchical comparison to describe the relationship between the criteria,
thus giving a clear judgment conclusion. This assists decision-makers in understanding and
interpreting the final decision. The theory and application of the ELECTRE approach have
been investigated by academics. Chen [20] analyzed the multi-criteria selection process
using the interval-valued intuitionistic fuzzy ELECTRE multi-criteria assessment and selec-
tion approach. To increase the accuracy and consistency of weight calculation, Jagtap [21]
suggested an updated Simos and Analytic hierarchy process (AHP) weighting method.
According to available research, the ELECTRE approach is an excellent strategy to handle
the decision problem. As a result, in order to adapt to the new fuzzy environment, the
ELECTRE method must be improved and extended.

In summary, intensive research on fuzzy sets and weights has yielded astonishing
findings and made significant contributions to decision-making in many areas. However, in
the current research, it is critical to broaden the desirable attribute value range. Furthermore,
there is less research on the interaction between decision-makers and the link between
qualities in the decision-making context. Exploring strategies to improve existing decision-
making processes is also of interest. As a result, in the (p,q)-rung probabilistic hesitant
orthopair fuzzy environment, the weighted optimal solution of multi-attribute group
decision-making is given, and the modified ELECTRE method is given. The remainder
of the paper is organized as follows: The requirements for the remainder of the paper
are introduced in Section 2; Section 3 defines (p,q)-rung probabilistic hesitant orthopair
fuzzy sets and their related concepts; Section 4 defines the weighted optimal mathematical
model and presents an upgraded (p,q)-rung probabilistic hesitant orthopair fuzzy ELECTRE
approach, taking into account the mutual effects of decision-makers and the link between
characteristics. The algorithm’s efficacy and applicability are proven through a comparative
study of similar studies, using logistics location as an example; The conclusion is offered
in Section 5.

2. Preliminaries

This chapter mainly expounds some basic knowledge of fuzzy sets in order to help us
better understand the relevant theories provided.

Definition 1 ([2]). If X is a non-empty universe, then the intuitionistic fuzzy set B on X is
defined as:

B = {< x, µB(x), νB(x) > | x ∈ X}

where µB(x) : | → [0, 1] is the membership function of B, νB(x) : | → [0, 1] is the non-membership
function of B, and ∀x ∈ X, 0 ≤ µB(x) + νB(x) ≤ 1. For the above intuitionistic fuzzy set, refer to
πB(x) = 1− µB(x)− νB(x) as the hesitancy degree of X to B, and ∀x ∈ X, 0 ≤ πB(x) ≤ 1.

Definition 2 ([3]). If X is a non-empty universe, then the hesitant fuzzy set B on X is defined as:

B = {< x, fB(x) > |x ∈ X}

where fB(x) is the set formed by different values in the interval [0,1], x is the membership degree of
the set B, and fB(x) is called the hesitant fuzzy element.

Definition 3 ([8]). If X is a non-empty universe, then the probabilistic hesitant fuzzy set B on Xis
defined as:

B = {< x, fB(x)|pB(x)|x ∈ X}

where set fB(x)|pB(x) = {uB,s(x)|pB,s(x)|s = 1, 2, . . . l,
l

∑
s=1

pB,s(x) ≤ 1} is called the proba-

bilistic hesitant fuzzy number, and uB,s(x) ∈ [0, 1] is the membership degree. The real number
pB,s(x) ∈ [0, 1] represents the probability value corresponding to the membership degree, and l is
the number of probabilistic hesitant fuzzy numbers.
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Definition 4 ([22]). If X is a non-empty universe, then the probabilistic q-rung orthopair proba-
bilistic hesitant fuzzy set B on X is defined as:

B = {< x, fB(x) |pB(x)> |x ∈ X}

where: fB(x)|pB(x) = {< uB,s(x) , vB,s(x) > |pB,s(x)|uq
B,s(x) + vq

B,s(x) ≤ 1, pB,s(x)

∈ [0, 1], q ∈ N+,uB,s(x) ∈ [0, 1], vB,s(x) ∈ [0, 1], |s = 1, 2 . . . , l,
l

∑
s=1

pB,s(x) ≤ 1}.

The hesitancy degree is πB,p(x) =
(

l
∑

s=1
pB,s(x)πB,s(x)

) 1
q

, q is a positive integer, and

πB,s(x) = q
√

1− µq
B,s(x)− νq

B,s(x).

3. (p,q)-Rung Probabilistic Hesitant Orthopair Fuzzy Sets

{<0.81,0.82>|1} is a q-rung probability hesitant orthopair fuzzy number. According to
definition (4), when q = 3,0.813 + 0.823 > 1, and when q = 4, some of the original information is
lost. As a result, in order to properly deal with decision circumstances, a more flexible fuzzy set
is required.

Definition 5. Let X be a non-empty universe, and the following is a (p,q)-rung probabilistic hesitant
orthopair fuzzy set:

B = {< x, fB(x) |pB(x)> |x ∈ X}

where: fB(x)|pB(x) = {< uB,s(x) , vB,s(x) > |pB,s(x)|up
B,s(x) + vq

B,s(x) ≤ 1, pB,s(x)

∈ [0, 1],p ∈ N+, q ∈ N+, uB,s(x) ∈ [0, 1], vB,s(x) ∈ [0, 1], |s = 1, 2 . . . , l,
l

∑
s=1

pB,s(x) ≤ 1}.

uB,s(x), vB,s(x) denote the possible membership and possible non-membership of x ∈ B,
respectively, pB,s(x) is the corresponding probability of < uB,s(x), vB,s(x) >, and (p, q) is a
positive integer pair. Each pair {<uB,s(x), vB,s(x) > |pB,s(x )} will be referred to in this paper as
(p,q)-rung probabilistic hesitant orthopair fuzzy numbers, abbreviated as {<uB,s, vB,s > | pB,s}.

There are many kinds of pairs of positive integers satisfying (p,q), such as {0.7, 0.9|1},
whose (p,q) can take (4.3), (4.4), (5,3) and other positive integers. Therefore, in order to
calculate and compare the fuzzy information of the index in a convenient manner, the value
principle of (p,q) is prescribed in this paper.

The values of the s-th fuzzy numbers and of a (p,q)-rung probabilistic hesitant orthopair
fuzzy set are as follows: 

0 ≤ ups B,s(x) + vqs B,s(x) ≤ 1
min[(p s+qs) + |ps−qs |]
uB,s(x) ≤ vB,s(x), ps ≥ qs
uB,s(x) ≥ vB,s(x), ps ≤ qs
ps ∈ N+, qs ∈ N+

The values of this fuzzy set (p,q) are as follows:

p = max{ps|s = 1, . . . , l}
q = max{qs|s = 1, . . . , l}
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Definition 6. If A = {< uA,i , vA,i > | pA,i}, B = {< uB,s , vB,s > | pB,s} are two (p,q)-rung
probabilistic hesitant orthopair fuzzy numbers and λ ≥ 0 , then the operation rules are as follows:

1.AC = {< vA,i , uA,i > | pA,i}
2.Aλ =

{
< uλ

A,i , q
√

1− (1− vq
A,i)

λ > | pA,i}

3.λA =

{
< p
√

1− (1− up
A,i)

λ , vλ
A,i > | pA,i}

4.A⊕ B =
{
< p
√

up
A,i + up

B,s − up
A,iup

B,s , vA,ivB,s > | pA,i pB,s}
5.A⊗ B = {< uA,iuB,s , q

√
vq

A,i + vq
B,s − vq

A,ivq
B,s > | pA,i pB,s}

Definition 7. Let X be a non-empty universe. B = {< x, fB(x) |pB(x)> |x ∈ X} is a (p,q)-rung
probabilistic hesitant orthopair fuzzy set, and Bb(p) =

{
< ub,s , vb,s > |p(s)|s = 1, 2, . . . , l} is

its (p,q)-rung probabilistic hesitant orthopair fuzzy number. The hesitance degree πB,s(x) of its s-th
element can be mathematically represented as follows:

πB,s(x) = k

√
2− up

B,s(x)− vq
B,s(x)− pB,s(x)

2
The overall hesitancy of B is as follows:

¯
πB,s(x) =

1
l

l

∑
s=1

πB,s(x)

wherek is the least common multiple of p and q, and πB,s(x) ∈ [0, 1],
¯

πB,s(x) ∈ [0, 1].
To demonstrate that Definition 5 can handle decision cases better than Definition 4,

we apply the new fuzzy set theory to data at the beginning of this section.
Assume {<0.81,0.82>|1} is set on an element’s attribute values. We can get 0.814 + 0.823 < 1

by using Definition 5. Furthermore, it preserves more original information and can cope with fuzzy
information more successfully than 0.814 + 0.824 < 1.

3.1. Ranking of (p,q)-Rung Probabilistic Hesitant Orthopair Fuzzy Sets

According to Li’s theory [23], decision-makers often aspire for a high degree of mem-
bership in the scheme, a low degree of non-membership, and minimal hesitancy during the
decision-making process. Hence, the inclusion of hesitancy as a crucial factor must be taken
into account while evaluating decision-related information. The score function presented in
this work takes into account the element of individuals’ hesitancy comprehensively, hence
enhancing its alignment with real-world circumstances. The precise functional form can be
expressed as follows:

Definition 8. Let Bb(p) =
{
< ub,s , vb,s > |p(s)|s = 1, 2, . . . , l} be a (p,q)-rung probabilistic

hesitant orthopair fuzzy number, denote (1) as the score function of Bb(p), and S(Bb(p)) ∈ [0, 1].

S(Bb(p)) =
1
4


2 +

l
∑

s=1
ps(up

b,s − vq
b,s)

l
∑

s=1
ps

+

l
∑

s=1
ps(up

b,s−vq
b,s)

l
∑

s=1
ps

1 + 1
l

l
∑

s=1
πk

b,s


(1)

Part

l
∑

s=1
ps(up

b,s−vq
b,s)

l
∑

s=1
ps

represents the herd mentality of humanity. When support exceeds

opposition, that is u � v. According to the value principle of (p,q) in this paper, up � vq
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can be obtained, thus

l
∑

s=1
ps(up

b,s−vq
b,s)

l
∑

s=1
ps

� 0, and hesitant individuals choose to support at

this time; in the contrary situation, they began to oppose the attitude. 1

1+ 1
l

l
∑

s=1
πk

b,s

implies

that the decision-maker favors the occurrence with the lower degree of uncertainty, which
is better in keeping with the actual decision circumstance.

Definition 9. Let Bb(p) =
{
< ub,s , vb,s > |p(s)|s = 1, 2, . . . , l} be a (p,q)-rung probabilistic

hesitant orthopair fuzzy number, denote (2) as the exact function of Bb(p), and H(Bb(p)) ∈ [0, 1].

H(Bb(p)) =

l
∑

s=1
ps(up

b,s + vq
b,s)

l
∑

s=1
ps

(2)

Definition 10. If Bb1(pb1) and Bb2(pb2) are two (p,q)-rung probabilistic hesitant orthopair fuzzy
sets, S(Bb1(pb1)), S(Bb2(pb2)) are their scoring functions, and H(Bb1(pb1)), H(Bb2(pb2)) are
their exact functions, then the comparison principle of two (p,q)-rung probabilistic hesitant orthopair
fuzzy numbers is as follows:

If S(Bb1(pb1)) ≺ S(Bb2(pb2)), then Bb1(pb1) ≺ Bb2(pb2)
If S(Bb1(pb1)) � S(Bb2(pb2)), then Bb1(pb1) � Bb2(pb2)
If S(Bb1(pb1)) = S(Bb2(pb2)), then when
(1)H(Bb1(pb1)) � H(Bb2(pb2)), there are Bb1(pb1) � Bb2(pb2)
(2)H(Bb1(pb1)) ≺ H(Bb2(pb2)), there are Bb1(pb1) ≺ Bb2(pb2)
(3)H(Bb1(pb1)) = H(Bb2(pb2)), there are Bb1(pb1) = Bb2(pb2)

3.2. Entropy Measure of (p,q)-Rung Probabilistic Hesitant Orthopair Fuzzy Sets

Definition 11. If Z = {< x, fZ(x) |pZ(x)> |x ∈ X} is a (p,q)-rung probabilistic hesitant
orthopair fuzzy set over a non-empty universe of X = {x1, x2, . . . , xn} , then the following entropy
formula is derived:

E(Z) =
1

2nl

n

∑
i=1

l

∑
s=1

[2− |up
σ(s)(xi)− vq

σ(s)(xi)|max{(up
σ(s)(xi), vq

σ(s)(xi)} − |u
p
σ(s)(xi)− vq

σ(s)(xi)|pσ(s)(xi)] (3)

Theorem 1. This paper proposes an entropy formula with the following five properties:

(p1) : 0 ≤ E(Z) ≤ 1
(p2) : E(Z) = 0⇔ Z = {< 0, 1 > |1} or Z = {< 1, 0 > |1}
(p3) : E(Z) = 1⇔ Z = {< a, a > | b} ,a ∈ [0, 1],b ∈ [0, 1]
(p4) : E(Z) = E(ZC)
(p5) : E(Z1) ≤ E(Z2), If Z2‘s information is more ambiguous than Z1‘s information.

Proof of Theorem 1. (p1), (p2), (p3), p(4) clearly hold, and it follows to prove whether
p(5) holds.

Assuming X = {x}, consider the following equation:

f (x, y, z) = [2− |xp − yq|max{xp, yq} − |xp − yq|z], x, y, z ∈ [0, 1], xp + yq ≤ 1, p, q ∈ N+
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When x ≤ y, according to the value principle of (p,q) in this paper, xp ≤ yq can be
obtained.

Take the partial derivatives with respect to x, y, z separately:

∂ f
∂x

= pxp−1yq + pxp−1z ≥ 0,
∂ f
∂y

= qyq−1(xp − 2yq)− qyq−1z ≤ 0,
∂ f
∂z
≤ 0

So, as x ≤ y, f is increasing with x, decreasing with y, and decreasing with z.
When x ≥ y, according to the value principle of (p,q) in this paper, xp ≥ yq can

be obtained.

∂ f
∂x

= pxp−1(yq − 2xp)− pxp−1z ≤ 0,
∂ f
∂y

= qyq−1xp + qyq−1z ≥ 0,
∂ f
∂z
≤ 0

So, as x ≥ y, f is decreasing with x, increasing with y, and decreasing with z.
So, based on the preceding stages, we can obtain:
When uσ(2)(xi) ≤ vσ(2)(xi), uσ(1)(xi) ≤ uσ(2)(xi), vσ(1)(xi) ≥ vσ(2)(xi), pσ(1)(xi) ≥

pσ(2)(xi) or uσ(2)(xi) ≥ vσ(2)(xi), uσ(1)(xi) ≥ uσ(2)(xi), vσ(1)(xi) ≤ vσ(2)(xi), pσ(1)(xi) ≥
pσ(2)(xi), we have f (uσ(1)(xi), vσ(1)(xi), pσ(1)(xi)) ≤ f (uσ(2)(xi), vσ(2)(xi), pσ(2)(xi)).

Hence, E(Z1) = 1
2nl

n
∑

i=1
f (uσ(1)(xi), vσ(1)(xi), pσ(1)(xi)) ≤ E(Z2) = 1

2nl

n
∑

i=1
f (uσ(2)(xi),

vσ(2)(xi), pσ(2)(xi)).
That is, when the information of Z2 is more ambiguous than the information of Z1,

there is E(Z1) ≤ E(Z2).

3.3. The Distance Measures of (p,q)-Rung Probabilistic Hesitant Orthopair Fuzzy Sets

Distance measurement is a perennially contentious issue in the decision-making pro-
cess, and it is also a crucial component of fuzzy set theory. It has been utilized extensively in
numerous disciplines, including that of pattern recognition, attribute decision-making, etc.
A distance measure can quantify the spread between two alternatives in a decision analysis.
The closer the distance between the alternative to be chosen and the ideal alternative, the
more likely this alternative is to be chosen.

According to the concept of hesitant fuzzy sets, the cardinality of two hesitant fuzzy
sets is not necessarily equal, which depends on the subjective will of decision-makers. As
an extension of hesitant fuzzy sets, (p,q)-rung probability hesitant orthopair fuzzy sets
also have this property. To enable a meaningful comparison, it is imperative to modify
their respective structures. This adjustment serves the purpose of preserving the inherent
fuzziness of the fuzzy set, while also simplifying the computation of the distance between
the two sets. The proposed adjustment system is outlined as follows:

Normalization: The procedure is the same as that of reference [24] for the normaliza-
tion of probabilistic hesitant fuzzy sets.

Ranking: The fuzzy numbers in the (p,q)-rung probabilistic hesitant orthopair fuzzy
set are sorted according to the values of membership degree to the power of p—non-
membership degree to the power of q. If the values are equal, the fuzzy numbers are sorted
according to membership degree to the power of p + non-membership degree to the power
of q.

Expansion: The expansion process is the same as the expansion process of probabilistic
hesitant fuzzy sets in the literature [25].

Example 1. Let A = {< 0.6, 0.4 > |0.54,< 0.6, 0.6 > |0.36} and B = {< 0.5, 0.3 > |0.32,
< 0.7, 0.4 > |0.32,< 0.3, 0.1 > |0.16} be two (p,q)-rung probabilistic hesitant orthopair fuzzy sets.

Since 0.54 + 0.36 < 1, 0.32 + 0.32 + 0.16 = 0.8 < 1, A, B must be normalized first.
According to the value principle of (p,q) in this paper, p = 1, q = 2, in this case:
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−
A = {< 0.6, 0.4 > |0.6,< 0.6, 0.6 > |0.4}
−
B = {< 0.5, 0.3 > |0.4,< 0.7, 0.4 > |0.4,< 0.3, 0.1 > |0.2}

Second, sort it to get:

−−
A = {< 0.6, 0.4 > |0.6,< 0.6, 0.6 > |0.4}
−−
B = {< 0.7, 0.4 > |0.4,< 0.5, 0.3 > |0.4 < 0.3, 0.1 > |0.2}

Finally, it can be obtained through expansion:

−−−
A = {< 0.6, 0.4 > |0.4,< 0.6, 0.4 > |0.2,< 0.6, 0.6 > |0.2,< 0.6, 0.6 > |0.2}
−−−

B = {< 0.7, 0.4 > |0.4,< 0.5, 0.3 > |0.2,< 0.5, 0.3 > |0.2,< 0.3, 0.1 > |0.2}

It has been determined that the transformed fuzzy set still contains the original fuzzy
data. The following section proposes the properties and formulations of distance measures
for (p,q)-rung probabilistic hesitant orthopair fuzzy sets.

Theorem 2. A distance measure in a (p,q)-rung probabilistic hesitant orthopair fuzzy environment
must possess the following four properties:

E1 : 0 ≤ D(B1, B2) ≤ 1
E2 : D(B1, B2) = D(B2, B1)
E3 : D(B1, B2) = 0⇔ B1 = B2
E4 : D(B1, B2) + D(B2, B3) ≥ D(B1, B3)

Based on Theorem 1, we will now investigate the distance measures of (p,q)-rung
probabilistic hesitant orthopair fuzzy sets.

Definition 12. Let the domain of discourse be B = {x1, x2, . . . , xn} and two (p,q)-rung proba-
bilistic hesitant orthopair fuzzy sets be B1 =

{
xi,< uB1,j(xi), vB1,j(xi) > |pB1,j(xi)|xi ∈ B, j =

1, . . . , l}, B2 =
{

xi,< uB2,j(xi), vB2,j(xi) > |pB2,j(xi)|xi ∈ B, j = 1, . . . , l}, respectively. Then
the distance measure between B1, B2 can be defined as follows.

D(B1, B2) =
1

4|B|
B

∑
i=1

LB1 B2 (xi)

∑
s=1

pσ(s)(xi) · (|bu
is|+ |bv

is|+ |bπ
is|+ |bu

is − bv
is − bπ

is|) (4)

where:
bu

is = up
B1,σ(s)(xi)− up

B2,σ(s)(xi)

bv
is = vq

B1,σ(s)(xi)− vq
B2,σ(s)(xi)

bπ
is = πk

B1,σ(s)(xi)− πk
B2,σ(s)(xi)

pσ(s) is the probability value corresponding to the s-th element of the (p,q)-rung probabilistic
hesitant orthopair fuzzy set corresponding to element xi after normalization, sorting, and expansion;
LB1 B2(xi) is the number of elements of the (p,q)-rung probabilistic hesitant orthopair fuzzy set
B1, B2 after normalization, sorting, and expansion.

We now turn to show that the distance measure proposed by Equation (4) satisfies the
requirements given in Theorem 2.

Let B1 = {xi,< uB1,j(xi), vB1,j(xi) > |pB1,j(xi)|j = 1, . . . , l}, B2 ={xi,< uB2,k(xi),
vB2,k(xi) > | pB2,k(xi) |k = 1, . . . , s}, and B3 = {xi,< uB3,e(xi), vB3,e(xi) > |pB3,e(xi)|e =
1, . . . , h} be (p,q)-rung probabilistic hesitant orthopair fuzzy sets defined on B, and B = {X}.

Normalize B1, B2, sort it, expand it, and then:
In order to achieve normalization, B1, B2 are subjected to a sorting process, followed

by an expansion.
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B1 = {xi,< uB1,j(xi), vB1,j(xi) > |pB1,j(xi)|j = 1, . . . , .l} ⇒
−
B1 = {xi,< uB1,σ(s)(xi), vB1,σ(s)(xi) > |pσ(s)(xi)|s = 1, . . . , LB1 B2}

B2 = {xi,< uB2,k(xi), vB2,k(xi) > |pB2,k(xi)|k = 1, . . . , s} ⇒
−
B2 = {xi,< uB2,σ(s)(xi), vB2,σ(s)(xi) > |pσ(s)(xi)|s = 1, . . . , LB1 B2}

For E(1):
D(B1, B2) ≥ 0 is clearly true.
Let’s prove D(B1, B2) ≤ 1.

|bu
s |+ |bv

s |+ |bπ
s | = |up

B1,σ(s) − up
B2,σ(s)|+ |vp

B1,σ(s) − vp
B2,σ(s)|+ |πk

B1,σ(s) − πk
B2,σ(s)|

≤ up
B1,σ(s) + up

B2,σ(s) + vp
B1,σ(s) + vp

B2,σ(s) + πk
B1,σ(s) + πk

B2,σ(s)
= up

B1,σ(s) + vp
B1,σ(s) + πk

B1,σ(s) + up
B2,σ(s) + vp

B2,σ(s) + πk
B2,σ(s)

≤ 2

Combining the above process, it can be obtained:

|bu
s − bv

s − bπ
s | ≤ |bu

s |+ |bv
s |+ |bπ

s | ⇒ |bu
s − bv

s − bπ
s | ≤ 2⇒ pσ(s)(|bu

s |+ |bv
s |+ |bπ

s |+ |bu
s − bv

s−
bπ

s |) ≤ 4pσ(s) ⇒ |bu
s − bv

s − bπ
s | ≤ 2⇒ pσ(s)(|bu

s |+ |bv
s |+ |bπ

s |+ |bu
s − bv

s − bπ
s |) ≤ 4pσ(s) ⇒

D(B1, B2) = 1
4

LB1 B2
∑

s=1
pσ(s)(|bu

s| + |bv
s| + |bπ

s| + |bu
s − bv

s − bπ
s|) ≤ 1

4

LB1 B2
∑

s=1
4pσ(s) =

LB1 B2
∑

s=1
pσ(s) = 1

Therefore, E(1) holds.
For E(2):

D(B2, B1) =
1
4

LB1 B2
∑

s=1
pσ(s)(|up

B2,σ(s) − up
B1,σ(s)|+ |vp

B2,σ(s) − vp
B1,σ(s)|+ |πk

B1,σ(s) − πk
B2,σ(s)|

+|up
B2,σ(s) − up

B1,σ(s) − vp
B2,σ(s) + vp

B1,σ(s) − πk
B1,σ(s) + πk

B2,σ(s)|)

= 1
4

LB1 B2
∑

s=1
pσ(s)(|up

B1,σ(s) − up
B2,σ(s)|+ |vp

B1,σ(s) − vp
B2,σ(s)|+ |πk

B1,σ(s) − πk
B2,σ(s)|

+|up
B1,σ(s) − up

B2,σ(s) − vp
B1,σ(s) + vp

B2,σ(s) − πk
B1,σ(s) + πk

B2,σ(s)|)
= D(B1, B2)

Therefore, E(2) holds.
For E(3):
First, we demonstrate the sufficiency:

D(B1, B2) = 0⇒ 1
4

LB1 B2
∑

s=1
pσ(s)(|bu

s |+ |bv
s |+ |bπ

s |+ |bu
s − bv

s − bπ
s |) = 0⇒ bu

s = bv
s = bπ

s = 0

⇒ up
B1,σ(s) = up

B2,σ(s), vp
B1,σ(s) = vp

B2,σ(s), πk
B1,σ(s) = πk

B2,σ(s) ⇒ B1 = B2

Then demonstrate the necessity:

B1 = B2 ⇒ up
B1,σ(s) = up

B2,σ(s), vp
B1,σ(s) = vp

B2,σ(s), πk
B1,σ(s) = πk

B2,σ(s) ⇒ bu
s = bv

s = bπ
s = 0

1
4

LB1 B2
∑

s=1
pσ(s)(|bu

s |+ |bv
s |+ |bπ

s |+ |bu
s − bv

s − bπ
s |) = 0⇒ D(B1, B2) = 0

Therefore, E(3) holds.
For E(4):

Normalize
−
B1,

−
B2 and B3, sort it, expand it, and then:

−
B1 =

{
xi ,< uB1 ,σ(s)(xi), vB1 ,σ(s)(xi) > |pσ(s)(xi)|s = 1, . . . , LB1 B2

}
⇒

=
B1 =

{
xi ,< uB1 ,σ(j)(xi), vB1 ,σ(j)(xi) > |pσ(j)(xi)|j = 1, . . . , LB1 B2 B3

}
−
B2 =

{
xi ,< uB2 ,σ(s)(xi), vB2 ,σ(s)(xi) > |pσ(s)(xi)|s = 1, . . . , LB1 B2

}
⇒

=
B2 =

{
xi ,< uB2 ,σ(j)(xi), vB2 ,σ(j)(xi) > |pσ(j)(xi)|j = 1, . . . , LB1 B2 B3

}



Symmetry 2023, 15, 2043 10 of 20

B3 =
{

xi ,< uB3 ,e(xi), vB3 ,e(xi) > |pB3 ,e(xi)|e = 1, . . . , h} ⇒
=
B3 =

{
xi ,< uB2 ,σ(j)(xi), vB2 ,σ(j)(xi) > |pσ(j)(xi)|j = 1, . . . , LB1 B2 B3

}

D(B1, B2) + D(B2, B3) =
1
4

LB1 B2 B3
∑

j=1
pσ(j)[(|up

B1,σ(j) − up
B2,σ(j)|+ |vp

B1,σ(j) − vp
B2,σ(j)|+ |πk

B1,σ(j) − πk
B2,σ(j)|

+|up
B1,σ(j) − up

B2,σ(j) − vp
B1,σ(j) + vp

B2,σ(j) − πk
B1,σ(j) + πk

B2,σ(j)|)
+(|up

B2,σ(j) − up
B3,σ(j)|+ |vp

B2,σ(j) − vp
B3,σ(j)|+ |πk

B2,σ(j) − πk
B3,σ(j)|

+|up
B2,σ(j) − up

B3,σ(j) − vp
B2,σ(j) + vp

B3,σ(j) − πk
B2,σ(j) + πk

B3,σ(j)|)]

≥ 1
4

LB1 B2 B3
∑

j=1
pσ(j)(|up

B1,σ(j) − up
B2,σ(j) + up

B2,σ(j) − up
B3,σ(j)|

+|vp
B1,σ(j) − vp

B2,σ(j) + vp
B2,σ(j) − vp

B3,σ(j)|
+|πk

B1,σ(j) − πk
B2,σ(j) + πk

B2,σ(j) − πk
B3,σ(j)|

+|up
B1,σ(j) − up

B2,σ(j) − vp
B1,σ(j) + vp

B2,σ(j) − πk
B1,σ(j) + πk

B2,σ(j)
+up

B2,σ(j) − up
B3,σ(j) − vp

B2,σ(j) + vp
B3,σ(j) − πk

B2,σ(j) + πk
B3,σ(j)|)

= 1
4

LB1 B2 B3
∑

j=1
pσ(j)[(|up

B1,σ(j) − up
B3,σ(j)|+ |vp

B1,σ(j) − vp
B3,σ(j)|+ |πk

B1,σ(j) − πk
B3,σ(j)|

+|up
B1,σ(j) − up

B3,σ(j) − vp
B1,σ(j) + vp

B3,σ(j) − πk
B1,σ(j) + πk

B3,σ(j)|)
= D(B1, B3)

Therefore, E(4) holds.
Based on the previous proof, it can be concluded that the distance measure formula

given in this paper fulfills the specified conditions.

4. Weight Optimization Algorithm in (p,q)-Rung Probabilistic Hesitant Orthopair
Fuzzy Environments
4.1. Steps of the Algorithm

Due to the limitations of human cognitive ability and the unpredictability of objectivity,
it is always challenging to acquire all attribute weighting information during multi-attribute
decision-making. By using the ANP and entropy method to comprehensively evaluate
the interaction among expert groups and the correlation degree of each index, a subjective
evaluation index system based on ANP is established. On this basis, the weighted optimal
mathematical model is constructed by taking the deviation and dispersion degree of the
subjective and objective weighting as indicators, and the artificial neural network is used
to calculate it iteratively. Then, the enhanced ELECTRE method is used to calculate the
overall advantage value, overall disadvantage, value and comprehensive evaluation value
of each alternative project. The procedure is as follows:

Step 1: Construct a (p,q)-rung probabilistic hesitant orthopair fuzzy decision ma-
trix T = (aij)m×n according to the decision information provided by the expert, where
aij =

{
< fAi (Cj), gAi (Cj)> |pAi (Cj)

}
is the expert’s evaluation of alternative Ai under

attribute Cj.
Step 2: Subjective weights and objective weights are computed using the ANP and

entropy weight method.
The ANP replaces the hierarchical structure of the Analytic Hierarchy Process (AHP)

with a network structure in order to establish a more complex relationship of influence
between decision-making elements. In view of the interdependence between the elements
and levels, this method focuses on subjectivity, and its steps are:

(1) The simulation network model is established. Through a literature review and expert
interview, the factors influencing the ANP are systematically analyzed, the interaction
relationship between the elements is determined, and the ANP network structure
diagram is created.

(2) Construct a network evaluation matrix, compile expert opinions using the Delphi
method, and quantify the relative significance of each index in a matrix. Using the
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1–9 scale criterion, the value of relevant importance is determined, and the priority
vector is calculated.

(3) Eigenvalues and eigenvectors are computed and their consistency is examined. The
eigenvector is computed using the eigenvalue method and Equation (5), where λmax
is the largest eigenvalue of the eigenvector.

AW = λmaxW (5)

Using Equation (6), ascertain if the matrix satisfies the condition.

CR =
λmax − 1/n− 1

RI
(6)

Here, n is the order of the evaluation matrix, CI is the consistency index, CR is the
consistency ratio, RI is the average random index, and it passes the consistency test if RI < 0.1.

(4) Determine the super limit matrix A∞. The eigenvectors of each index that satisfy the
consistency test are combined into a super matrix without weights. The unweighted
supermatrix is normalized to produce the weighted supermatrix, which is then stabi-
lized to produce the limited supermatrix. When i→ ∞ , the limited super matrix is
uniquely convergent, as shown by Equation (7), and the evaluation matrix weight ω′j
can be calculated.

A∞ = lim
i→∞

(A)i (7)

The formula for the entropy weight method is:

w′′j =
1− E(Cj)

n−
n
∑

j=1
E(Cj)

, j = 1, 2, . . . , n (8)

where E(Cj) =
1
m

m
∑

i=1
E(Cij), i = 1, 2, . . . , m.

Step 3: Due to the subjective limitations of the ANP, the entropy method cannot make
subjective judgments that correspond to the actual situation. Consequently, a technique for
combining the weights is required. Under the influence of both subjective and objective
factors, the weighting coefficient ωj is used as the comprehensive weighting to minimize
the error and maximize the degree of dispersion. The weighted optimal mathematical
model is as follows:

minT = α
m
∑

i=1

n
∑

j=1

[((
ωj −ωj

′)sij
)2

+
((

ωj −ωj
′′)sij

)2
]
− β

n
∑

j=1

m
∑

i=1

m
∑

h=1

[(
sij − shj

)
ωj

]2

s.t.
n
∑

j=1
ωj = 1

ωj > 0, j = 1, 2, . . . , n

(9)

α and β represent the importance degree, ωj
′ represents the subjective weight, ωj

′′

represents the objective weight, sij is the j-th attribute value of the i-th evaluation object,
and m represents the total number of evaluation objects.

Given that Formula (9) represents a nonlinear model, it is worth noting that neural
networks possess the capability to efficiently identify the optimal solution in a timely
manner. The loss function is given by Formula (9), and the neural network is employed to
maximize the weights in order to identify the most effective solution.

Step 4: Calculate the score function value.
Using Formula (1), the score ϕ(φij) of each element in the decision information matrix

is obtained, and the score matrix Φ = (ϕ(φij))m×n is constructed. The scores of different
types of planning are arranged by grade, the reference points whose intermediate values
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are odd planning are selected, and two points which are close to the intermediate values
are selected as the reference points of even planning; the reference point is denoted by Aij

+.
Step 5: Construct the weighted criteria decision matrix.
The distance d(φij, Aij

+) between each alternative and the reference point with the
same property is obtained by using Formula (4), so as to obtain a standardized decision
matrix D = (dij)m×n. Where:

dij =

{
d
(
φij, Aij

+
)
, φij ≥ Aij

+

−d
(
φij, Aij

+
)
, φij < Aij

+ (10)

Multiplying the standardized decision matrix by the weights ω yields the weighted
criteria decision matrix L = (lij)m×n.

Step 6: Compute the matrices of concordance and discordance.
Through the comparison of different alternative combinations, the concordance and

discordance sets of each combination are found. The concordance sets for options Ak
and Al contain the condition that all Ak’s preferences are non-inferior to Al , that is,
L+

kl = {j|lkj ≥ ll j}, whereas the discordance sets contain the criterion that all Ak’s prefer-
ences are inferior to Al , that is, L−kl = {j|lkj < ll j}. Equations (11) and (12) are then used to
compute the consistency matrix h = (hkl)m×n and the inconsistency matrix t = (tkl)m×n.

hkl =
∑j∈L+

kl
ωj

∑n
j=1 ωj

(11)

tkl =

max
j∈L−kl

∣∣∣dkj − dl j

∣∣∣
max

j∈J

∣∣∣dkj − dl j

∣∣∣ (12)

Step 7: Compute the operation of the synthetic matrix.
The determination of the synthetic matrix E = (ekl)m×m is based on the concordance

matrix and the discordance matrix, which allows for the reflection of the relative benefits of
each alternative across several criteria. The matrix element ekl can be ascertained through
the utilization of the subsequent equation:

ekl = hkl − tkl (13)

Step 8: Determine the advantage values, disadvantage values, and overall evaluation values.
To determine all the advantages and disadvantages of each option, add the values of

each row and column in the exhaustive matrix.

µk =
m

∑
l=1

ekl , k = 1, 2, . . . , m (14)

νl =
m

∑
k=1

ekl , l = 1, 2, . . . , m (15)

The cumulative value of each option’s dominance is calculated as follows:

σk = µk − νl , k = l (16)

Ultimately, the various alternatives are assessed and ordered based on their cumulative
dominance value.

We use a flowchart to represent the above algorithm steps, and the content is shown
in Figure 1.
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4.2. Example

With the advancement of the economy, online purchasing has become the predom-
inant method of shopping in modern society. A solid logistics address can reduce both
transportation expenses and delivery time. A logistics company intends to select the most
optimal address from several alternatives. After preliminary vetting, six addresses are
available for selection, which are set as A = {A1, A2, A3, A4, A5, A6}, respectively, and
C = {C1, C2, C3, C4, C5, C6} are the six attributes considered for the logistics location to be
selected, where C1 stands for the “labor resource condition”, C2 stands for the “regional
policy”, C3 stands for the “traffic condition”, C4 stands for the “terrain condition”, C5 stands
for the “subject customer distribution”, and C6 stands for the “surrounding environment”.

The evaluation of the alternatives by experts under each attribute constitutes a (p,q)-
rung probability hesitant orthopair fuzzy matrix.

Step 1: The matrix is shown in Table 1, set to T, and p = 1, q = 2 according to the
value principle.
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Table 1. (p,q)-rung probability hesitant orthopair fuzzy matrix.

C1 C2 C3 C4 C5 C6

A1
{<0.55,0.4>|0.3,
<0.5,0.35>|0.7} {<0.35,0.2>|1} {<0.65,0.2>|0.6,

<0.55,0.4>|0.4}
{<0.7,0.3>|0.4,
<0.55,0.2>|0.6}

{<0.6,0.2>|0.7,
<0.55,0.25>|0.3} {<0.7,0.3>|1}

A2 {<0.5,0.35>|1} {<0.3,0.6>|0.3,
<0.3,0.5>|0.7} {<0.65,0.4>|1} {<0.6,0.2>|0.7,

<0.55,0.2>|0.3} {<0.3,0.6>|1} {<0.65,0.2>|1}

A3
{<0.4,0.25>|0.4,
<0.35,0.25>|0.6} {<0.7,0.4>|1} {<0.6,0.3>|1} {<0.7,0.2>|1} {<0.8,0.1>|1}

{<0.7,0.4>|0.4,
<0.6,0.2>|0.2,
<0.7,0.2>|0.4}

A4
{<0.55,0.4>|0.7,
<0.4,0.3>|0.3}

{<0.6,0.35>|0.6,
<0.5,0.35>|0.4} {<0.7,0.3>|1} {<0.6,0.35>|1} {<0.55,0.3>|0.4,

<0.44,0.2>|0.6} {<0.6,0.3>|1}

A5 {<0.55,0.2>|1} {<0.5,0.2>|1} {<0.5,0.4>|0.5,
<0.6,0.2>|0.5}

{<0.9,0.3>|0.4,
<0.7,0.2>|0.6}

{<0.8,0.15>|0.6,
<0.6,0.3>|0.4} {<0.7,0.35>|1}

A6
{<0.5,0.2>|0.7,
<0.6,0.25>|0.3}

{<0.3,0.6>|0.1,
<0.3,0.65>|0.9} {<0.45,0.3>|1} {<0.7,0.25>|1} {<0.6,0.2>|1} {<0.7,0.3>|1}

Step 2: The attribute entropy is computed using Equation (3), the entropy value of
each attribute is displayed in Table 2, and the subjective and objective weights derived
using the ANP and Equation (8) are displayed in Table 3.

Table 2. Attribute entropy values.

E(C1) E(C2) E(C3) E(C4) E(C5) E(C6)

0.76 0.784 0.647 0.572 0.649 0.544

Table 3. Subjective and Objective weights.

C1 C2 C3 C4 C5 C6

ω′ 0.22 0.2 0.08 0.12 0.1 0.28
ω′′ 0.118 0.105 0.173 0.21 0.171 0.223

Step 3: The neural network is employed to optimize the weights, the loss function
is (9), and Adam is the optimization function. After 90 iterations, the loss value tends to
stabilize, and Table 4 displays the optimization results.

Table 4. Weights after optimization.

C1 C2 C3 C4 C5 C6

ω 0.1629 0.1632 0.1217 0.1611 0.1445 0.2465

Step 4: The score function is computed using Equation (1), which is subsequently
employed to sort the findings and determine the intermediate value that serves as the
reference value. See Table 5.
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Table 5. Scoring matrix and reference values.

C1 C2 C3 C4 C5 C6

A1 0.6526 0.6274 0.7105 0.7215 0.7158 0.7677
A2 0.6602 0.5068 0.7161 0.7183 0.4744 0.762
A3 0.6214 0.7418 0.719 0.7863 0.8485 0.7363
A4 0.6466 0.6760 0.7677 0.7064 0.6689 0.719
A5 0.7153 0.6927 0.6806 0.7951 0.772 0.7556
A6 0.6932 0.4529 0.6508 0.7779 0.7383 0.7677

Point of
reference A2 A4 A2 A6 A6 A2

Step 5: According to Formula (4), the distance is calculated, constructing the standard-
ized decision matrix, and multiplying the weights yields the weighted criteria decision
matrix as shown in Table 6.

Table 6. The weighted criteria decision matrix.

C1 C2 C3 C4 C5 C6

A1 −0.0160 −0.0201 −0.0229 −0.0316 −0.0160 0.0200
A2 0 −0.0214 0 −0.0319 −0.0448 0
A3 −0.0340 0.0209 0.0253 0.0018 0.0250 −0.0247
A4 −0.0192 0 0.0148 −0.0127 −0.0286 −0.0468
A5 0.0108 0.0214 −0.0245 0.0187 0.0181 −0.0279
A6 0.0174 −0.0335 −0.0226 0 0 0.0256

Step 6: Using Formulas (11) and (12), the concordance matrix and discordance matrix
are calculated, respectively. The outcomes are shown in Tables 7 and 8.

Table 7. Concordance matrix.

A1 A2 A3 A4 A5 A6

A1 0 0.7153 0.4094 0.5539 0.3682 0.1632
A2 0.2846 0 0.4094 0.4094 0.3682 0.2849
A3 0.5905 0.5905 0 0.837 0.5127 0.5905
A4 0.446 0.5905 0.1629 0 0.1217 0.2849
A5 0.6317 0.6317 0.4872 0.8782 0 0.4688
A6 0.8367 0.715 0.4094 0.715 0.5311 0

Table 8. Discordance matrix.

A1 A2 A3 A4 A5 A6

A1 0 0.9447 1 1 1 1
A2 1 0 1 0.6895 1 1
A3 0.4571 0.4327 0 0.2453 0.6724 0.802
A4 0.8742 1 1 0 1 0.9545
A5 0.6218 0.4621 1 1 0 0.6458
A6 0.4 0.6 1 1 1 0

Step 7: The exhaustive matrix is calculated using Equation (13), as shown in Table 9.
Step 8: Using Equations (14)–(16), the overall advantage value, overall disadvantage

value, and comprehensive evaluation value of each alternative are calculated. According to
Table 10, a greater total evaluation value denotes a superior option.
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Table 9. Exhaustive matrix.

A1 A2 A3 A4 A5 A6

A1 0 −0.2294 −0.5906 −0.4461 −0.6318 −0.8368
A2 −0.7154 0 −0.5906 −0.2801 −0.6318 −0.7151
A3 0.1334 0.1578 0 0.5917 −0.1597 −0.2115
A4 −0.4282 −0.4095 −0.8371 0 −0.8783 −0.6696
A5 0.0099 0.1696 −0.5128 −0.1218 0 −0.177
A6 0.4367 0.115 −0.5906 −0.285 −0.4689 0

Table 10. Results of the decision.

A1 A2 A3 A4 A5 A6

µ −2.7347 −2.933 0.5117 −3.2227 −0.6321 0.7928
ν −0.5636 −0.1965 −3.1217 −0.5413 −2.7705 −2.61
σ −2.1711 −2.7365 3.6334 −2.6814 2.1384 1.8172

Ranking A3 > A5> A6 > A1> A4 > A2
Optimal
solution A3

According to the above-mentioned algorithm, the six alternatives are ranked as A3 >
A5 > A6 > A1 > A4 > A2, with address A3 being the finest option.

4.3. Parametric Analysis

In order to verify the stability of the study, we performed a sensitivity analysis on the
parameters p and q in Section 4.3, and the results are presented in Tables 11 and 12 with
concise analyses.

Table 11. Different p values correspond to the ranking results of each program (q = 13).

Parametric p σ(A1) σ(A2) σ(A3) σ(A4) σ(A5) σ(A6) Ranking

p = 3 −2.9177 −3.2294 3.7254 −3.0214 2.8014 2.4881 A3 > A5 > A6 > A1 > A4 > A2
p = 5 −3.0193 −3.4914 3.8184 −3.2279 2.8927 2.8167 A3 > A5 > A6 > A1 > A4 > A2
p = 7 −3.2362 −3.6717 3.8717 −3.4575 2.9544 3.0544 A3 > A6 > A5 > A1 > A4 > A2
p = 9 −3.2589 −3.6924 3.9277 −3.4766 3.0154 3.1079 A3 > A6 > A5 > A1 > A4 > A2

p = 11 −3.0107 −3.6584 3.9548 −3.4281 3.0627 3.0793 A3 > A6 > A5 > A1 > A4 > A2
p = 13 −2.9875 −3.6069 3.9754 −3.4017 3.0849 3.1625 A3 > A6 > A5 > A1 > A4 > A2

Table 12. Different q values correspond to the ranking results of each program (p = 3).

Parametric q σ(A1) σ(A2) σ(A3) σ(A4) σ(A5) σ(A6) Ranking

q = 3 −1.6793 −2.2344 2,8167 −2.1277 2.3883 2.0603 A3 > A5 > A6 > A1 > A4 > A2
q = 5 −1.4984 −2.0537 2.1033 −1.9463 2.1284 1.8794 A3 > A5 > A6 > A1 > A4 > A2
q = 7 −1.3372 −1.9197 1.9754 −1.8603 1.9509 1.5278 A3 > A5 > A6 > A1 > A4 > A2
q = 9 −1.3092 −1.8972 1.8793 −1.8355 1.8762 1.4572 A3 > A5 > A6 > A1 > A4 > A2
q = 11 −1. 2911 −1.8903 1.9742 −1.8287 1.7829 1.0164 A3 > A5 > A6 > A1 > A4 > A2
q = 13 −1.2896 −1.8864 1.9628 −1.8109 1.7728 0.7392 A3 > A5 > A6 > A1 > A4 > A2

In order to more intuitively reflect the change in the comprehensive evaluation value
of each scheme with the parameters p and q, Figures 2 and 3 are given.
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From Tables 11 and 12 and Figures 2 and 3, it can be seen that when one of the values
of p and q is fixed, with the increase of the other parameter there is no change in the optimal
scheme and the worst scheme, and the overall sorting result is relatively stable, which
indicates that the method has good stability.

4.4. Comparative Analysis

The decision models from three references are used to compare and analyze the rank-
ing results in order to demonstrate the efficacy of the author’s model. According to Ren’s
method [22], the final decision scheme is determined by aggregating the evaluation infor-
mation through the q-PHFPWMM. Shahzaib Ashra’s method [26] proposes and employs
an entropy measure of probabilistic q-rung orthopair hesitant fuzzy sets in the ranking
of three extended hybrid methods. In published works [27], Chen et al. rank alternatives
using the GRA and TOPSIS methods. The parameter is set to 2, and Table 11 displays
the results.

To describe the above results more clearly, we plotted the above data as a line chart.
This is shown in Figure 4.
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According to Table 13, there are only minor differences in the ranking results of the
four methods, and the optimal scheme and the worst scheme are the same, indicating that
the results calculated by the proposed method are convincing and reflect the effectiveness
of the proposed method. From Figure 4, we can see that the calculated value of the
proposed method fluctuates obviously, while the differences of the other methods are small.
When encountering some data with large ambiguity, the final scheme may not be judged.
Therefore, the proposed method is superior to the other three methods.

Table 13. Calculation results of different methods.

Methods
Specific Data

Ranking
A1 A2 A3 A4 A5 A6

Ren et al. [22] proposed method 0.478 0.3658 0.5759 0.461 0.5359 0.3733 A3> A5> A1> A4> A6> A2
Shahzaib Ashra et al. [26]

proposed method 0.6919 0.498 0.8387 0.7203 0.8219 0.5432 A3> A5> A4> A1> A6> A2

Chen et al. [27] proposed method 0.521 0.3394 0.7603 0.4102 0.6672 0.4313 A3> A5> A1> A6> A4> A2
Our proposed paper −2.1711 −2.7365 3.6334 −2.6814 2.1384 1.8172 A3> A5> A6> A1> A4> A2

In addition, Ren’s method [22] needs to construct the syntheses support matrix first,
and then calculate the comprehensive evaluation value through the q-PHFPWMM to
finally determine the score function value, which is too complex and has a huge amount
of calculation. Shahzaib Ashra’s method [26] only regarded the difference in element
values when calculating the weighted distance; it did not take into account the influence of
hesitancy degree. Chen et al.’s [27] proposed method is unsuitable for data with a linear
relationship between attributes.

In conclusion, despite the fact that each of the above decision-making methods has
its own advantages and disadvantages and that the ranking sequence is not identical, the
four methods yield the same final results. Experiments show that the proposed algorithm
is feasible, not random. Thus, a new and credible method is proposed for solving multi-
objective group decision-making problems.

5. Conclusions

A weight optimization group decision-making algorithm appropriate for (p,q)-rung
probability hesitant orthopair fuzzy sets is proposed in this paper. The primary endeavor
is demonstrated in the following ways:

(1) In order to better solve the uncertain problems in life and make up for the limitations
of q-rung orthopair probability hesitant fuzzy sets, the notion of (p,q)-rung probability
hesitant orthopair fuzzy sets is proposed to expand the value range of elements, and
its operation law and the value principle of (p,q) are given. Not only that, in order to
be more consistent with the actual decision-making, and so decision-makers will turn
to this scheme with higher support, we define a new hesitant degree, score function,
accuracy function, entropy measure, and distance formula. Finally, we carry out a
rigorous proof to ensure that the proposed formula is in line with the requirements.

(2) A weight optimization model is established to determine the optimal weight. Firstly,
the subjective and objective weights are obtained by using the ANP and entropy
method to comprehensively evaluate the subject and object indexes. Then, after fully
considering the influence of subjective and objective weighting on the comprehensive
weight, the deviation and dispersion of subjective and objective weighting are used
as optimization indicators to construct the weight optimization model. Finally, the
weight optimization model is used as the loss function, and Adam is used as the opti-
mization function to calculate the optimal weight through neural network iteration.

(3) The ELECTRE method is improved and applied to the (p,q)-rung probability hesitant
orthopair fuzzy environment. This method combines the optimal weights obtained
by the weighted optimal mathematical model with the relevant definitions of (p,q)-
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rung probability hesitant orthopair fuzzy sets, and establishes a new multi-attribute
decision-making model. In addition, this new multi-attribute decision-making model
is applied to the practical application of logistics location. After calculating the optimal
result, three different algorithms are selected to compare with the proposed algorithm
to verify the superiority of the proposed model. Different p and q values are selected
for sensitivity analysis to verify the stability of the algorithm.

Overall, the proposed algorithm not only solves the limitations of the existing meth-
ods, but also introduces concepts of a new fuzzy set, which can calculate a wider range
of attribute values and enhance the convincing degree of the actual decision-making
process. The final results verify the effectiveness and applicability of the proposed algo-
rithm, which provides a valuable tool for decision-makers facing complex and uncertain
decision scenarios.

6. Discussions

Many of the above research contents have many benefits, which not only make up
for the shortcomings of q-rung orthopair probability hesitant fuzzy sets, but also assist
decision-makers in better evaluations of indicators. It can be applied to control systems,
emergency decisions, pattern recognitions, information retrievals, and other practical
problems. However, there are also some shortcomings, such as the use of neural network
for weight optimization and easy-to-appear local extreme values, so that the calculation
results have a certain degree of change. Therefore, future research will investigate how
to further enhance the algorithm’s precision. In addition, in the subsequent research, we
will focus on the design of (p,q)-rung probability hesitant orthopair fuzzy aggregation
operators to deal with the possible correlations between attributes, and apply the concept
of (p,q)-rung probability hesitant orthopair fuzzy sets and rough sets to the application of
three-way decisions.
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