
Citation: Raju, S.K.; Gopalan, S.;

Towfek, S.K.; Sukumar, A.;

Khafaga, D.S.; Alkahtani, H.K.;

Alahmadi, T.J. Test Case Selection

through Novel Methodologies for

Software Application Developments.

Symmetry 2023, 15, 1959. https://

doi.org/10.3390/sym15101959

Received: 8 September 2023

Revised: 18 October 2023

Accepted: 19 October 2023

Published: 23 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Test Case Selection through Novel Methodologies for Software
Application Developments
Sekar Kidambi Raju 1, Sathiamoorthy Gopalan 2, S. K. Towfek 3,4,*, Arunkumar Sukumar 1,
Doaa Sami Khafaga 5 , Hend K. Alkahtani 6,* and Tahani Jaser Alahmadi 6

1 School of Computing, SASTRA Deemed University, Thanjavur 613401, India;
sekar_kr@cse.sastra.ac.in (S.K.R.); arunkumar@cse.sastra.ac.in (A.S.)

2 Department of Maths, SASHE, SASTRA Deemed University, Thanjavur 613401, India;
sami@maths.sastra.ac.in

3 Computer Science and Intelligent Systems Research Center, Blacksburg, VA 24060, USA
4 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology,

Mansoura 35111, Egypt
5 Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman

University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; dskhafga@pnu.edu.sa
6 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; tjalahmadi@pnu.edu.sa
* Correspondence: sktowfek@jcsis.org (S.K.T.); hkalqahtani@pnu.edu.sa (H.K.A.)

Abstract: Test case selection is to minimize the time and effort spent on software testing in real-time
practice. During software testing, software firms need techniques to finish the testing in a stipulated
time while uncompromising on quality. The motto is to select a subset of test cases rather than take up
all available test cases to uncover most bugs. Our proposed model in the research study effort is termed
SCARF-RT, which stands for Similarity coefficient (SC), Creating Acronyms, Regression test (RT), and
Fuzzy set (FS) with Dataset (DS). Clustering of test cases using ranking and also based on similarity
coefficients is to be implemented. This research considered eleven different features for clustering the
test cases. Two techniques have been used. Firstly, each cluster will, to a certain extent, encompass a
collection of distinct traits. Depending on the coverage of the feature, a cluster of test cases might be
chosen. The ranking approach was used to create these groupings. The second methodology finds
similarity among test cases based on eleven features. Then, the maxmin composition is used to find fuzzy
equivalences upon which clusters are formed. Most similar test cases are clustered. Test cases of every
cluster are selected as a test suite. The outcomes of this research show that the selected test cases based on
the proposed approaches are better than existing methodologies in selecting test cases with less duration
and at the same time not compromising on quality. Both fuzzy rank-based clustering and similarity
coefficient-based clustering test case selection approaches have been developed and implemented. With
the help of these methods, testers may quickly choose test cases based on the suggested characteristics
and complete regression testing more quickly.

Keywords: test case selection; cluster; fuzzy rank coefficients; regression test; similarity coefficient;
fuzzy equivalences

1. Introduction

In software engineering, testing is performed just before deployment. Many sets of
inputs are created for testing, and software is tested with these inputs to see that the output
is as desired. If not, the bugs are reported to the developer to correct the errors mentioned.
But, while correcting errors, a new set of errors may be introduced. So, the testing needs to
be conducted again. This approach of retesting is called a regression test. Re-exercising all
test cases is impossible during regression tests, as it is a highly time-consuming task. In
test case scenarios, white-box testing provides a clear version of test cases. The research

Symmetry 2023, 15, 1959. https://doi.org/10.3390/sym15101959 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15101959
https://doi.org/10.3390/sym15101959
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9843-6392
https://orcid.org/0000-0001-7507-5267
https://orcid.org/0000-0002-0067-692X
https://doi.org/10.3390/sym15101959
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15101959?type=check_update&version=1

Symmetry 2023, 15, 1959 2 of 23

developed a white-box testing approach that prioritizes, selects, and minimizes in the
context of reusability under constraints in the scope of usability. Their approach is a boost
to existing approaches [1]. Instead, some of the test cases alone need to be selected, which
will plausibly catch up with errors. The paper develops a test case selection methodology
as a constrained search-based optimization task using requirements coverage as a fitness
function to be maximized. They used binary-constrained particle swarm optimization as a
base technique [2]. The research work proposed an approach to select test cases in database
applications. They designed classification tree models using a similarity base towards
black-box testing. Also, a new set of test cases for modified code sections is to be included
in the regression test. Moreover, the team lead subjectively decides the number of iterations
in regression tests.

So, selecting test cases to catch significant errors with minimal time duration has
become necessary for the software industries. And the major challenge in this approach
is retaining the software’s quality. The research work proposed an approach to select test
cases in database applications. They designed classification tree models using a similarity
base towards black-box testing [3]. The paper proposed a test case allocation method using
fuzzy inference [4]. The research article proposed a weighted attribute-based strategy
by conducting more than one clustering iteration using weighted execution profiles [5].
Therefore, uncovering more errors, especially the critical and showstopper errors with less
time duration, is difficult. And this is the research topic of the current era. Researchers
have devised techniques based on code. Such techniques are delayed and known to be
the white-box approach to software testing. It considers the code flow during execution.
The research proposed regression test selection using program dependence graphs for
service-oriented workflow applications [6]. The paper developed two selective regression
testing methods to evaluate the effectiveness of the Rosenblum-Weyuker (RW) model for
predicting cost-effectiveness [7]. Also, the data flow across the different paths of code is
considered. Such a transparent view of the coding gives clear visibility toward finding
bugs and, hence the name. The literature depicts clearly that many researchers rely on
design notations and models upon which test cases were generated. The formation of test
cases is being achieved for finding bugs, whose backbone is sheer design models. Mirarab
et al. [8] proposed an approach forming an integer linear programming problem using two
different coverage-based criteria to select a subset of test cases and then order them using
a greedy algorithm to maximize the coverage. Fujiwara et al. [9]. This approach neither
relies on code nor depends on querulents. Hence, it sits amidst white-box and black-box
approaches and is termed the grey-box approach in software tests. Yet another approach
adopted by practitioners and researchers is generating test cases concerning functional
and nonfunctional requirements. The code is completely blacked out as part of testing
and hence named a black-box testing approach. Our approach is based on features of the
software test in selecting test cases. These features are not picked from implicit or explicit
requirements. Instead, these features are marked exclusively by software testers. So, the
proposed test case selection methodology can be applied to any test approach such as black
box, white box, or grey box. The skilled testers across various software building industries
set the order of importance of these features.

Our contributions in this work:

− To introduce an inventive hybrid grey-box testing methodology that effectively com-
bines white-box and black-box strategies.

− Develop a distinctive feature-based test case selection approach, emphasizing vital
aspects of the software designated by proficient testers without reliance on explicit or
implicit requirements.

− Develop pioneering quantum-based test case selection techniques, employing feature
coverage concepts and rank-based coefficients to optimize the relationship between
features and test cases.

The innovative hybrid grey-box testing methodology seamlessly integrates the strengths
of both white-box and black-box testing strategies, optimizing the testing process for en-

Symmetry 2023, 15, 1959 3 of 23

hanced efficiency and thoroughness. The black-box testing reflects real-world usage sce-
narios and user perspectives, ensuring a comprehensive assessment of system behavior.
By combining these approaches, our methodology leverages the advantages of white-box
testing’s precision and black-box testing’s comprehensiveness, offering a holistic evaluation
of the software’s functionality, security, and reliability. The innovative hybrid grey-box
testing sustains the model’s stability, harmonizing white-box understanding and black-box
versatility, ensuring a resilient and dependable performance across diverse conditions.

The distinctive feature-based approach prioritizes critical aspects of the software,
identified and designated by proficient testers, bypassing the need for explicit or implicit
requirements. Leveraging their expertise and insights, testers meticulously pinpoint signifi-
cant features integral to the software’s functionality and user experience. This methodology
advocates for a proactive testing strategy, ensuring that crucial functionalities and user
interactions are thoroughly assessed, even without exhaustive requirements documen-
tation. The distinctive feature-based test case selection approach, guided by proficient
testers, fortifies the model’s stability without relying on explicit or implicit requirements,
enhancing software robustness and reliability.

Innovate test case selection in quantum computing through groundbreaking methods
using feature coverage principles and rank-based coefficients. By intricately optimizing
the interplay between features and test cases, we aim to significantly enhance testing
efficiency and accuracy and ultimately pave the way for more effective and reliable quantum
computing systems, marking a significant leap in the realm of quantum technology. The
pioneering quantum-based test case selection leverages feature coverage and rank-based
coefficients, optimizing the feature-test case relationship, bolstering the model’s stability,
and enhancing software reliability.

The stated order of importance over the features in our proposed work is the renowned,
profound, and benchmarked order, which every tester practices while optimizing test cases.
The research work-related features and test cases through rank-based coefficients. In the
existing market, many other techniques prevail. In this paper, we have developed methods
for test case selection based on the quantum of the feature coverage. Altogether, these
proposed techniques help to improve software testing effectiveness. This selection process
yields an optimal set of test cases, especially in regression tests.

The Scientific Novelty of the Research Work

The effective selection of test cases is crucial in software testing since it helps to reduce
the time and effort needed for full testing while maintaining high standards. Software
companies look for methods to speed up the testing process without sacrificing quality to
meet this demand. This research focuses on implementing test case clustering utilizing
ranking and similarity coefficients to find the most faults in a shorter time. The experimen-
tation involves considering eleven distinct features to cluster the test cases, employing two
methodologies. In the first methodology, clusters are formed based on covering specific
features up to a certain percentage. This ranking methodology aids in selecting the test
case clusters. The second methodology determines test case similarity using the eleven
features, and fuzzy equivalences are derived through maxmin composition.

Novelty 1: This research pioneers an innovative approach to test case clustering using
a unique combination of fuzzy rank-based clustering and similarity coefficients, allowing
for efficient selection of test cases based on specific features and significantly accelerating
regression testing without compromising quality.

Novelty 2: The experimentation in this study demonstrates the superiority of the
proposed methodologies over existing approaches by utilizing eleven distinct features
to cluster test cases, achieving higher fault detection rates in a shorter duration. This
advancement offers a practical solution for software companies seeking enhanced testing
efficiency.

For your convenience, the dataset and coding information are accessible in the
Supplementary Materials.

Symmetry 2023, 15, 1959 4 of 23

The coming sections discuss related work, motivational examples, empirical evaluation
and metrics, results and discussions, future work, and conclusions.

2. Literature Review

Introduced the “partial W” method, which provides a logical link between several
finite state machine model test methods, providing general applicability in selecting test
cases. Mansour et al. [10] have compared five regression test selection algorithms: simu-
lated annealing, reduction, slicing, data flow, and firewall algorithms. The criteria they used
are the number of selected test cases, execution time, precision, inclusiveness, preprocessing
requirements, maintenance, level of testing, and type of approach. Mansour et al. [11]
proposed three test selection methods. The first method is based on modification and its
effects. The second method omits tests that do not cover modification. The third method
reduces the number of test cases selected by omitting non-modification revealing tests
from the initial suite. Lee et al. [12] proposed a set covering problems using an enhanced
zero-one optimal path set selection method to select test cases in structural programming.
Graves et al. [13] experimented to examine the relative costs and benefits of several regres-
sion test selection techniques. Rothermel et al. [14] presented a framework for evaluating
regression test selection techniques regarding inclusiveness, precision, efficiency, and gen-
erality. Erikrogstad et al. [15] explored the cost and effectiveness of various approaches and
their combination for regression testing of database applications using classification tree
models of the input domain.

2.1. Various Test Cases and Methodologies

Zheng et al. [16] developed a multi-objective evolutionary algorithm, evaluating clas-
sic greedy and non-dominated sorting genetic algorithms II. This technique provides a
range of solutions with trade-offs between cost and coverage. Rafaqutkazmi et al. [17]
scrutinized 47 regression test case selection articles comprising seven cost measures,
13 coverage types, and five fault detection metrics. Gr Rothermel et al. [18] developed
an algorithm to select test cases based on the modified versions of the program using a
control flow graph. Francisco et al. [19] have devised a similarity technique to select test
cases for the modified versions of the program based on state diagrams. Briand et al. [20]
scrutinized UML designs and devised a technique for test case selection based on their
changes. Rapps et al. [21] deployed input selection techniques based on the data flow
chain across the program paths. Harrold et al. [22] implemented a methodology for se-
lecting test cases based on requirements coverage cardinality, reducing the test suite size.
Raju et al. [23] analyzed metrics in testing and chose test cases accordingly for regression
tests. Wong et al. [24] developed a hybrid technique for selecting test cases based on code
coverage, fault classification, execution profiles, and program modifications. L Yu et al. [25]
devised classification models to classify test cases based on defect types they captured and
dynamic programming to get optimal selection solutions. In a distributed cloud environ-
ment, employing multi-objective criteria is essential for efficient test case selection and
prioritization. Balancing objectives like performance, resource utilization, and fault toler-
ance ensures comprehensive testing for optimal system reliability and functionality [26].
This study focuses on the perceived impact of an offshore aquaculture area in southeastern
Portugal, the Armona Pilot Production Aquaculture Area (APPAA). The infrastructure
creation aimed to stimulate local employment opportunities in seafood production and
improve finfish and shellfish production resilience [27]. This research paper proposes an
expert system based on a fuzzy logic model to analyze the dynamics of sustainable livestock
production systems. The objective is to address the complexities and uncertainties inherent
in livestock production while aiming for sustainable practices [28,29]. The literature survey
in the test case selection domain is summarized in Table 1.

Symmetry 2023, 15, 1959 5 of 23

Table 1. Literature survey in the domain of test case selection.

S.No Year Title of Paper Methodology Strength Weakness

1 1985
Selecting software

test data using data
flow information

Definition—Use graph Detects
Dependencies Complexity

2 1991
Test Selection Based

on Finite State
Models

Finite state models Automation Interpretability
Challenges

3 1993
A methodology for

controlling the size of
a test suite

Association between
requirement and test case

Efficiency in Test
Execution

Potential
Coverage Gaps

4 1996
Analyzing regression

test selection
techniques

Linear equation, path
analysis, data flow,
dependency graph,

modification, firewall,
cluster techniques

Enhanced Test
Suite Efficiency

Overhead in
Selection
Process

5 1997
A safe efficient
Regression Test

selection technique
Control flow graph Reduced Test

Execution Time
Initial Setup
Complexity

6 1997
A Study of Effective

Regression Testing in
Practice

Modification-based test
selection minimized or

prioritized test sets

Size reduction,
precision, and

recall are analyzed

Initial Setup
Complexity

7 2000
An optimal

representative set
selection method

Optimal representative
set and optimal path set

selection

Targeted Scenario
Coverage

Possible
Missed

Dependencies
Detection

8 2001
An empirical study

of regression test
selection techniques

Comparing all test
selection methods

Data-Driven
Testing Approach

Potential
Generalization

Limitations

9 2001
Comparison of
regression test

selection algorithms

Comparison based on
eight different criteria

Comprehensive
Algorithmic
Performance
Evaluation

regression testing

Sensitivity to
Test Cases

10 2001

Empirical studies of a
Prediction model for

Regression Test
Selection

A prediction model based
on coverage

Predictive
Capability for

Selection

Model Training
Overhead and

Complexity

11 2002

Reduction-based
methods and metrics

for selective
regression testing

Modification and
precisely based reduction

Optimized Testing
Effort Allocation

Reliance on
Reduction
Techniques

12 2009

Automating
regression test

selection based on
UML designs

Mapping between UML
design changes and

classification of test cases

Efficient Utilization
of UML

Initial Setup
and Integration

Challenges

13 2010
Time-constrained test

selection for
regression testing

Data mining to select test
cases and dynamic

programming to find
optimal test cases

Timely and
Prioritized Test

Selection

Sensitivity to
Time

Constraints

14 2012

Size-constrained
regression test case

selection using
multicriteria
optimization

Selection using integer
linear programming

problem and
prioritization using
greedy algorithm

Effective
Utilization of

Criteria

Selection
Criteria

Sensitivity

15 2013

Search-based
constrained test case

selection using
execution effort,

expert systems with
applications

Constrained search-based
optimization

Utilizes Execution
Effort Criteria

Potential
Selection Bias

Impact

16 2013

Test case selection for
black-box regression
testing of database

applications,
Information, and

Software Technology

Similarity-based test
selection algorithm

Targeted Black-Box
Test Selection

Limited
Coverage of

Scenarios

17 2014

A weighted
attribute-based

strategy for cluster
test selection

Weighted attributes
strategy

Utilizes Weighted
Attribute

Considerations

Sensitivity to
Attribute

Weighting

Symmetry 2023, 15, 1959 6 of 23

Table 1. Cont.

S.No Year Title of Paper Methodology Strength Weakness

18 2014
System regression

test planning with a
fuzzy expert system

fuzzy expert system
based on features

Comprehensive
Regression Test

Planning

Potential
Model

Complexity
Impact

19 2014

Measurement and
Analysis of Test Suite
Volume Metrics for
regression Testing

Regression test on
various applications

Quantitative
Analysis of Test

Volume.

Data
Sensitivity to

Variability

20 2015
A Novel Method for
Allocating Software

Test Cases

Fuzzy inference on
software operational

profile

Innovative Test
Case Allocation

Method

Sensitivity to
Allocation

Criteria

21 2016

Scope-aided test
prioritization,
selection, and

minimization for
software reuse

Code coverage testing Efficient Test Suite
Minimization

Potential
Overlooking of

Important
Scenarios

22 2016

Cost-effective
strategies for the

regression testing of
database applications

Classification tree model
Focus on Database

Application
Specifics

Sensitivity to
Cost Factors

23 2016
Multi-objective
optimization for

regression testing

Multi-objective
evolutionary algorithm

Balanced Test
Objective

Fulfillment
coverage

Trade-offs
Among
Multiple

Objectives

24 2016
Full modification
coverage through

automatic
similarity analysis

Automated
Modification
Tracking and

Testing

Potential
Overlooked
Edge Cases

25 2017 Effective Regression
Test Case Selection

47 empirical
studies, seven cost

measures,13 coverage
types, five fault detection

metrics

Targeted Test Case
Coverage.

Potential
Missed

Regression
Scenarios

26 2017

Optimal
control-based
regression test
selection for

service-oriented
workflow

applications

Optimal control based on
dependence graph

Efficient Test Case
Selection

Sensitivity to
Workflow
Changes

2.2. Analysis of a Literature Work to Find the Strengths and Weaknesses in Research

This study’s key findings encompassed a thorough analysis of software testing method-
ologies, focusing on optimizing efficiency and effectiveness. The research emphasized
detecting dependencies and implementing automation, which significantly enhanced test
execution efficiency and reduced overall test execution time. Additionally, this study show-
cased the importance of a data-driven testing approach and a comprehensive algorithmic
performance evaluation for regression testing. The predictive capability for test case selec-
tion and the efficient allocation of testing efforts were critical factors in achieving targeted
scenario coverage and prioritized test selection. The utilization of UML, innovative test case
allocation methods, and automated modification tracking were noted to contribute to an
efficient testing process. Common strengths observed were the comprehensive regression
test planning, balanced test objective fulfillment coverage, and a focus on database applica-
tion specifics, ensuring a robust and optimized testing effort allocation. The integration of a
quantitative analysis of test volume and efficient test suite minimization further highlighted
the research’s commitment to precision and efficiency in testing practices.

The limitations encompass challenges in accurately detecting complex and dynami-
cally changing dependencies, potential resource constraints affecting concurrent test exe-
cutions for efficient test execution, and the complexity in achieving optimal efficiency for
heterogeneous test suites, leading to enhanced test suite efficiency limitations. Reducing
test execution time faces constraints due to application intricacies and the need to main-

Symmetry 2023, 15, 1959 7 of 23

tain comprehensive testing coverage, and analyzing size reduction, precision, and recall
presents difficulty in finding the perfect balance between these aspects and handling diverse
data sources for data-driven testing. Targeted scenario coverage encounters difficulty in
identifying and covering all relevant and possible scenarios, while comprehensive algorith-
mic performance evaluation in regression testing may struggle to predict all impacted areas
accurately. Predictive capability for selection and optimized testing effort allocation face
uncertainties and potential inaccuracies in prediction and difficulty in accurately allocating
efforts amidst evolving project priorities, respectively. Integration complexities challenge
the effective utilization of UML, and achieving timely and prioritized test selection can be
subjective and prone to biases. The effective utilization of criteria encounters challenges in
adapting to changing requirements and potential conflicts in criteria. Quantitative analysis
of test volume may face variability in effectiveness, and innovative test case allocation
methods struggle with implementation complexities and justifying effectiveness. Efficient
test suite minimization faces constraints in achieving significant efficiency gains for already
optimized suites, and focusing on database application specifics may be limited by the
difficulty in adapting the focus to diverse applications. Balancing test objective fulfillment
coverage encounters subjectivity and challenges in satisfying all objectives simultaneously.
Automated modification tracking and testing may be complex to fully automate tracking
for rapidly changing software. Targeted test case coverage and efficient test case selection
face challenges in achieving complete coverage and balancing efficiency with thoroughness,
respectively.

3. Motivational Example

For the research work illustration, we have taken a training set which is shown in
Table 2. The training set available in Table 2 contains 15 different real-time test cases.
These test cases are a subset of the test suites for the online banking software system.
Eleven different features were considered for this research work, as shown in Table 2. The
11 different features are ordered in the training set in such a way that they signify the
order of importance concerning testing. This order of importance among features is a
gathered knowledge from the test experts of the industries, which they follow in Table 2.
The research work uses the proposed model SCARF-RT to identify the best cluster for
software test case selection.

Table 2. Sample data set for test cases.

TC C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

TC1 VH H L M VL VL VH VH M H M
TC2 H M L VL L M VH H M VL L
TC3 VH H M L VL M VH VH M VL M
TC4 M M M M L L H M M M M
TC5 VH H H M M H L VL M H H
TC6 H VH M M L VL L M M VH H
TC7 VH H M M M L VL L H H M
TC8 VL L H L M L L VL M H M
TC9 VH H M M M L VH H H H M
TC10 M M M M M L VL L M M M
TC11 VH H M M M L H H H H M
TC12 VH H H H H L VL L H H M
TC13 VH H M H M L L L H H M
TC14 M M M M M L VL L H L M
TC15 VH VH VH H H L L L H H M

Here, in Table 2, twelve test cases are considered, and eleven features are taken.
If we want to test the test cases of the software, we have to consider the features of
software applications. Here, the features are nonfunctional activities like Critical bugs,
Requirements covered, Time, KLOC covered, Bugs detected, Length critical requirements

Symmetry 2023, 15, 1959 8 of 23

covered, Customer priority, Fault proneness, Requirements volatility, and Implementation
complexity. In the fuzzy, two important jargon are valued: one is linguistics, and another
is intuitional-tics; mainly in linguistics, we measure everything as very low (VL), low
(L), medium (M), high (H), and very high (VH), all these fuzzy terms are converted to
intuitional-tics values from 1 to 5. In our scenario, very low-1, low-2, medium-3, high-4,
and very high-5. In Table 2, the test cases are available from 1 to 15. Each test case has
features from C1 to C11 and is given linguistic scores like very low-1, low-2, and medium-3
for the corresponding symbols. Each test case has 11 parts to be tested. This is how Table 2
was formulated.

In fuzzy, linguistic and intuitive values are offered. The linguistic words are very low
(VL), low (L), medium (M), high (H), and very high (VH). Linguistic values are offered as
very low-1, low-2, medium-3, high-4, and very high-5 to analyze words in decision support
systems. Depending on the nature of the application, the values can be adjusted to a 5 or
10 scale.

Legends: C1—Critical bugs: This metric refers to the number of critical defects or
issues discovered during testing. C2—Requirements covered: This metric measures how
much the test cases cover the specified requirements. C3—Time: This metric evaluates
the time to execute the test cases and measures the testing effort. C4—LOC (Lines of
Code) covered: This metric determines the number of lines of code exercised or covered by
the test cases. C5—Bugs detected: This metric tracks the total number of defects discov-
ered during testing, including all severity levels. C6—Average word length: It evaluates
the number of test steps, input data variations, or conditions covered by each test case.
C7—Critical requirements covered: Similar to C2, this metric specifically focuses on critical
needs and assesses the coverage of test cases related to those requirements. C8—Customer
priority: This metric prioritizes test cases based on customer requirements and preferences.
C9—Fault proneness: This metric aims to predict the likelihood of defects occurring in
specific areas of the software based on past defect data.C10—Requirements volatility: Re-
quirements volatility measures the frequency of changes to the software’s requirements
during the testing process. C11—Implementation complexity: This metric assesses the
complexity of the software implementation and its impact on testing efforts.

I considered the 11 features of my empirical study in my research study. These are
critical aspects of my application. The various features for various applications may be
considered and included. These 11 features produce excellent results with high precision,
as seen in the tables.

In Table 3, for every linguistic value, the corresponding intuitional-tics values of very
low (VL)-1 and low (L)-2 like this, the scale values from 1 to 5 are substituted, respectively.

Table 3. Intuitional-tics values.

TC C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

TC1 5 4 2 3 1 1 5 5 3 4 3
TC2 4 3 2 1 2 3 5 4 3 1 2
TC3 5 4 3 2 1 3 5 5 3 1 3
TC4 3 3 3 3 1 1 4 3 3 3 3
TC5 5 4 4 3 3 4 2 1 3 4 4
TC6 4 5 3 3 2 1 2 3 3 5 4
TC7 5 4 3 3 3 2 1 2 4 4 3
TC8 1 2 4 2 3 2 2 1 3 4 3
TC9 5 4 3 3 3 2 5 4 4 4 3

TC10 3 3 3 3 3 2 1 2 3 3 3
TC11 5 4 3 3 3 2 4 4 4 4 3
TC12 5 4 4 4 4 2 1 2 4 4 3
TC13 5 4 3 4 3 2 2 2 4 4 3
TC14 3 3 3 3 3 2 1 2 4 2 3
TC15 5 5 5 4 4 2 2 2 4 4 3

Symmetry 2023, 15, 1959 9 of 23

In Table 4, the values zero and one are assigned with a threshold. If the numbers are
3 or above, we can supply 1; otherwise, we can provide 0. Table 4 was created using the
variables from Table 3.

Table 4. Fuzzy equivalence values.

TC C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

TC1 1 1 0 1 0 0 1 1 1 1 1
TC4 1 1 1 1 0 0 1 1 1 1 1
TC5 1 1 1 1 1 1 0 0 1 1 1
TC6 1 1 1 1 0 0 0 1 1 1 1
TC7 1 1 1 1 1 0 0 0 1 1 1
TC8 0 0 1 0 1 1 1 0 1 1 1
TC9 1 1 1 1 1 0 1 1 1 1 1

TC10 1 1 1 1 1 0 0 1 1 1 1
TC12 1 1 1 1 1 0 0 0 1 1 1
TC13 1 1 1 1 1 1 1 1 0 0 0
TC14 1 1 1 0 1 1 1 1 0 0 0
TC15 1 1 1 1 1 1 1 1 0 0 0

Table 5, row-wise total be taken for all the rows from TC1 to TC15. In the rows, 1’s are
added as such. In Table 6, the row-wise total will be arranged in the order called ranking.
Through Table 6, it is possible to understand the ideology.

Table 5. Row-wise total.

TC C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Total

TC1 1 1 0 1 0 0 1 1 1 1 1 8
TC2 1 1 0 0 0 1 1 1 1 0 0 6
TC3 1 1 1 0 0 1 1 1 1 0 1 8
TC4 1 1 1 1 0 0 1 1 1 1 1 9
TC5 1 1 1 1 1 1 0 0 1 1 1 9
TC6 1 1 1 1 0 0 0 1 1 1 1 8
TC7 1 1 1 1 1 0 0 0 1 1 1 8
TC8 0 0 1 0 1 1 1 0 1 1 1 7
TC9 1 1 1 1 1 0 1 1 1 1 1 10
TC10 1 1 1 1 1 0 0 1 1 1 1 9
TC11 1 1 1 1 1 0 1 1 1 1 1 10
TC12 1 1 1 1 1 0 0 0 1 1 1 8
TC13 1 1 1 1 1 1 1 1 0 0 0 8
TC14 1 1 1 0 1 1 1 1 0 0 0 7
TC15 1 1 1 1 1 1 1 1 0 0 0 8

Table 6. Ranking made according to the row-wise total in a descending order.

TC C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Row Total

TC9 1 1 1 1 1 0 1 1 1 1 1 10
TC11 1 1 1 1 1 0 1 1 1 1 1 10
TC4 1 1 1 1 0 0 1 1 1 1 1 9
TC5 1 1 1 1 1 1 0 0 1 1 1 9
TC10 1 1 1 1 1 0 0 1 1 1 1 9
TC1 1 1 0 1 0 0 1 1 1 1 1 8
TC3 1 1 1 0 0 1 1 1 1 0 1 8
TC6 1 1 1 1 0 0 0 1 1 1 1 8
TC7 1 1 1 1 1 0 0 0 1 1 1 8
TC12 1 1 1 1 1 0 0 0 1 1 1 8
TC13 1 1 1 1 1 1 1 1 0 0 0 8
TC15 1 1 1 1 1 1 1 1 0 0 0 8
TC8 0 0 1 0 1 1 1 0 1 1 1 7
TC14 1 1 1 0 1 1 1 1 0 0 0 7
TC2 1 1 0 0 0 1 1 1 1 0 0 6

Table 7, the column-wise total, and Table 8, the columns arranged in descending order
according to the total. Table 9 shows the formation of a dense cluster. The reason behind
using such a cluster denotes one famous ideology for the research work. In Table 9, I

Symmetry 2023, 15, 1959 10 of 23

drew out four dense clusters available in different colors. In the yellow color dense cluster
features like C1, C2, C3, C4 and C9 is 100% needed for the test cases TC9, TC11, TC4, TC5
and TC10. Features like C8, C11, C5, C7 and C10 are 100% for the test cases TC9 and TC11
in the violet color clusters. Out of thirty 1’s, the red color cluster contains, there you can
find only thirty-one 1’s are available, that is 88.57%, features like C1, C2, C3, C9, and C4
are needed for the test cases TC1, TC3, TC6, TC7, TC12, TC13 and TC15. Similarly, for the
naive green color cluster. The above is the new ideology for the clustering method in test
cases for software application development.

Table 7. Column-wise total.

TC C1 C2 C3 C9 C4 C8 C11 C5 C7 C10 C6 Row Total

TC9 1 1 1 1 1 1 1 1 1 1 0 10
TC11 1 1 1 1 1 1 1 1 1 1 0 10
TC4 1 1 1 1 1 1 1 0 1 1 0 9
TC5 1 1 1 1 1 0 1 1 0 1 1 9

TC10 1 1 1 1 1 1 1 1 0 1 0 9
TC1 1 1 0 1 1 1 1 0 1 1 0 8
TC3 1 1 1 1 0 1 1 0 1 0 1 8
TC6 1 1 1 1 1 1 1 0 0 1 0 8
TC7 1 1 1 1 1 0 1 1 0 1 0 8

TC12 1 1 1 1 1 0 1 1 0 1 0 8
TC13 1 1 1 0 1 1 0 1 1 0 1 8
TC15 1 1 1 0 1 1 0 1 1 0 1 8
TC8 0 0 1 1 0 0 1 1 1 1 1 7

TC14 1 1 1 0 0 1 0 1 1 0 1 7
TC2 1 1 0 1 0 1 0 0 1 0 1 6

Col-Total 14 14 13 12 11 11 11 10 10 10 7

Table 8. Ranking made according to the column-wise total in descending order.

TC C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Row Total

TC9 1 1 1 1 1 0 1 1 1 1 1 10
TC11 1 1 1 1 1 0 1 1 1 1 1 10
TC4 1 1 1 1 0 0 1 1 1 1 1 9
TC5 1 1 1 1 1 1 0 0 1 1 1 9

TC10 1 1 1 1 1 0 0 1 1 1 1 9
TC1 1 1 0 1 0 0 1 1 1 1 1 8
TC3 1 1 1 0 0 1 1 1 1 0 1 8
TC6 1 1 1 1 0 0 0 1 1 1 1 8
TC7 1 1 1 1 1 0 0 0 1 1 1 8

TC12 1 1 1 1 1 0 0 0 1 1 1 8
TC13 1 1 1 1 1 1 1 1 0 0 0 8
TC15 1 1 1 1 1 1 1 1 0 0 0 8
TC8 0 0 1 0 1 1 1 0 1 1 1 7

TC14 1 1 1 0 1 1 1 1 0 0 0 7
TC2 1 1 0 0 0 1 1 1 1 0 0 6

Col-Total 14 14 13 11 10 7 10 11 12 10 11

Table 9. Denser cluster formed.

TC C1 C2 C3 C9 C4 C8 C11 C5 C7 C10 C6 Row Total

TC9 1 1 1 1 1 1 1 1 1 1 0 10
TC11 1 1 1 1 1 1 1 1 1 1 0 10
TC4 1 1 1 1 1 1 1 0 1 1 0 9
TC5 1 1 1 1 1 0 1 1 0 1 1 9

TC10 1 1 1 1 1 1 1 1 0 1 0 9
TC1 1 1 0 1 1 1 1 0 1 1 0 8
TC3 1 1 1 1 0 1 1 0 1 0 1 8
TC6 1 1 1 1 1 1 1 0 0 1 0 8
TC7 1 1 1 1 1 0 1 1 0 1 0 8

TC12 1 1 1 1 1 0 1 1 0 1 0 8
TC13 1 1 1 0 1 1 0 1 1 0 1 8

Symmetry 2023, 15, 1959 11 of 23

Table 9. Cont.

TC C1 C2 C3 C9 C4 C8 C11 C5 C7 C10 C6 Row Total

TC15 1 1 1 0 1 1 0 1 1 0 1 8
TC8 0 0 1 1 0 0 1 1 1 1 1 7

TC14 1 1 1 0 0 1 0 1 1 0 1 7
TC2 1 1 0 1 0 1 0 0 1 0 1 6

Col-Total 14 14 13 12 11 11 11 10 10 10 7

3.1. Methodology 1

The first approach for test case selection uses the rank order clustering methodology.
The algorithm is given below:

Rank order clustering algorithm:
Step 1: Convert the ordinal values to cardinal values.
Step 2: Assign binary weight and determine the total weight for each row, say

TWi = ∑m
i=1 bij2m−j (1)

where m is the features, i is the number of rows. bip has a value between 1 and 5, depending
on the matrix.

The binary number for test cases(n) and features(m) is denoted as bip. Where, bip is
simply a n ∗m matrix.

Step 3: Reorder the rows in the descending order of TWi values.
Step 4: Assign binary weight and determine the total weight for each column,

say TWj.
The expression can be understood as follows:

TWj = ∑n
j=1 bji2n−i (2)

where n is the total number of test cases, j is the number of columns.
Step 5: Reorder the columns in the descending order of TWj values.
Step 6: Fix the threshold value.
Step 7: Cluster (CR) initialized with zero DataPoints.

Step 7.1: Mark DataPoint (DP) with value 1 as visited.
Step 7.2: Find NeighborsSet (NS) of the selected DataPoint (DP)
Step 7.3: If (NeighborsSet (NS) has more than three 1’s) AND If
(DataPoint (DP) is not yet part of any cluster (CR)).
Step 7.4: DataPoints (DP) selected according to the requirement.
Step 7.5: Add DataPoint (DP) to Cluster (CR).
Step 7.6: For each unvisited DataPoint in NeighborsSet, Perform from Step
Step 7.7: Else,
Step 7.8: Mark DataPoint as NoisePoint.

3.2. Initializing the Agent for the Proposed Algorithm

1. The next step is calculating the similarity or rank order between the data points.
2. The Rank Order Clustering algorithm agents represent the initial cluster centers or

centroids. These agents need to be initialized to start the clustering process.
3. Once the agents are initialized, the algorithm proceeds with an iterative process to

assign data points to clusters based on their similarity to the agents’ centroids.
4. After the clustering process converges, the quality of the resulting clusters is evaluated

using appropriate metrics, such as within-cluster sum of squares or other domain-
specific performance measures.

3.3. Algorithm 1. Rank Ordering and Clustering

The application of the above method for education is explained in Table 2 as follows:
The test problem in Table 2 is prepared according to the number of connected values. The

Symmetry 2023, 15, 1959 12 of 23

properties are listed in chronological order. These attributes are given coefficients of 20,
21, 22 . . . 2m from right to left. The cost of training for each test is equal to the coefficient
of behavior and income. Then, the tests are sorted by the number of values. In the next
step, serial totals are calculated on a column-by-column basis for the test data set for the
previous step’s results. These tests gave coefficients of 20, 21, 22 . . . 2m from bottom to
top. The training value for each attribute is multiplied by the coefficient of the relevant
data to get the number. The product is then rearranged to the lower part of that price. In
our method, the default position is 3. Therefore, more than three values are considered 1
and smaller values are considered 0. Table 3 is converted to the binary matrix and groups
are formed according to the written process. This process looks like this in Table 4 for
our training process: The table is clustered with intensities 1s using Algorithm 1. The
following information can be taken into account from the table above: Factors 15, 12, and 5
when focusing on critical illness, needs, time, weak needs, failure proneness, cover LOC,
complexity, and detection of errors when using functions such as complexity, 13, 9, 11
and 7, recovery can be selected with 100% confidence. When focusing on performance
(e.g., critical illness, required coverage, and duration), test data including 3, 1, 6, 2, 14, 10, 4,
and 8 can be selected for repeated measures with a confidence level of 83%. While focusing
on performance (i.e., need for change, failure rate, and LOC of coverage), test takers 3, 1,
6, 2, 14, 10, 4, and 8 can be safely selected for repeated measures at the 75% level. When
focusing on performance (i.e., using complexity, length, and customer importance), tests 3,
1, 6, and 2 can be selected for regression analysis with a confidence level of 75%. Chapter
Consider weight to score.

Weights are 1, 2, 4, 16, etc., in the workshop from right to left and from bottom to
top. Therefore, Table 2 is the base table for collecting the series. The first step is to sort the
training in the paragraph below. Then, count the rows line by line and sort them in the
following order. The resulting matrix is then converted to a table containing only binary
values. Binary conversion is conducted using the threshold of 3. Values greater than 3 will
be converted to 1, and values less than 3 will be converted to 0. Because of this conversion,
the results in Table 3 are heavily positive with 1s. Dense 1s are grouped according to
the algorithm to be grouped. A group of test cases contain a certain percentage of the
characteristics identified in that group. Therefore, these tests can be selected from the set of
test data available to validate specific functions. This is a technological know-how in case
selection. This method is more useful in the selection of retrospective tests.

3.4. Methodology 2—Fuzzy-Based Similarity Coefficient-Based Clustering

In this methodology also, test cases along with the 11 different features are considered.
These features are the same set of attributes that were used in Methodology 1. The inputs
for this approach are purely binary values. These binary values are obtained by converting
the matrix values ranging from 1 to 5 into binary values by keeping a threshold value. The
values equal to or greater than the threshold value are 1, and the remaining are 0s. Hence,
the test case values in Table 3 are transformed into binary based on a threshold value of 3.
So, Table 3 is converted to Table 5 as given below:

As a next step, the similarity among test cases concerning 11 features is found using
the following formula:

SRij = NPCMij + NPMIi + NPMJj −NPCMij (3)

where, NPCMij = number of common 1s in both rows i and j, NPMIi = number of 1s in
row 1. NPMJj = number of 1s in row j.

For the values in Table 10, the similarity coefficient values are found using the
Formula (4). The similarity coefficient values for the training set values are formed in
Table 6, as given below.

Symmetry 2023, 15, 1959 13 of 23

Table 10. Cosine similarity coefficient.

TC TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12 TC13 TC14 TC15

TC1 1 0.8 0.8 0.9 0.9 0.9 0.9 0. 6 0.9 0.9 0.9 0.9 0.9 0.9 0.9
TC2 0.8 1 0.8 0.8 0.8 0.8 0.8 0. 6 0.8 0.8 0.8 0.8 0.8 0.8 0.8
TC3 0.8 0.8 1 0.8 0.8 0.8 0.8 0. 6 0.8 0.8 0.8 0.8 0.8 0.8 0.8
TC4 0.9 0.8 0.8 1 0.9 0.9 0.9 0. 6 0.9 0.9 0.9 0.9 0.9 0.9 0.9
TC5 0.9 0.8 0.8 0.9 1 0.9 0.9 0. 6 0.9 0.9 0.9 0.9 0.9 0.9 0.9
TC6 0.9 0.8 0.8 0.9 0.9 1 1 0. 6 0.9 0.9 0.9 1 1 0.9 1
TC7 0.9 0.8 0.8 0.9 0.9 1 1 0. 6 0.9 0.9 0.9 1 1 0.9 1
TC11 0.9 0.8 0.8 0.9 0.9 0.9 0.9 0. 6 1 0.9 1 0.9 0.9 0.9 0.9
TC12 0.9 0.8 0.8 0.9 0.9 1 1 0. 6 0.9 0.9 0.9 1 1 0.9 1
TC13 0.8 0.8 0.8 0.8 0.8 0.9 0.6 0.8 0.8 0.9 0.9 0.8 0.8 0.9
TC14 0.9 0.8 0.8 0.9 0.9 0.9 0.9 0. 6 0.9 0.9 0.9 0.9 0.9 1 0.9
TC15 0.9 0.8 0.8 0.9 0.9 1 1 0. 6 0.9 0.9 0.9 1 1 0.9 1

The above fuzzy relation on a single universe TC is also a relation from TC to TC. This
will become fuzzy equivalence when it satisfies the following three properties:

Reflexivity : µ
∼
FR

(
TCi, TCj

)
= µ

∼
FR

(
TCj, TCj

)
(4)

Symmetry : µ
∼
FR

(
TCi, TCj

)
= µ

∼
FR

(
TCj, TCi

)
(5)

Transitivity : µ
∼
FR

(
TCi, TCj

)
= λ1 and µ

∼
FR

(
TCj, TCk

)
= λ2, (6)

then µ
∼
FR(TCi, TCk) = λ3, where λ ≥ min [λ1, λ2, λ3] and µ

∼
FR is the membership fuzzy

relation.
In fuzzy set theory, a fuzzy relation is reflexive if every element of the set is related to

itself with a degree of membership equal to 1. Mathematically, a fuzzy relation R on a fuzzy
set F is reflexive if: This means that the membership degree of each element TCi in F con-

cerning itself is equal to 1. Reflexivity in the context of µ
∼
FR

(
TCi, TCj

)
= µ

∼
FR

(
TCi, TCj

)
,

implies that there is a strong correlation or similarity between two entities TCi and TCj.
The software application’s capacitance conversion functionality for membership fuzzy (µF)
to fuzzy (F) and vice versa has been tested and is functioning correctly. The application
accurately converts values within the valid range and handles invalid input gracefully.

Where λ1 and λ2 are the membership degrees of the fuzzy relations between elements
TCi and TCj and between elements TCi and TCk, respectively. Then, transitivity requires
that λ ≥ min [λ1, λ2, λ3], indicating that the membership degree between TCi and TCj
should be greater than or equal to the minimum of the membership degrees between TCi
and TCj, and TCi and TCk.

The maxmin composition must be performed until the relation attains transitivity to
transform the tolerance into an equivalence relation. The number of times the max–min
compositions can be applied will be (n–), where n represents the number of elements in the
relation.

The fuzzy relation in Table 6 is the fuzzy tolerance relation. His should be converted
into a fuzzy equivalence relation. The fuzzy equivalence relation has properties: reflexivity,
symmetry, and transitivity. Already, the values in Table 6 possess reflexivity and symmetry
properties. To achieve transitivity, applying fuzzy maxmin composition is necessary. Hence,
applying fuzzy maxmin compositions for achieving transitivity is performed, and the result
is given below:

Clusters are formed with test cases having the same similarity scores. These clusters
show the degree of strength in the relationship among test cases. As a result, it is enough
to choose one test case per cluster as these are similar to a certain degree. And highly
dissimilar test cases are ignored, as it establishes noise. Ultimately, a few test cases are not
selected. The remaining selected cases yield coverage among all the 11 considered features,

Symmetry 2023, 15, 1959 14 of 23

which serves the purpose. From Table 8, the TC4 can be selected by ignoring the test cases
TC5, TC6, TC7, TC9, TC10, TC11, TC12, TC13, TC14, and TC15 since they are equivalent.
Hence, the test cases selected for a test suite at a 0.9 confidence level would be TC1, TC2,
TC3, TC4, and TC8.

Similarly, test cases can be selected for a test suite at various confidence levels. The
challenge of not compromising on quality is achieved because of equivalence classification.
Another significance of this method is all 11 features are covered with the help of selected
test cases.

3.5. Test Case Functionality for E-Commerce Application

Test Case Title: User Registration with Valid Data.
Test Case Description:
This test case verifies the functionality of the user registration process in the e-

commerce application, specifically focusing on registering a new user with valid data.
The objective is to ensure that the system accurately processes and accepts valid user input
during registration.

Preconditions:

1. The e-commerce application is accessible and operational.
2. The user is on the registration page.

Test Steps:

1. Launch the e-commerce application.
2. Navigate to the registration page.
3. Enter valid user data in the registration form:

a. Full Name: enter a valid full name (e.g., John Doe).
b. Email Address: Enter a valid email address in the correct format (e.g.,

john.doe@example.com).
c. Password: enter a valid password that meets the specified criteria (e.g., at least

8 characters long with a mix of uppercase, lowercase, and numbers).
d. Confirm password: re-enter the same valid password to confirm.
e. Phone number: enter a valid phone number (e.g., 1234567890) in the correct

format.
f. Address: enter a valid address (e.g., 1234 Street Name, City, State, Zip Code).

4. Click the “Register” or “Sign Up” button.
5. Verify that the system accepts the provided data and successfully registers the user.
6. Check for a confirmation message or email indicating successful registration.
7. Log in with the registered credentials to confirm successful registration.

Expected Result:
The system should accept the valid user data in the registration form and successfully

register the user. A confirmation message or email should be received, and the user should
be able to log in using the registered credentials.

Pass/Fail Criteria:

− Pass: the system accepts the valid data, registers the user successfully, and provides
confirmation of the registration.

− Fail: the system does not accept the valid data or encounters errors during the regis-
tration process, preventing successful registration.

A crucial aspect of creating effective test cases is to include all essential information
required for successful execution. For instance, when verifying the login functionality on a
website, the test case must encompass both the login and password details. Without these
credentials, the test case would be insufficient and unable to achieve the desired testing
objectives. In summary, comprehensive and accurate information within each test case is
pivotal for their effectiveness and ensuring the intended testing goals are met, in this case,
authenticating login functionality on the site.

Symmetry 2023, 15, 1959 15 of 23

3.6. Test Case for E-Commerce Application

Test Case Identifier: TC_ECOM_001.
Title: Adding a Product to the Cart.
Description: Verify the functionality of adding a product to the cart in the e-commerce

application.
Preconditions:
User is registered and logged in.
The application is accessible and properly functioning.
Steps:
Open the e-commerce application.
Log in with valid credentials.
Browse the product catalog and select a product to add to the cart.
Click on the product to view its details.
Locate the “Add to Cart” button and click on it.
Verify the product is added to the cart.
Expected Outcome:
The application successfully adds the selected product to the cart.
The cart displays the product added with the correct details and quantity.
In an effective test case, certain elements should be avoided to ensure clarity and

accuracy. Firstly, dependencies on other test cases should be minimized, as each test case
should be standalone to facilitate easy execution and interpretation. Secondly, unclear
formulation of steps or expected results hamper the test’s purpose and effectiveness, making
it essential to maintain clear and precise instructions. Thirdly, including all necessary
information is crucial for a test case to be passable and meaningful. Lastly, excessive detail
should be avoided to maintain focus and relevance, ensuring that the test case remains
concise and to the point, enhancing efficiency in testing processes. These principles promote
well-structured and effective test cases that contribute to robust software testing practices.

4. Empirical Evaluation and Metrics

The efficiency of the implemented methodology needs to be measured, without which
the research would not be complete. Hence, two metrics have been proposed as stated
below:

The Selection metric is used to find the savings in effort, which is as given below:

PSR = {TCS×AS} × 100 (7)

PSR stands for percentage of selection reduced; TCS denotes selected test cases; As
means selected attributes; and AS signifies a total number of attributes.

The efficiency metric given below is to find the efficiency of test cases in detecting
defects:

Test efficiency =
D
N
× 100 (8)

where D denotes defects covered, and N denotes the number of test cases.

Percentage Decrease =
Starting Value− Ending Value

|Starting Value | × 100 (9)

where:

“Starting Value” is the initial value or the value before the change.
“Ending Value” is the final value or the value after the change.

The methodologies have been implemented and verified with five different software
systems for the experimental study. These software systems have been developed using
the NET framework and are available as running software systems. The intricacies of these
software applications are shown in Table 9.

Symmetry 2023, 15, 1959 16 of 23

5. Results and Discussion

The experiments were performed rigorously with the available test cases mentioned
in Table 4. The results of the experimental study are detailed in Table 4. As per the results
available in Table 4, selected test cases cover the same number of defects. The cosine
similarity coefficient is a measure of similarity between two non-zero vectors defined in an
inner product space. Cosine similarity is its low complexity, especially for sparse vectors,
where only the non-zero coordinates must be considered. Hence, the quality is not at all
compromised. In Table 10, similarity has been calculated using cosine similarity measures.
TC1 is compared with TC1. It is one. TC1 with TC2, TC1 with TC3, TC1 with TC4 and
so on up to TC1 with TC15. The same other rows are compared to these results, and they
exhibited the same in Table 10. A value of 1 represents high similarity, and 0.9, 0.8, and
0.6 represent 90%, 80%, and 60%, respectively.

In Table 11, 1.0 value of test cases are clustered, 0.9 value of test cases are clustered,
0.8 value of test cases are clustered, and 0.0 value of test cases are clustered as such.
Herewith, it represents some of the test cases that are 100% required, 90%, 80%, and 60%
required according to the need of the software applications development. In Table 12,
software packages are taken from different domains, and the corresponding attributed
values are measured and the same in the table. In Table 13, results, methodologies, and
measures are shown.

Table 11. Lambda cut.

Lambda Cut Test Cases Clustered

1 {TC1}, {TC2}, {TC3}, {TC4}, {TC5},{TC6, TC7, TC12, TC13, TC15}, {TC8},
2 {TC9, TC11}, {TC10}, {TC14}

0.9
{TC4, TC5, TC6, TC7, TC9, TC10, TC11, TC12, TC13, TC14, TC15},{TC1},

{TC2}, {TC3}, {TC8}
0.8 {TC2, TC3, TC4, TC5, TC6, TC7, TC9, TC10, TC11, TC12, TC13, TC14, TC15},{TC1}, {TC8}
0.6 {TC2, TC3, TC4, TC5, TC6, TC7, TC8, TC9, TC10, TC11, TC12, TC13, TC14, TC15}, {TC1}
0 {TC1, TC2, TC3, TC4, TC5, TC6, TC7, TC8, TC9, TC10, TC11, TC12, TC13, TC14, TC15}

Table 12. Software applications and test suits.

S.No Applications Size in
KLOC

No. of
Modules

No. of Defects
Covered

Test Suit
Size

1 Railway reservation system 16.4 105 1403 1912
2 Hospital management system 22.3 78 1231 1691
3 Online banking system 12.7 89 1601 2020
4 College management system 15 93 1172 1446
5 Municipal tax portal 22.3 110 2630 3050
6 ERP Systems 22.1 112 2336 2934
7 CRM 21.7 108 2145 2856

Through the second methodology, similarity index and fuzzy inference, the research
noticed one good idea: to understand the amount of test case percentage needed to test
the software application’s real motive. In Figure 1, an efficiency chart shows the software
application’s real efficiency after being deployed into the testing. Everything has been
calculated using Methodology 1 and Methodology 2. In Figure 2, the percentage of selection
reduced chart was deployed using PSR (percentage of selection reduced) methods 1 and 2
using Equations (8) and (9).

Symmetry 2023, 15, 1959 17 of 23

Table 13. Results of methodologies and measures.

S.No Software Package

Te
st

C
as

es
Se

le
ct

ed
(T

C
s)

-M
et

ho
do

lo
gy

1

N
o.

of
A

tt
ri

bu
te

s
Se

le
ct

ed
(A

s)
ou

to
f

11
-M

et
ho

do
lo

gy
1

Ef
fic

ie
nc

y-
M

et
ho

do
lo

gy
1

PS
R

-M
et

ho
do

lo
gy

1

Te
st

C
as

es
Se

le
ct

ed
-M

et
ho

do
lo

gy
2

Ef
fic

ie
nc

y-
M

et
ho

do
lo

gy
2

PS
R

-M
et

ho
do

lo
gy

2

1 Railway reservation system 1700 8 82.5 62 1600 87.6 80.3
2 Hospital management system 1434 6 85.8 45.7 1333 92.3 78.8
3 Online banking system 1856 9 86.2 74.3 1798 89 89
4 College management system 1219 10 96.1 75.9 1273 92 88
5 Municipal tax portal 2833 6 92.8 50 2911 90.3 95.4
6 ERP System 2746 7 91.7 53 2813 91.3 93.4
7 CRM 2689 6 90.6 56 2798 90.4 92.3

Symmetry 2023, 15, x FOR PEER REVIEW 19 of 27

Figure 1. Efficiency chart.

Figure 2. Percentage of selection reduced chart.

Total Test Suit Size = Number of Equivalence Classes × Number of Test Cases per Equivalence Class
(10)

 Total Test Suit Size = Number of Boundary Values × Number of Test Cases per Boundary Value
(11)

Table 12 evaluates the values as per the mathematical equations of (10) and (11). All
the results have been found through the Python implementations. The fuzzy similarity
index and Lambda cut have been used to overcome the issue of testing time optimization,
as shown in Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10
and Table 11 . The undefined similarity index is a technique used for approximate string
matching and is valuable for various data science tasks. On the other hand, “Lambda
Cut” appears to be a concept related to fuzzy logic.

82.5

85.8 86.2

96.1

92.8

87.6

92.3

89
92

90.3

75

80

85

90

95

100

Railway reservation
system

Hospital management
system

Online banking system College management
system

Municipal tax portal

Ef
fic

ie
nc

y

Software packages

Efficiency-Methodology 1 Efficiency - methodology 2

62

45.7

74.3 75.87

50

80.3 78.8
89 88

95.4

0

20

40

60

80

100

120

Railway reservation
system

Hospital management
system

Online banking system College management
system

Municipal tax portal

PS
R

Software packages

PSR - Methodology 1 PSR - methodology 2

Figure 1. Efficiency chart.

Symmetry 2023, 15, x FOR PEER REVIEW 19 of 27

Figure 1. Efficiency chart.

Figure 2. Percentage of selection reduced chart.

Total Test Suit Size = Number of Equivalence Classes × Number of Test Cases per Equivalence Class
(10)

 Total Test Suit Size = Number of Boundary Values × Number of Test Cases per Boundary Value
(11)

Table 12 evaluates the values as per the mathematical equations of (10) and (11). All
the results have been found through the Python implementations. The fuzzy similarity
index and Lambda cut have been used to overcome the issue of testing time optimization,
as shown in Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10
and Table 11 . The undefined similarity index is a technique used for approximate string
matching and is valuable for various data science tasks. On the other hand, “Lambda
Cut” appears to be a concept related to fuzzy logic.

82.5

85.8 86.2

96.1

92.8

87.6

92.3

89
92

90.3

75

80

85

90

95

100

Railway reservation
system

Hospital management
system

Online banking system College management
system

Municipal tax portal

Ef
fic

ie
nc

y

Software packages

Efficiency-Methodology 1 Efficiency - methodology 2

62

45.7

74.3 75.87

50

80.3 78.8
89 88

95.4

0

20

40

60

80

100

120

Railway reservation
system

Hospital management
system

Online banking system College management
system

Municipal tax portal

PS
R

Software packages

PSR - Methodology 1 PSR - methodology 2

Figure 2. Percentage of selection reduced chart.

Symmetry 2023, 15, 1959 18 of 23

Total Test Suit Size
= Number of Equivalence Classes
× Number of Test Cases per Equivalence Class

(10)

Total Test Suit Size
= Number of Boundary Values
× Number of Test Cases per Boundary Values

(11)

Table 12 evaluates the values as per the mathematical equations of (10) and (11). All the
results have been found through the Python implementations. The fuzzy similarity index
and Lambda cut have been used to overcome the issue of testing time optimization, as
shown in Tables 2–11. The undefined similarity index is a technique used for approximate
string matching and is valuable for various data science tasks. On the other hand, “Lambda
Cut” appears to be a concept related to fuzzy logic.

In the first methodology, test cases are selected for the attributes being focused.
Whereas in the second methodology, all the considered attributes are covered. Also, the
second methodology gives a higher reduction percentage among test cases. Both method-
ologies were found to be highly efficient in fault detection and reduction in test cases.
Moreover, both methodologies have considered 11 attributes that were never used in the
earlier research. Hence, regarding attribute coverage, efficiency, and percentage of selection
reduced in test cases, the methods implemented have proved to be highly successful in
selecting regression test cases.

In Table 13, all the measurements are taken according to the mathematical formula
exhibited for reference by Equations (7) and (12).

Efficiency =
Time CPU is busy

Total Time
∗ 100 (12)

In Table 14, the e-commerce application, each test case includes a test case ID, descrip-
tion, input data, expected outcome, and potential reductions in time, cost, and complexity.
These reductions are hypothetical and should be based on a detailed analysis and evaluation
of the application and the testing process.

Table 14. E-commerece application.

Test Case ID Test Case Description Input Data Expected Outcome Time
(Reduction)

Cost (Re-
duction)

Complexity
(Reduction)

TC001 User registration with
valid data User info Successful

registration −10% −15% −5%

TC002 User login with correct
credentials Credentials Successful login −5% −10% −5%

TC003 Product search by name
and category Search data Accurate product

search results −15% −10% −10%

TC004 Add product to cart and
proceed to checkout Product ID Seamless transition

to checkout page −10% −5% −5%

TC005 Payment process with
valid payment details Payment info Successful payment −10% −10% −10%

TC006 User profile update with
valid information Profile info Profile updated

successfully −5% −5% −5%

TC007 User account deletion
with confirmation N/A Account deleted

successfully −10% −10% −5%

TC008 Product recommendation
based on browsing history User history Accurate product

recommendations −10% −10% −5%

TC009 Checkout process with
multiple items in the cart Cart items Seamless checkout

for multiple items −15% −10% −10%

TC010 Mobile responsiveness
across various devices N/A Consistent UI/UX

on different devices −20% −20% −15%

The acronym PSR represents “Priority to Severity Ratio”, a notable metric employed
within software testing. This metric is pivotal in establishing the optimal sequence for

Symmetry 2023, 15, 1959 19 of 23

addressing defects or issues encountered during testing phases. Its chief utility is enabling
teams to allocate their resources judiciously, considering two vital aspects: the severity of a
particular defect and its corresponding priority. The underlying formula used to compute
the PSR value is articulated as follows:

Analysis of the Result

The research study results provide useful results for improving error detection in a
short time. Applying competitive analysis using the ranking and similarity coefficient can
improve the method’s performance. The results from the experiment show that there has
been a significant improvement in the detection of errors, and thus, the testing process
has been improved. This advancement is essential for software development, where time
and resources are limited to optimize test suites. An integrated grey-box testing approach
allows software developers to simplify testing while providing comprehensive coverage.
As other studies in this area have shown, empirical results are based on the necessity of
selection to obtain good results and the importance of empirical problems in the sources.
Sorting is ordering data points according to a particular measure or measure. In production
process analysis, sort clustering is an algorithm for classifying machines according to their
needs for different products. The steps involved in the group analysis are as follows: For
each row (item), calculate the number representing the activity of each machine.

Select the following line as the count number.
For each column (machine), calculate the number representing the product that needs

to be processed on that machine.
Check the columns in order by the number of numbers.
If there is no change in steps 2 and 4, stop; otherwise, repeat the process.
The final result is the ranking of machines according to their importance in processing

different products.
Clustering or cluster analysis is a method for grouping data points based on their

similarities.
In traditional integration, data points are assigned to different groups, and each

data points to only one group. Clusters can be defined using different metrics such as
distance, connectivity, and power. The aim is to maximize similarity within the group
while minimizing similarity between different groups. Fuzzy clustering or soft k-means
is a form of clustering where each data point can belong to more than one cluster. Unlike
traditional clustering, where clustering of data points is difficult, fuzzy clustering assigns
membership levels to data points and indicates how often each group belongs. The fuzzy C-
means (FCM) algorithm is a widely used fuzzy clustering algorithm. It involves assigning
coefficients to each group’s data points, calculating each group’s centroid, and re-adjusting
the membership coefficients until they converge. Lambda Slice is a fundamental technique
that turns fuzzy membership into an intelligent classification. It helps to convert fuzzy
members in binary assignments. Choosing an appropriate lambda value means assigning
data points with membership levels higher than the threshold to a particular group. Instead,
those below the threshold are not included in the group.

Research in bioinformatics has also explored the use of fuzzy-based clustering tech-
niques to combine multivariate data. Based on fuzzy logic, fuzzy equivalence relations, and
fuzzy similarity of Łukasiewicz values, the FH-Clust method has been proposed to identify
subsets of patients from different omics data such as gene expression, miRNA expression,
and methylation. This approach focuses on integrating patient data from multiple omics
sites using a consensus matrix as analysis of single omics data ultimately leads to better
results and greater clinical relevance. In Table 14, comparative analysis is an essential part
of software testing. It involves comparing the actual output of a program or system with
the expected output to ensure that it functions correctly.

Table 15, the proposed model, utilizing a measure of closeness, predictive modeling,
and handling imprecise data, excels in quantifying resemblance and predicting outcomes
based on variables. Unlike traditional models, it effectively navigates data scale challenges

Symmetry 2023, 15, 1959 20 of 23

and offers superior predictive capabilities, making it an innovative and versatile choice for
diverse applications.

Table 15. Comparative analysis of models.

Model Name Key Features Advantages Limitations

Finite State Models
Represents system

behavior using finite states
and transitions

- Effective for systems
with well-defined states

and transitions

- Limited to systems that
can be accurately

represented as finite
states

Linear Equation
- Uses linear equations to

model relationships
between variables

- Mathematically
well-understood and

widely applicable

- Assumes linear
relationships, which
may not always be

accurate

Path Analysis
- Analyzes potential paths

through a system or
process

- Provides insights into
potential scenarios and

outcomes

- Can be complex for
large and intricate

systems

Dependency Graph
- Represents dependencies

between components or
elements

- Clearly visualizes
relationships and

dependencies

- Requires accurate and
complete information on

dependencies
Optimal

Representative Set and
Optimal Path Set

Selection

- Select representative test
cases or paths for efficient

testing

- Reduces redundancy in
test case selection,
saving time and

resources

- May not always
capture all relevant test

scenarios

Prediction Model
Based on Coverage

- Predicts test coverage
based on historical data or

metrics

- Helps in prioritizing
test cases for maximum

coverage

- Accuracy of
predictions can vary

based on the quality of
historical data

Data Mining for Test
Case Selection

- Uses data mining
techniques to identify

relevant test cases

- Can discover hidden
patterns and

relationships in the data

- Requires a
comprehensive and
accurate dataset for

effective mining
Dynamic

Programming for
Optimal Test Cases

- Finds optimal test cases
using dynamic

programming techniques

- Guarantees an optimal
solution based on

defined criteria

- Computationally
intensive for large test

case sets

Integer Linear
Programming for

Selection

- Utilizes integer linear
programming to select

optimal test cases

- Provides a rigorous
and optimal selection

process

- Requires expertise in
mathematical modeling

and solving ILP
problems

Similarity-Based Test
Selection Algorithm

- Selects test cases based
on similarity to previous

test outcomes

- Efficient for regression
testing and reducing

redundancy

- Requires a reliable
similarity metric and

historical test data

Fuzzy Expert System
Based on Features

- Utilizes fuzzy logic and
expert knowledge for test

case selection

- Handles imprecise or
uncertain information

effectively

- Requires expertise in
fuzzy logic and domain

knowledge

Code Coverage
Testing

- Measures the proportion
of code exercised by test

cases

- Helps in identifying
untested parts of the

code

- Does not guarantee
thorough testing of all

functionalities

Multi-Objective
Evolutionary

Algorithm

- Uses evolutionary
algorithms to optimize

multiple objectives in test
case selection

- Balances multiple
criteria for efficient test

case selection

- May be
computationally

intensive for complex
optimization problems

Optimal Control
Based on Dependence

Graph

- Utilizes optimal control
theory and dependence
graphs for efficient test

case selection

- Incorporates system
dependencies for
optimized testing

- Requires a
comprehensive

understanding of the
system and

dependencies

Propose Model

Measure of closeness,
predicts outcomes based
on variables, represents

uncertainty

Quantifies resemblance,
predictive modeling,

handles imprecise data

Sensitive to data scale,
assumes linear

relationship, complex
interpretation

6. Research Work Limitations

The proposed SCARF-RT model, while promising, has certain limitations. Firstly, the
effectiveness heavily relies on selecting and weighing the eleven features, which could be
subjective and may not generalize well across diverse software projects. The clustering
techniques might not always yield optimal groupings, potentially leading to suboptimal
test case selection. The research could benefit from a more comprehensive evaluation

Symmetry 2023, 15, 1959 21 of 23

across a broader range of software types and sizes to validate its efficacy in various contexts.
Furthermore, scalability concerns may arise when dealing with large-scale software systems,
necessitating further investigation for practical application.

Instructions for Testing Everything

In justifying the specific features of the e-commerce software application, it is crucial
to highlight its comprehensive functionality and purpose within the testing context. The
e-commerce application is a sophisticated software tailored for facilitating online buying
and selling transactions, managing product inventories, processing payments securely,
providing a seamless user interface, ensuring data privacy, integrating with various pay-
ment gateways, offering a personalized user experience through recommendations and
preferences, enabling order tracking and customer support, and maintaining robust security
measures against cyber threats. These features collectively contribute to the software’s
complexity and necessitate a tailored approach to testing, debunking the claim of being
universally testable for “everything” due to its specialized functionalities and intricate
design.

7. Conclusions and Future work

The research proposes a cutting-edge hybrid grey-box testing approach that combines
the strengths of white-box and black-box techniques. By incorporating code flow and
data flow analysis, our approach provides a transparent view of the software’s internal
workings, enabling efficient bug detection. This bridging of the gap between design models
and actual code makes our approach a valuable tool for software testing. Additionally, we
introduce a feature-based test case selection methodology that focuses on identifying the
most critical aspects of the software. By involving skilled testers from various software
industries, we establish a renowned order of importance for these features, independent of
explicit or implicit requirements. This methodology can be applied to any test approach,
resulting in an optimal set of test cases that effectively cover the most significant aspects of
the software.

Furthermore, our research presents innovative quantum-based techniques for test case
selection, leveraging the concept of quantum in feature coverage. Our approach optimizes
the selection process and improves software testing effectiveness by establishing relation-
ships between features and test cases through rank-based coefficients. These techniques
specifically address the challenges of regression testing, allowing for the efficient identifica-
tion of critical and showstopper errors within a minimal time. Finally, our proposed hybrid
grey-box testing approach, combined with the feature-based test case selection method-
ology and quantum-based techniques, offers a comprehensive and advanced solution for
software testing. By incorporating the strengths of different approaches and addressing
critical aspects of the software, our research enhances the overall quality and reliability of
software systems. The techniques used in the implemented approach are rank order and
similarity coefficient-based clustering. Both methods have been applied to regression test
selection, which is a very novel idea. A wide range of 11 features have been considered
for the first time in test case selection. These techniques have been tested with several test
suites, and it is found that the methodologies gave a satisfactory and convenient way of
selecting test cases. Hence, undoubtedly, regression test efficiency is being improved by
using these techniques. In the research approach, time, cost, and complexity reduction are
very much a concern. Tables 12 and 13 exhibit the real outcome of the product rather than
inventory. The work implemented, too, has some limitations. In method 2, clustering is
achieved at a particular λ cut confidence level. Hence, the cluster sizes will vary according
to λ cut level. Setting up this confidence level at a reasonable rate using the fuzzy technique,
rather than making it a subjective decision, is our next focus of work. In method 1, some
features were omitted during test case selection. Rather, complete coverage of all features
needs to be attained. Also, the formation of clusters might vary based on the number
of clusters chosen and the size of the cluster decided. For this purpose, clustering needs

Symmetry 2023, 15, 1959 22 of 23

improvisation, yet another future research work. Moreover, we have used only two mea-
sures such as efficiency and the percentage of selection reduced. Hence, more measures,
such as code coverage and cost (time) incurred, can be incorporated to ascertain quality
improvement. Our future work is to focus on the said issues to improve the selection
quality to 10 percent.

Supplementary Materials: Electronic supplementary material is available online at: https://github.
com/NARAYNAN888/fuzzy_program/blob/main/final_fuzzy_dataset.csv (accessed on 3 July 2023).

Author Contributions: S.K.R.—Original draft writing; S.G., Conceptualization; S.K.T., Data curation;
A.S., Formal analysis; D.S.K., Investigation; H.K.A., Methodology; T.J.A., Validation. All authors have
read and agreed to the published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2023R 384), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not Applicable.

Data Availability Statement: Dataset: https://github.com/NARAYNAN888/fuzzy_program/blob/
main/final_fuzzy_dataset.csv (accessed on 3 July 2023) ## Code/Software, https://github.com/
NARAYNAN888/fuzzy_program/commit/d0a8c94d644f881dff2636d80eb81d0135816c07 (accessed
on 3 July 2023).

Acknowledgments: We want to acknowledge Princess Nourah bint Abdulrahman University Re-
searchers Supporting Project’s support under project number PNURSP2023R 384. This project is
affiliated with Princess Nourah bint Abdulrahman University located in Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Miranda, B.; Bertolino, A. Scope-Aided Test Prioritization, Selection, and Minimization for Software Reuse. J. Syst. Softw. 2017,

131, 528–549. [CrossRef]
2. De Souza, L.S.; Prudêncio, R.B.C.; Barros, F.A.; Aranha, E.H.S. Search-Based Constrained Test Case Selection Using Execution

Effort. Expert Syst. Appl. 2013, 40, 4887–4896. [CrossRef]
3. Rogstad, E.; Briand, L.; Torkar, R. Test Case Selection for Black-Box Regression Testing of Database Applications. Inf. Softw.

Technol. 2013, 55, 1781–1795. [CrossRef]
4. Amrita; Yadav, D.K. A Novel Method for Allocating Software Test Cases. Procedia Comput. Sci. 2015, 57, 131–138. [CrossRef]
5. Wang, Y.; Gao, R.; Chen, Z.; Wong, W.E.; Luo, B. WAS: A Weighted Attribute-Based Strategy for Cluster Test Selection. J. Syst.

Softw. 2014, 98, 44–58. [CrossRef]
6. Wang, H.; Xing, J.; Yang, Q.; Wang, P.; Zhang, X.; Han, D. Optimal control based regression test selection for service-oriented

workflow applications. J. Syst. Softw. 2017, 124, 274–288. [CrossRef]
7. Xu, Z.; Gao, K.; Khoshgoftaar, T.M.; Seliya, N. System regression test planning with a fuzzy expert system. Inf. Sci. 2014, 259,

532–543. [CrossRef]
8. Harrold, M.J.; Rosenblum, D.; Rothermel, G.; Weyuker, E. Empirical studies of a prediction model for regression test selection.

IEEE Trans. Softw. Eng. 2001, 27, 248–263. [CrossRef]
9. Mirarab, S.; Akhlaghi, S.; Tahvildari, L. Size-constrained regression test case selection using multicriteria optimization. IEEE

Trans. Softw. Eng. 2011, 38, 936–956. [CrossRef]
10. Khendek, F.B.; Fujiwara, S.; Bochmann, G.V.; Khendek, F.; Amalou, M.; Ghedamsi, A. Test selection based on finite state models.

IEEE Trans. Softw. Eng. 1991, 17, 591–603. [CrossRef]
11. Mansour, N.; Bahsoon, R.; Baradhi, G. Empirical comparison of regression test selection algorithms. J. Syst. Softw. 2001, 57, 79–90.

[CrossRef]
12. Mansour, N.; Bahsoon, R. Reduction-based methods and metrics for selective regression testing. Inf. Softw. Technol. 2002, 44,

431–443. [CrossRef]
13. Lee, J.G.; Chung, C.G. An optimal representative set selection method. Inf. Softw. Technol. 2000, 42, 17–25. [CrossRef]
14. Graves, T.L.; Harrold, M.J.; Kim, J.M.; Porter, A.; Rothermel, G. An empirical study of regression test selection techniques. ACM

Trans. Softw. Eng. Methodol. 2001, 10, 184–208. [CrossRef]
15. Rothermel, G.; Harrold, M.J. Analyzing regression test selection techniques. IEEE Trans. Softw. Eng. 1996, 22, 529–551. [CrossRef]
16. Rogstad, E.; Briand, L. Cost effective strategies for the regression testing of database applications: Case study and lessons learned.

J. Syst. Softw. 2016, 113, 257–274. [CrossRef]
17. Zheng, W.; Hierons, R.M.; Li, M.; Liu, X.; Vinciotti, V. Multi-objective optimisation for regression testing. Inf. Sci. 2016, 334–335,

1–16. [CrossRef]

https://github.com/NARAYNAN888/fuzzy_program/blob/main/final_fuzzy_dataset.csv
https://github.com/NARAYNAN888/fuzzy_program/blob/main/final_fuzzy_dataset.csv
https://github.com/NARAYNAN888/fuzzy_program/blob/main/final_fuzzy_dataset.csv
https://github.com/NARAYNAN888/fuzzy_program/blob/main/final_fuzzy_dataset.csv
https://github.com/NARAYNAN888/fuzzy_program/commit/d0a8c94d644f881dff2636d80eb81d0135816c07
https://github.com/NARAYNAN888/fuzzy_program/commit/d0a8c94d644f881dff2636d80eb81d0135816c07
https://doi.org/10.1016/j.jss.2016.06.058
https://doi.org/10.1016/j.eswa.2013.02.018
https://doi.org/10.1016/j.infsof.2013.04.004
https://doi.org/10.1016/j.procs.2015.07.389
https://doi.org/10.1016/j.jss.2014.08.032
https://doi.org/10.1016/j.jss.2016.06.065
https://doi.org/10.1016/j.ins.2010.09.012
https://doi.org/10.1109/32.910860
https://doi.org/10.1109/TSE.2011.56
https://doi.org/10.1109/32.87284
https://doi.org/10.1016/S0164-1212(00)00119-9
https://doi.org/10.1016/S0950-5849(02)00027-7
https://doi.org/10.1016/S0950-5849(99)00052-X
https://doi.org/10.1145/367008.367020
https://doi.org/10.1109/32.536955
https://doi.org/10.1016/j.jss.2015.12.003
https://doi.org/10.1016/j.ins.2015.11.027

Symmetry 2023, 15, 1959 23 of 23

18. Kazmi, R.; Jawawi, D.N.; Mohamad, R.; Ghani, I. Effective regression test case selection: A systematic literature review. ACM
Comput. Surv. (CSUR) 2017, 50, 1–32. [CrossRef]

19. Rothermel, G.; Harrold, M.J. A safe, efficient regression test selection technique. ACM Trans. Softw. Eng. Methodol. 1997, 6,
173–210. [CrossRef]

20. Oliveira Neto, F.G.; Torkar, R.; Machado, P.D.L. Full Modification Coverage Through Automatic Similarity-Based Test Case
Selection. Inf. Softw. Technol. 2016, 80, 124–137. [CrossRef]

21. Briand, L.C.; Labiche, Y.; He, S. Automating Regression Test Selection Based on UML Designs. Inf. Softw. Technol. 2009, 51, 16–30.
[CrossRef]

22. Rapps, S.; Weyuker, E.J. Selecting Software Test Data Using Data Flow Information. IEEE Trans. Softw. Eng. 1985, SE-11, 367–375.
[CrossRef]

23. Harrold, M.J.; Gupta, R.; Soffa, M.L. A Methodology for Controlling the Size of a Test Suite. ACM Trans. Softw. Eng. Methodol.
1993, 2, 270–285. [CrossRef]

24. Raju, S.; Uma, G.V. Measurement and Analysis of Test Suite Volume Metrics for Regression Testing. Int. J. Eng. Res. Appl. 2014, 4,
11–20.

25. Wong, W.E.; Horgan, J.R.; London, S.; Agrawal, H. A Study of effective regression testing in practice. In Proceedings of the
Eighth International Symposium on Software Reliability Engineering, Albuquerque, NM, USA, 2–5 November 1997; pp. 264–274.
[CrossRef]

26. Gokilavani, N.; Bharathi, B. Multi-Objective based test case selection and prioritization for distributed cloud environment.
Microprocess. Microsyst. 2021, 82, 103964. [CrossRef]

27. Mocq, J.; St-Hilaire, A.; Cunjak, R.A. Influences of Experts’ Personal Experiences in Fuzzy Logic Modeling of Atlantic Salmon
Habitat. North Am. J. Fish. Manag. 2015, 35, 271–280. [CrossRef]

28. Ramos, J.; Lino, P.G.; Caetano, M.; Pereira, F.; Gaspar, M.; dos Santos, M.N. Perceived Impact of Offshore Aquaculture Area on
Small-Scale Fisheries: A Fuzzy Logic Model Approach. Fish. Res. 2015, 170, 217–227. [CrossRef]

29. Vásquez, R.P.; Aguilar-Lasserre, A.A.; López-Segura, M.V.; Rivero, L.C.; Rodríguez-Duran, A.A.; Rojas-Luna, M.A. Expert System
Based on a Fuzzy Logic Model for the Analysis of the Sustainable Livestock Production Dynamic System. Comput. Electron. Agric.
2019, 161, 104–120. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3057269
https://doi.org/10.1145/248233.248262
https://doi.org/10.1016/j.infsof.2016.08.008
https://doi.org/10.1016/j.infsof.2008.09.010
https://doi.org/10.1109/TSE.1985.232226
https://doi.org/10.1145/152388.152391
https://doi.org/10.1109/ISSRE.1997.630875
https://doi.org/10.1016/j.micpro.2021.103964
https://doi.org/10.1080/02755947.2014.996684
https://doi.org/10.1016/j.fishres.2015.05.030
https://doi.org/10.1016/j.compag.2018.05.015

	Introduction
	Literature Review
	Various Test Cases and Methodologies
	Analysis of a Literature Work to Find the Strengths and Weaknesses in Research

	Motivational Example
	Methodology 1
	Initializing the Agent for the Proposed Algorithm
	Algorithm 1. Rank Ordering and Clustering
	Methodology 2—Fuzzy-Based Similarity Coefficient-Based Clustering
	Test Case Functionality for E-Commerce Application
	Test Case for E-Commerce Application

	Empirical Evaluation and Metrics
	Results and Discussion
	Research Work Limitations
	Conclusions and Future work
	References

