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Abstract: By using Gronwall’s inequality and coincidence degree theory, the sufficient conditions
of the globally exponential stability and existence are given for a Hebbian-type network with time-
varying delays. The periodic behavior phenomenon is one of the hot topics in network systems
research, from which we can discover the symmetric characteristics of certain neurons. The main
theorems in the present paper are illustrated using a numerical example.
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1. Introduction

In the past few decades, Hopfield-type neural networks has been investigated by
engineers, physicists, computer scientists and mathematicians. Gopalsamy [1] considered
a second-order Hopfield-type neural network with constant lags and an unsupervised
Hebbian-type learning algorithm as follows:


u′i(t) = −aiui(t) + ∑n

j=1 bij f j(uj(t− γj)) + ∑n
j=1 ∑n

k=1 Tijk f j(uj(t− γj))

fk(uk(t− γk)) + Di ∑n
j=1 mij(t)pj + Ii,

m′ij(t) = −αimij(t) + βi fi(ui(t))pj.
(1)

All coefficients of system (1) are constants. However, in nature, dynamic systems
are inevitably influenced by external environments, and variable coefficient systems are
more capable of depicting real-world situations. Hence, we study a neural networks with
variable coefficients and lags as follows:


u′i(t) = −ai(t)ui(t) + ∑n

j=1 bij(t) f j(uj(t− γj(t))) + ∑n
j=1 ∑n

k=1 Tijk(t)
f j(uj(t− γj(t))) fk(uk(t− γk(t))) + Di(t)∑n

j=1 mij(t)pj + Ii(t),
m′ij(t) = −αi(t)mij(t) + βi(t) fi(ui(t))pj,

(2)

where i = 1, 2, · · · , n, ui(t) is the state of the system; ai(t) > 0 is the feedback rate of the
system; mij(t) represents the synaptic vector; Di(t) represents the acceptance rate of the
input signals; bij(t) and Tijk(t) are synaptic weights; βi(t) and αi(t) > 0 are disposable; pj
is learning the signal vector; γj(t) > 0 is the time-varying lag with γ′j(t) < 1; Ii(t) is the
external input signal vector; and f j(·) is the neuronal activation function. Let

vi(t) = ∑n
j=1 mij(t)pj and ∑n

j=1 p2
j = c > 0.

We rewrite (2) into
u′i(t) = −ai(t)ui(t) + ∑n

j=1 bij(t) f j(uj(t− γj(t)))
+∑n

j=1 ∑n
k=1 Tijk(t) f j(uj(t− γj(t))) fk(uk(t− γk(t))) + Di(t)vi(t) + Ii(t),

v′i(t) = −αi(t)vi(t) + βi(t)c fi(ui(t)),
(3)
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where t ≥ 0. The initial conditions of system (3) are given by{
ui(s) = φ̃i(s), s ∈ [−γ, 0], i = 1, 2, · · · , n,
vi(s)) = ψ̃i(s), s ∈ [−γ, 0], i = 1, 2, · · · , n,

(4)

where φ̃i(·) and ψ̃i(·) are continuous and bounded functions on [−γ, 0], and γ is defined
by (5).

From the models proposed by Amari [2,3], we obtain system (3) which belongs to a
higher-order network system. A high-order neural network system can simulate complex
neuronal changes, and many scholars have been dedicated to this research. A method for
defining an unknown nonlinear system was presented by Gonzalez, Basin and Vargas [4].
Huang and Cao [5] studied bifurcation problems regarding different lags of high-order
fractional networks. Liu et al. [6] obtained fixed-time combined control for high-order
multi-agent networks with variable failures. For more results regarding high-order neural
networks, please see, e.g., references [7–11].

The periodic phenomenon widely exists in nature, and its research can deepen the
understanding of the changing patterns of neurons, promoting the development and
utilization of network systems. Over the past decades, there are many profound results
for the periodic solution research of high-order network systems. A stochastic Cohen–
Grossberg neural network with variable lags has been studied by Wu, Yang and Ren [12].
Zhang and Liu [13] dealt with global exponential stability and the existence of a periodic
solution for a BAM neural network with multiple lags on time scales. From the Lyapunov
functional method and some inequality techniques, Luo, Jiang and Wang [14] studied the
anti-periodic solutions of a Clifford-valued high-order neural network with proportional
lags. The almost periodic solution problem for a quaternion-valued neural networks has
been investigated by Li and Xiang [15]. For more results for high-dimensional dynamic
systems and networks systems, please see, e.g., references [16–20] and related references.

Affected by the existing research results, in the present paper, we will study the peri-
odic solution for a Hebbian-type network with time-varying lags. The main contributions
of this paper are as follows:

(1) There is not much research on the periodic solution research of system (3), and this
study expands its research scope.

(2) On the basis of fully considering the variable delays and coefficients, this article
constructs a new function, which can conveniently obtain the stability of system (3).

The remaining parts of this article are arranged as follows. Section 2 gives some
preparations. Section 3 gives some existence results of a periodic solution for the system (3).
Section 4 gives the stability results of a periodic solution for system (3). In Section 5, we
give an example to illustrate the correctness of Theorems 1 and 2. The conclusions are
given in Section 6.

In the whole paper, the following notations are listed:

| f |0 = max
t∈[0,T]

| f (t)|, f̄ =
1
T

∫ T

0
f (t)dt, χj = max

t∈[0,T]

1
1− τ′j (t)

, γ = max
t∈[0,T]

γj(t), j = 1, 2, · · · , n. (5)

Furthermore, the following assumptions hold.

(H1) In system (3), for i, j, k = 1, 2, · · · , n, ai(·), bij(·), Tijk(·), γj(·), αi(·), βi(·), Di(·), Ii(·) are
T−periodic continuous functions.

(H2) There is constant lj ≥ 0 such that

| f j(y)| ≤ lj, j = 1, 2, · · · , n, ∀y ∈ R.
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(H3) There is constant mj ≥ 0 such that

0 ≤
f j(y)− f j(z)

y− z
≤ mj, f j(y) = 0, j = 1, 2, · · · , n, ∀y, z ∈ R.

2. Preliminaries

Let ∆ and Π be two Banach spaces. Let L : D(L) ⊂ ∆ → Π be a Fredholm operator
with index zero, which means that ImL is closed in Π and dimKerL = codimImL < +∞.
Let projectors P : ∆→ ∆, Q : Π→ Π such that ImP = KerL, ImL = KerQ. Furthermore,
LD(L)∩KerP : (I − P)∆→ ImL is invertible. Denote using Kp the inverse of LP.

Let Γ be an open bounded subset of ∆. Let the operator N : Γ̄ → Π be L-compact
in Γ̄ which means that QN (Γ̄) is bounded and the operator Kp(I − Q)N (Γ̄) is relatively
compact. The following lemma is the famous Mawhin’s continuation theorem.

Lemma 1 ([21]). Assume that ∆ and Π are two Banach spaces, and L : D(L) ⊂ ∆ → Π, is a
Fredholm operator with index zero. Furthermore, Γ ⊂ ∆ is an open bounded set and N : Γ̄→ Π is
L-compact on Γ̄. If all the following conditions hold:

(1) Lx 6= λN x, ∀x ∈ ∂Γ ∩ D(L), ∀λ ∈ (0, 1),
(2) N x /∈ ImL, ∀x ∈ ∂Γ ∩ KerL,
(3) deg{QN , Γ ∩ KerL, 0} 6= 0.

Then equation Lx = N x has a solution on Γ̄ ∩ D(L).

Definition 1. Let w∗(·) = (u∗1(·), · · · , u∗n(·), v∗1(·), · · · , v∗n(·))T be a periodic solution of (3)
with initial conditions φ∗ ∈ C([−γ, 0],R2n). and w(·) = (u1(·), · · · , un(·), v1(·), · · · , vn(·))T

be a solution of (3) with initial conditions φ ∈ C([−γ, 0],R2n). The periodic solution w∗(·) is
called globally exponentially stable, if there are α > 0 andM≥ 1 such that

2n

∑
k=1
|wk(t)− w∗k (t)| ≤ M||φ− φ∗||eαt, t > 0,

where ||φ− φ∗|| = ∑2n
k=1 maxs∈[−γ,0] |φk(s)− φ∗k (s)|.

3. Existence of Periodic Solution

Theorem 1. Suppose that (H1)–(H3) satisfy. There exists for system (3) at least one periodic
solution, provided that

ν1 = min
1≤i≤n

{
āi −

n

∑
j=1
|b̄ji|mi −

n

∑
j=1

n

∑
k=1
|T̄kji|ljmi − |β̄i|cmi

}
> 0, ν2 = min

1≤i≤n

{
ᾱi − |D̄i|

}
> 0. (6)

Proof. Let
∆ = {w(·) ∈ C(R,R2n) : w(t + T) = w(t)},

where w(·) = (u1(·), u2(·), · · · , un(·), v1(·), v2(·), · · · , vn(·))T . Define the norm of ∆ by
||w|| = ∑n

i=1(|ui|0 + |vi|0) for w ∈ ∆. Obviously, ∆ is a Banach space. Define projectors P
and Q by, respectively,

P : ∆→ KerL, (Pw)(t) =
1
T

∫ T

0
w(s)ds

and

Q : ∆→ ∆/ImL, (Pw)(t) =
1
T

∫ T

0
w(s)ds.

Set

(Lw)(t) : Dom(L) ⊂ ∆→ ∆, (Lw)(·) = (u′1(·), u′2(·), · · · , u′n(·), v′1(·), v′2(·), · · · , v′n(·))T (7)



Symmetry 2023, 15, 1985 4 of 10

and N : ∆→ ∆,

(Nw)(·) = ((N u1)(·), (N u2)(·), · · · , (N un)(·), (N v1)(·), (N v2)(·), · · · , (N vn)(·))T , (8)

where

(N ui)(t) = −ai(t)ui(t) +
n

∑
j=1

bij(t) f j(uj(t− γj(t)))

+
n

∑
j=1

n

∑
k=1

Tijk(t) f j(uj(t− γj(t))) fk(uk(t− γk(t))) + Di(t)vi(t) + Ii(t),

(N vi)(t) = −αi(t)vi(t) + βi(t)c fi(ui(t)).

Obviously, the operator L is a Fredholm operator with index zero. Consider the following
operator equation:

(Lw)(t) = λ(Nw)(t), t ∈ R, λ ∈ (0, 1), (9)

L and N can be found in (7) and (8), respectively. We first prove that the solution of the
operator system (9) is bounded. Using (9), we obtain

u′i(t) = −λai(t)ui(t) + λ
n

∑
j=1

bij(t) f j(uj(t− γj(t)))

+ λ
n

∑
j=1

n

∑
k=1

Tijk(t) f j(uj(t− γj(t))) fk(uk(t− γk(t))) + λDi(t)vi(t) + λIi(t),
(10)

v′i(t) = −λαi(t)vi(t) + λβi(t)c fi(ui(t)). (11)

From (11), (H1) and (H2), we obtain

vi(t) =
∫ T

0

e−
∫ t

s λαi(u)du

1− e−
∫ T

0 λαi(u)du
λβi(s)c fi(ui(s))ds

and

|vi(t)| ≤
|βi|0cli

1− e−
∫ T

0 αi(u)du
= pi. (12)

From (10), (12), (H1) and (H2), we have

ui(t) =
∫ T

0

e−
∫ t

s λai(u)du

1− e−
∫ T

0 λai(u)du

(
λ

n

∑
j=1

bij(s) f j(uj(s− γj(s)))

+ λ
n

∑
j=1

n

∑
k=1

Tijk(s) f j(uj(s− γj(s))) fk(uk(s− γk(s))) + λDi(s)vi(s) + λIi(s)
)

ds

and

|ui(t)| ≤
1

1− e−
∫ T

0 ai(u)du

( n

∑
j=1
|bijlj +

n

∑
j=1

n

∑
k=1
|Tijk|0ljlk + |Di|0 pi + |Ii|0

)
= qi.

Obviously, pi and qi do not depend on λ. Let

M̃ =
n

∑
i=1

(pi + qi) + K.
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Here, we select K > 0 that is sufficiently large such that

νM̃−
n

∑
i=1
| Īi| > 0,

where ν = min{ν1, ν2} is defined by (6). Let

Ξ =

{
(u, v)T ∈ ∆ : ||(u, v)T || < M̃

}
,

where u = (u1(·), u2(·), · · · , un(·))T , v = (v1(·), v2(·), · · · , vn(·))T . It is easy to see that
condition (1) in Lemma 1 satisfies. For (u, v)T ∈ ∂Ξ∩R2n, then ui and vi are constants with
∑n

i=1(|ui|+ |vi|) = M̃. From (6), (H2), and (H3), we obtain

QN(u, v)T =



∑n
j=1 b̄1j f j(uj)− ā1u1

+∑n
j=1 ∑n

k=1 T̄1jk f j(uj) fk(uk) + D̄1v1 + Ī1
...

∑n
j=1 b̄nj f j(uj)− ānun

+∑n
j=1 ∑n

k=1 T̄njk f j(uj) fk(uk) + D̄nvn + Īn

−ᾱ1v1 + β̄1c f1(u1)
...

−ᾱnvn + β̄nc fn(un)


and

||QN (u, v)T || =
n

∑
i=1

∣∣∣∣ n

∑
j=1

b̄ij f j(uj)− āiui +
n

∑
j=1

n

∑
k=1

T̄ijk f j(uj) fk(uk) + D̄ivi + Īi

∣∣∣∣
+

n

∑
i=1

∣∣∣∣− ᾱivi + β̄ic fi(ui)

∣∣∣∣
≥

n

∑
i=1

āi|ui| −
n

∑
i=1

n

∑
j=1
|b̄ij|mj|uj| −

n

∑
i=1

n

∑
j=1

n

∑
k=1
|T̄ijk|ljmk|uk|

−
n

∑
i=1
|D̄i||vi| − | Īi|+

n

∑
i=1

ᾱi|vi| −
n

∑
i=1
|β̄i|cmi|ui|

=
n

∑
i=1

(
āi −

n

∑
j=1
|b̄ji|mi −

n

∑
j=1

n

∑
k=1
|T̄kji|ljmi − |β̄i|cmi

)
|ui|

+
n

∑
i=1

(
ᾱi − |D̄i|

)
|vi| −

n

∑
i=1
| Īi|

≥ ν
n

∑
i=1

(|ui|+ |vi|)−
n

∑
i=1
| Īi|

= νM̃−
n

∑
i=1
| Īi| > 0.

Consequently,
QN (u, v)T 6= 0 for (u, v)T ∈ ∂Ξ ∩R2n

which means that condition (2) in Lemma 1 satifies. Define Φ(u, v, µ) : KerL× [0, 1] by

Φ(u, v, µ) = −µ(ā1u1, · · · , ā1un, ᾱ1v1, · · · , ᾱ1vn)
T + (1− µ)QN (u, v)T .
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For (u, v)T ∈ ∂Ξ ∩ KerL, (u, v)T is a 2n-dimensional constant vector. Thus,

||Φ(u, v, µ)|| =
n

∑
i=1

∣∣∣∣− āiui − (1− µ)

( n

∑
j=1

b̄ij f j(uj) +
n

∑
j=1

n

∑
k=1

T̄ijk f j(uj) fk(uk) + D̄ivi + Īi

)∣∣∣∣
+

n

∑
i=1

∣∣∣∣− ᾱivi − (1− µ)β̄ic fi(ui)

∣∣∣∣
≥

n

∑
i=1

āi|ui| −
n

∑
i=1

n

∑
j=1
|b̄ij|mj|uj| −

n

∑
i=1

n

∑
j=1

n

∑
k=1
|T̄ijk|ljmk|uk|

−
n

∑
i=1
|D̄i||vi| − | Īi|+

n

∑
i=1

ᾱi|vi| −
n

∑
i=1
|β̄i|cmi|ui|

≥ νM̃−
n

∑
i=1
| Īi| > 0

and
Φ(u, v, µ) 6= 0 for (u, v)T ∈ ∂Ξ ∩ KerL.

Hence,
deg(QN (u, v)T , Ξ ∩ KerL, 0)

= deg(−µ(ā1u1, · · · , ā1un, ᾱ1v1, · · · , ᾱ1vn)
T , Ξ ∩ KerL, 0)

6= 0.

Therefore, all conditions of Lemma 1 satisfy and there exists a periodic solution for system
(3).

Remark 1. Usually, the Lyapunov–Kravsovskii functional method is the main method for studying
the stability of equations, and a large number of stability results are obtained using this method. But
constructing a suitable Lyapunov function is very difficult. In this article, we use the basic theory of
differential equations and Gronwall’s inequality to obtain the dynamical behaviors of system (3).
The method presented in this article is easier to understand and the proof process is not complicated.

4. Globally Exponential Stability

Theorem 2. Assume that all conditions of Theorem 1 satisfy. Then, the periodic solution of
system (3) is globally exponentially stable, if

ξ > ρ2, (13)

where

ξ = min
1≤i≤n

{ai(t), αi(t)}, ρ2 = max
1≤i≤n

{ n

∑
j=1
|bij|0mjχj +

n

∑
j=1

n

∑
k=1
|Tikj|0lkmjχj, |Di|0 + |βi|0cmi

}
.

Proof. Using Theorem 1, (3) has a periodic solution w∗(t) = (u∗(t), v∗(t))T , where u∗(·) =
(u∗1(·), u∗2(·), · · · , u∗n(·))T , v∗(·) = (v∗1(·), v∗2(·), · · · , v∗n(·))T . Let w(t) = (u(t), v(t))T be
any solution of (3). Let

w̃i(t) = wi(t)− w∗i (t), ũi(t) = ui(t)− u∗i (t), ṽi(t) = vi(t)− v∗i (t),

gj(ũj(t)) = f j(ũj(t) + u∗j (t))− f j(u∗j (t)).
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Obviously gj(ũj(t)) satisfies (H3). System (3) can be rewritten as follows:

ũ′i(t) = −ai(t)ũi(t) +
n

∑
j=1

bij(t)gj(ũj(t− γj(t)))

+
n

∑
j=1

n

∑
k=1

Tijk(t)gj(ũj(t− γj(t)))gk(ũk(t− γk(t))) + Di(t)ṽi(t),
(14)

ṽ′i(t) = −αi(t)ṽi(t) + βi(t)cgi(ũi(t)). (15)

For t ≥ 0, using (14) we obtain

ũi(t) = e−
∫ t

0 ai(r)drũi(0) + e−
∫ t

0 ai(r)dr
∫ t

0

( n

∑
j=1

bij(r)gj(ũj(r− γj(r)))

+
n

∑
j=1

n

∑
k=1

Tijk(r)gj(ũj(r− γj(r)))gk(ũk(r− γk(r))) + Di(r)ṽi(r)
)

e
∫ r

0 ai(u)dudr.
(16)

Furthermore, for t ≥ 0, using (15) we obtain

ṽi(t) = e−
∫ t

0 αi(r)dr ṽi(0) + e−
∫ t

0 αi(r)dr
∫ t

0

(
βi(r)cgi(ũi(r))

)
e
∫ r

0 αi(u)dudr. (17)

Using (14), (H2), and (H3), we have

|ũi(t)| ≤ e−
∫ t

0 ai(r)dr
[
|ũi(0)|+

∫ t

0

( n

∑
j=1
|bij|0mj|ũj(r− γj(r))|

+
n

∑
j=1

n

∑
k=1
|Tijk|0ljmk|ũk(r− γk(r))|+ |Di|0|ṽi(r)|

)
e
∫ r

0 ai(u)dudr
]

≤ e−ξt|ũi(0)|+ e−ξt
n

∑
j=1
|bij|0mjχj

∫ t−γj(t)

−|γj |0
|ũj(r)|e|ai |0(r+|γj |0)dr

+ e−ξt
n

∑
j=1

n

∑
k=1
|Tikj|0lkmjχj

∫ t−γj(t)

−|γj |0
|ũj(r)|e|ai |0(r+|γj |0)dr

+ e−ξt|Di|0
∫ t

0
|ṽi(r)|e|ai |0rdr

≤ e−ξt
[
|ũi(0)|+

( n

∑
j=1
|bij|0mjχje

|ai |0|γj |0 +
n

∑
j=1

n

∑
k=1
|Tikj|0lkmjχje

|ai |0|γj |0
)

max
−τ≤s≤0

|ũj(s)|
]

+ e−ξt
( n

∑
j=1
|bij|0mjχj +

n

∑
j=1

n

∑
k=1
|Tikj|0lkmjχj

) ∫ t

0
|ũi(r)|e|ai |0rdr

+ e−ξt|Di|0
∫ t

0
|ṽi(r)|e|ai |0rdr.

(18)

From (15) and (H3), we have

|ṽi(t)| ≤ e−ξt|ṽi(0)|+ e−ξt|βi|0cmi

∫ t

0
|ũi(r)|e|ai |0rdr. (19)
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From (18) and (19), we obtain

δ(t) =
n

∑
i=1

(|ũi(t)|+ |ṽi(t)|)

≤ ρ1||φ− φ∗||e−ξt + ρ2

∫ t

0
δ(r)eξ(r−t)dr,

where

ρ1 = 2 + max
1≤n

( n

∑
j=1
|bij|0mjχje

|ai |0|γj |0 +
n

∑
j=1

n

∑
k=1
|Tikj|0lkmjχje

|ai |0|γj |0
)

,

ρ2 is defined by (13). Using Gronwall’s inequality, we obtain

δ(t) =
n

∑
i=1

(|ũi(t)|+ |ṽi(t)|) ≤ ρ1||φ− φ∗||e−(ξ−ρ2)t.

Due to Definition 1, there exists a globally exponentially stable periodic solution for system
(3).

Remark 2. Usually, the Lyapunov–Kravsovskii functional method is the main method for studying
the stability of equations, and a large number of stability results are obtained using this method. But
constructing a suitable Lyapunov function is very difficult. In this article, we use the basic theory of
differential equations and Gronwall’s inequality to obtain the dynamical behaviors of system (3).
The method presented in this article is easier to understand and the proof process is not complicated.

5. Example

Consider the following Hebbian-type networks:

u′1(t) = −(12− sin t)u1(t) + sin t f1(u1(1−
1
2

sin t)) + sin t f2(u2(1−
1
2

sin t))

+ cos t f1(u1(1−
1
2

sin t)) f1(u1(1−
1
2

sin t)) + sin t f1(u1(1−
1
2

sin t)) + sin t f2(u2(1−
1
2

sin t))

+ cos t f2(u2(1−
1
2

sin t)) f1(u1(1−
1
2

sin t)) + cos t f2(u2(1−
1
2

sin t)) f2(u2(1−
1
2

sin t)) + (
1
5

cos t)v1(t),

v′1(t) = −(10− cos t)v1(t) +
1
2

sin t f1(u1(t)),

u′2(t) = −(12− sin t)u2(t) + sin t f1(u1(1−
1
2

sin t)) + sin t f2(u2(1−
1
2

sin t))

+ cos t f1(u1(1−
1
2

sin t)) f1(u1(1−
1
2

sin t)) + sin t f1(u1(1−
1
2

sin t))dt + sin t f2(u2(1−
1
2

sin t))

+ cos t f2(u2(1−
1
2

sin t)) f1(u1(1−
1
2

sin t)) + cos t f2(u2(1−
1
2

sin t)) f2(u2(1−
1
2

sin t)) + (
1
5

cos t)v2(t),

v′2(t) = −(10− cos t)v2(t) +
1
2

sin t f2(u2(t)),

(20)

where

i, j, k = 1, 2, ai(t) = 12− sin t, αi(t) = 10− cos t, f1(x) = f2(x) =
1

10
tanhx,

γj(t) = 1− 1
2

sin t, Ii(t) = 0, bij(t) = sin t, Di(t) =
1
5

cos t, c = 1,

βi(t) =
1
2

sin t, Tijk = cos t.
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After simple calculations, we have

lj = mj =
1
10

, τ =
3
2

, χj = 2, |bij|0 = |Tijk|0 = 1, |Di|0 =
1
5

, |βi|0 =
1
2

,

ν1 = min
1≤i≤n

{
āi −

n

∑
j=1
|b̄ji|mi −

n

∑
j=1

n

∑
k=1
|T̄kji|ljmi − |β̄i|cmi

}
= 12,

ν2 = min
1≤i≤n

{
ᾱi − |D̄i|

}
= 10, ξ = min

1≤i≤n
{ai(t), αi(t)} = 9,

ρ2 = max
1≤i≤n

{ n

∑
j=1
|bij|0mjχj +

n

∑
j=1

n

∑
k=1
|Tikj|0lkmjχj, |Di|0 + |βi|0cmi

}
= 0.51.

We obtain ν1, ν2 > 0 and ξ > ρ2. From selections of f1(x) and f2(x), it is obvious that there
exists a periodic solution for system (20) (0, 0)T . Furthermore, using the above calculations,
we confirm that all conditions of Theorem 1 and Theorem 2 satisfy. Hence, there exists a
globally asymptotically periodic solution for system (20) (0, 0)T . Figures 1 and 2 show the
evolution of the solution of system (20).

0 10 20 30 40 50 60 70 80

t

-5

0

5

(u
1
(t

),
v 1

(t
))

T

u
1

v
1

Figure 1. Evolution for the solution (u1(t), v1(t))T of system (20).
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t

-6

-4

-2

0

2

4

(u
2
(t

),
v 2

(t
))

T

u
2

v
2

Figure 2. Evolution for the solution (u2(t), v2(t))T of system (20).

6. Conclusions and Discussions

We study a class of Hebbian-type networks with variable lags. More precisely, we
obtain some criteria for the existence of a periodic solution. Also, we examine the globally
exponential stability analysis of system (3). Finally, we provided an example to show the
analytical results. We can further investigate the dynamic behavior of system (3) under
different environmental interference factors. One aspect future research is the stochastic
Hebbian-type networks.
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