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Abstract: In this work, we analyze a bilinear optimal control problem related to a 2D parabolic–
elliptic chemo-repulsion system with a nonlinear chemical signal production term. We prove the
existence of global optimal solutions with bilinear control, and applying a generic result on the
existence of Lagrange multipliers in Banach spaces, we obtain first-order necessary optimality
conditions and derive an optimality system for a local optimal solution.
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1. Introduction

In recent years, it has become extremely important to analyze the interaction of
living organisms with the environment in which they reside. Frequently, the form of
interaction involves the movement of living organisms in response to an external stimulus;
the movement generated in response to such stimulus is called taxis. The process that leads
to taxis is divided into three steps [1]: first the cell detects the extracellular signal through
certain receptors found on its surface; then, it processes the signal; and finally, it modifies
its mobile behavior. There exist different types of taxis, which depend on the nature of the
stimulus (see, for instance, [2]), one of them is chemotaxis.

The phenomenon of chemotaxis is understood as the alteration of the mobile behavior
of living organisms generated by the presence of certain chemical substances found in the
environment where they reside. In 1970, professors Keller and Segel proposed a mathe-
matical model describing the chemotactic aggregation of cellular molds that preferentially
move toward regions containing high concentrations of a chemical secreted by the amoebas
themselves (see [3]). This phenomenon is called chemo-attraction. In contrast, the opposite
phenomenon is called chemo-repulsion, if the regions that have a high chemical concentra-
tion generate a repulsive effect on the organisms. The most classic mathematical model in
the framework of chemotactic movements is the Keller–Segel system [3,4], which is given
by the following coupled nonlinear system of partial differential equations:

∂tu = αu∆u−∇(χu∇v) in Q,
∂tv = αv∆v− βv + h(u) in Q,

u(0, x) = u0(x), v(0, x) = v0(x) in Ω,
∂u
∂n

=
∂v
∂n

on (0, T)× ∂Ω,

(1)

where Ω ⊂ Rn, n = 2, 3, is a bounded domain with smooth boundary ∂Ω, (0, T) is a
time interval with 0 < T < ∞, Q := (0, T)×Ω is the time–space region, and the vector
n denotes the outward unit normal to ∂Ω. The unknown functions are the cell density
u := u(t, x) ≥ 0 and a chemical concentration v := v(t, x) ≥ 0. The cell flux and chemical
are given, respectively, by χu∇v− αu∇u and αv∇v, where αu, αv > 0 and χ 6= 0 are real
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constants. Therefore, the cells perform a biased random walk in the direction of the chemical
gradient, and the chemical diffuses (it is produced by the cells, and it degrades) [5]. The
term χu∇v models the transport of cells. If the parameter χ > 0, the transport is towards
regions with high concentrations of chemical substance (chemo-attraction), and if χ < 0,
the transport is towards regions with lower concentrations of chemical (chemo-repulsion).
The term −βv + h(u) models the consumption–production rate of the chemical, where β is
a real parameter that measures the self-degradation of the chemical, and the function h(u)
is the cell production term; this function must be non-negative when u ≥ 0.

The main focus of this paper is to carry out a theoretical study of a bilinear optimal
control problem related to the parabolic–elliptic system associated to problem (1), consid-
ering nonlinear chemical signal production and a proliferation/degradation coefficient
acting on a control subdomain ω. Specifically, we consider a bounded domain Ω ⊂ R2

with smooth boundary ∂Ω ∈ C2,1 and a time interval (0, T), with 0 < T < ∞. Then, we
analyze an optimal control problem related to the following parabolic–elliptic system of
partial differential equations in the time–space region Q := (0, T)×Ω:{

∂tu− ∆u = ∇ · (u∇v),
−∆v + v = up + f v 1ω,

(2)

where ω ⊂ Ω is the control subdomain, f denotes a bilinear control that acts on the
subdomain ω, and 1ω is the characteristic function of ω. In general, bilinear control
problems are a subclass of nonlinear control systems, in which the nonlinear term is
constructed by multiplying the state and control variables. The control lies in a nonempty,
closed, and convex set F . Notice that when f ≥ 0 we inject chemical substance in the
subdomain ω, and when f ≤ 0 we extract chemical substance in ω; thus, we can interpret
the control function f as a proliferation/degradation coefficient acting on the subregion
ω, which from the biological point of view makes sense. The term up, for p > 1, is the
nonlinear chemical signal production term.

We complete the system (2) with the initial condition for the cell density

u(0, x) = u0(x) ≥ 0 in Ω, (3)

and the Neumann boundary conditions

∂u
∂n

=
∂v
∂n

= 0 on (0, T)× ∂Ω. (4)

Studies on the existence of solutions related to system (2)–(4) can be consulted in [6–15]. In
particular, the case when f ≡ 0 and p = 1 has been analyzed by Mock in [6,7], in which
the author proved the existence and uniqueness of global-in-time classical solutions and
that the respective solutions are uniformly bounded and converge at an exponential rate to
steady-state. The parabolic–parabolic system related to problem (2)–(4) has been studied
in [8–14]. In [8,9] considering linear production and f ≡ 0 were studied, where Ciéslak
et al. [8] proved the existence of a unique smooth classical solution in two-dimensional
domains as well as the existence of weak solutions in 2D and 3D domains. In [9], the
author delimits his analysis to a n-dimensional convex domain (n ≥ 3) and changes the
chemotactic term ∇ · (u∇v) by ∇ · (g(u)∇v), where g(u) is an adequate smooth function.
With this modification, the author proved the existence and uniqueness of global-in-time
classical solutions and that the pair solution (u, v) converges to 1

|Ω| (
∫

Ω u0,
∫

Ω u0), as t goes
to ∞. Moreover, in [10,11], the authors proved for a quadratic production term (p = 2), the
existence of weak solutions in 3D domains and global-in-time strong solutions assuming
a regularity criterion in spaces of dimension 1 and 2; furthermore, they analyzed some
numerical schemes to approximate the weak solutions. In [12], for p = 1 and f 6≡ 0,
the authors proved the existence and uniqueness of strong solutions in 2D domains, and
deduced that the solution (u, v) does not blow-up at a finite time. The same authors in [13]
extend the results obtained in [12] to 3D domains, and presented results on the existence
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of weak solutions and established a regularity criterion to obtain global-in-time strong
solutions. In [14], the author consider, in a two-dimensional domain, the nonlinear case
for p ∈ (1, 2] and f 6≡ 0 and proved the existence and uniqueness of strong solutions. The
existence and uniqueness of strong solutions for problem (2)–(4), considering p ∈ (1, 2)
and f ∈ Lq(ω) for 2 < q < ∞, has been proved by Ancoma-Huarachi et al. [15]. For
the stationary case and linear production term, we can refer to a recent study developed
by Lorca et al. [16]. The case of nonlinear production is interesting to analyze, because
when saturation effects at large (or short) densities are taken into account, the signal
production through the cell no longer shows dependence on the population density in
a linear manner (see, for instance, [17]). It is important to mention that there is a close
relationship between chemotactic phenomena and the dynamics of symmetric pattern
formation. Indeed, motile cells of Escherichia coli aggregate to form stable patterns of
remarkable regularity when grown at a single point on certain substrates and central to
this self-organization is chemotaxis (see [18] for more details).

Optimal control problems related with chemotaxis systems can be consulted
in [12–14,16,19–24]. All these works proved the existence of at least one global optimal
solution and derived an optimality system, in particular obtaining first-order necessary
optimality conditions. In [21], the authors studied an optimal control problem with state
equations driven by a chemo-attractive Navier–Stokes evolution system in 3D domains.
They stated first-order necessary optimality conditions, previously proving that the state is
differentiable with respect to the control variable. Rodríguez-Bellido et al. [22] analyzed a
distributed optimal control problem related to a stationary chemotaxis model coupled with
the Navier–Stokes equations. Also, they derived an optimality system through a family
of penalized problems, because the application control-to-state is multivalued. In [24],
the authors considered a 2D chemotaxis model with a logistic source and proved the
existence of weak solutions for the dynamical equation, the existence of global optimal
solutions, and they derive an optimality system using a generic result on the existence of
Lagrange multipliers. The works [12–14] are dedicated to study control problems related
to chemo-repulsion models and considered the parabolic–parabolic system associated with
problem (2)–(4). In [12], the authors explored a bilinear optimal control problem in 2D
domains, proved the existence of global optimal solutions, and derived an optimality sys-
tem. The same authors in [13] studied the 3D version of [12]. Guillén-González et al. [14]
extended the results of [13] for the superlinear production term, that is, for p ∈ (1, 2].
Recently, in [16] a bilinear optimal control problem related to a stationary version system
of (2)–(4) has been studied for n-dimensional domains, with n = 1, 2, 3. In this work the
authors proved the existence of global optimal solutions and derived first-order necessary
optimality conditions for local optimal solutions. As far as we know, optimal control
problems related with system (2)–(4) have not been considered in the literature.

This paper is organized as follows: In Section 2 we fix some notations, introduce the
function spaces that will be used through the work, give the concept of strong solutions of
problem (2)–(4), present a result concerning to the existence and uniqueness of global-in-
time strong solutions of (2)–(4), and establish two regularity (parabolic and elliptic) results
for the Neumann heat problem that will be used to achieve our results. Finally, in Section 3
we analyze the bilinear optimal control problem and obtain several important results,
which include the existence of global optimal solutions, the derivation of the an optimality
system for a local optimal solution, via a result on existence of Lagrange multipliers in
Banach spaces, and we obtain some extra regularity properties of the Lagrange multipliers.

2. Preliminaries

We dedicate this section to establish some notations, definitions, and preliminary
results that will be used throughout this work. We will use the classical Lebesgue spaces
Ls := Ls(Ω), for 1 ≤ s ≤ ∞, with norm denoted by ‖ · ‖Ls . In particular, for s = 2, the
L2-norm and the respective L2-inner product will be denoted by ‖ · ‖ and (·, ·). Moreover,
we use the Sobolev spaces Wm,s := Wm,s(Ω) = {u ∈ Ls : ‖∂αu‖Ls , ∀|α| ≤ m}, with norm
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denoted by ‖ · ‖Wm,s . When s = 2, we denote it by Hm := Wm,2 and the respective norm
by ‖ · ‖Hm . Also, we will use the space Wm,s

n := {u ∈Wm,s : ∂u
∂n = 0 on ∂Ω} for m > 1 + 1

s ,
with norm denoted by ‖ · ‖Wm,s

n
. Moreover, if X is a generic Banach space, we will denote

it by Ls(X) to space of functions u : [0, T] → X that are integrable in the Bochner sense,
and its norm will be denoted by ‖ · ‖Ls(X). For simplicity, we will denote Ls(Q) := Ls(Ls)
and its norm by ‖ · ‖Ls(Q). Also, C(X) denotes the space of continuous functions u from
[0, T] onto X and its respective norm by ‖ · ‖C(X). In contrast, X′ denotes the topological
dual space of a Banach space X, and the respective duality for a pair X and X′ by 〈·, ·〉X′
or simply by 〈·, ·〉 unless this leads to ambiguity. Finally, as usual, C, K, C1, K1, ..., denote
positive constants independent of state variables u and v, but its value may change from
line to line.

We are interested in studying a bilinear optimal control problem related with the
strong solutions of problem (2)–(4). The following definition establishes the concept of
strong solutions of system (2)–(4); more details can be consulted in [15].

Definition 1 (Strong solutions). Let f ∈ Lq(ω), for 2 < q < ∞, u0 ∈ H1 with u0 ≥ 0 a.e. in
Ω. We say that a pair (u, v) is a strong solution of system (2)–(4) in (0, T), if u ≥ 0, v ≥ 0 a.e.
in Q,

u ∈ Su := {u ∈ L∞(H1) ∩ L2(H2
n) : ∂tu ∈ L2(Q)}, (5)

v ∈ Sv := Lq(W2,q
n ), (6)

the pair (u, v) satisfies point-wisely a.e. (t, x) ∈ Q the system{
∂tu− ∆u = ∇ · (u∇v),
−∆v + v = up + f v 1ω,

and the initial and boundary conditions (3) and (4) are satisfied, respectively.

Some properties that can be extracted directly from system (2)–(4) and that are key to
obtaining the existence of strong solutions are the following:

• System (2)–(4) is conservative in u. Integrating (2)1 in the spatial variable, we have

d
dt

(∫
Ω

u
)
= 0; hence,

∫
Ω

u(t) =
∫

ω
u0 := m0 ∀t > 0. (7)

• Integrating (2)2 in Ω, we have ∫
Ω

v =
∫

Ω
up +

∫
ω

f v. (8)

Now, we present a result related to the existence and uniqueness of strong solutions to
problem (2)–(4). This result is valid only when p ∈ (1, 2). For this reason, we restrict our
analysis to 1 < p < 2 (see [15] for more details).

Theorem 1 (Strong solutions ([15], Theorem 2.7)). Assume that p ∈ (1, 2). Let u0 ∈ H1 with
u0 ≥ 0 in Ω and f ∈ Lq(ω) for 2 < q < ∞. Suppose that there exists a constant β > 0 such that
‖ f ‖Lq(ω) is small enough satisfying

‖ f ‖Lq(ω) < β ≤ K̂, (9)

where K̂ := K̂(|Ω|, q, p) > 0 is a constant. Then, there exists a unique pair of functions (u, v)
that is a strong solution of system (1) and (2) in the sense of Definition 1. Moreover, there exists a
positive constant K := K(m0, T, ‖ f ‖Lq(ω), K̂) such that

‖u‖Su + ‖v‖Sv ≤ K. (10)
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Remark 1. The constant K̂, given in Theorem 1, is mainly related to the Sobolev embeddings
H1 ↪→ Ls for 1 ≤ s < ∞, and W2,q ↪→ L∞ for 2 < q < ∞ and the continuous injection Lq ↪→ L2.

Throughout this paper, we frequently use the following equivalent norms in the spaces
H1 and H2 (see, for instance, [25]):

‖u‖2
H1 '

(
‖∇u‖2 +

(∫
Ω

u
)2
)
∀u ∈ H1, (11)

‖u‖2
H2 '

(
‖∆u‖2 +

(∫
Ω

u
)2
)
∀u ∈ H2

n, (12)

and the classical 2D interpolation inequality

‖u‖L4 ≤ C‖u‖1/2‖u‖1/2
H1 ∀u ∈ H1. (13)

Moreover, we will apply the following results concerning parabolic and elliptic regularity
for the Neumann heat problem:

Theorem 2 (Parabolic-regularity ([26], Theorem 10.22)). Let Ω ∈ C2 be a bounded domain
in Rn, n = 2, 3, u0 ∈ Ŵ2−2/s,s and g ∈ Ls(Q), for s ∈ (1, ∞) with s 6= 3. Then, there exists a
unique strong solution u of problem

∂tu− ∆u = g in Q,
u(0, x) = u0(x) in Ω,

∂u
∂n

= 0 on (0, T)× ∂Ω,

such that
u ∈ L∞(Ŵ2−2/s,s) ∩ Ls(W2,s), ∂tu ∈ Ls(Q).

Moreover, there exists a constant C := C(|Ω|, T) > 0 such that

‖u‖L∞(Ŵ2−2/s,s) + ‖u‖Ls(W2,s) + ‖∂tu‖Ls(Q) ≤ C
(
‖u0‖Ŵ2−2/s,s + ‖g‖Ls(Q)

)
.

Here, the space Ŵ2−2/s,s := W2−2/s,s for s < 3 and Ŵ2−2/s,s := W2−2/s,s
n for s > 3.

Theorem 3 (Elliptic-regularity ([27], Theorem 2.4.2.7)). Let Ω ∈ C1,1 be a bounded domain in
Rn, n = 2, 3, and h ∈ Ls with 1 < s < ∞. Then, the elliptic system −∆u + u = h in Ω,

∂u
∂n

= 0 on ∂Ω,

admits a unique solution u in the class W2,s. Moreover, there exists a positive constant C := C(|Ω|)
such that

‖u‖W2,s ≤ C‖h‖Ls .

3. The Bilinear Optimal Control Problem

In this section, we study a bilinear optimal control problem related with the strong
solutions of the chemo-repulsion system (2)–(4). Firstly, we establish the statement of
the bilinear control problem under analysis. Indeed, we assume that the controls set is
F , which is a nonempty, closed, and convex subset of B(K̂), where B(K̂) ⊂ Lq(ω), for
2 < q < ∞, is the open ball

B(K̂) := { f ∈ Lq(ω) : ‖ f ‖Lq(ω) < β ≤ K̂}, (14)
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where β and K̂ are the constants given in (9) (see Theorem 1 above) and ω ⊂ Ω is the
control domain. We consider the initial data u0 ∈ H1 with u0 ≥ 0 and the function f ∈ F
that describes a bilinear control acting on the chemical Equation (2)2.

Furthermore, we consider the Banach spaces

X := Su × Sv × Lq(ω) and Y := L2(Q)× Lq(Q)× H1(Ω),

the functional J : X→ R defined by

J(u, v, f ) :=
αu

2

∫ T

0
‖u− ud‖2 +

αv

2

∫ T

0
‖v− vd‖2 +

α f

q
‖ f ‖q

Lq(ω)
(15)

and the operator R := (R1, R2, R3) : X→ Y, where Ri : X→ Y, for i = 1, 2, 3, are defined
at each point s := (u, v, f ) ∈ X by

R1(s) = ∂tu− ∆u−∇ · (u∇v),
R2(s) = −∆v + v− up − f v 1ω,
R3(s) = u(0)− u0.

(16)

In the functional J, defined in (15), the pair (ud, vd) belongs to ∈ L2(Q) × L2(Q) and
represents the desired states. The real numbers αu, αv and α f are non-negative (nonzero
simultaneously) and measure the cost of the states (u, v) and the control f , respectively.
The functional J describes the deviation of the cell density u from the desired cell density
ud and the deviation of the chemical concentration v from the desired chemical vd with the
cost of the control measured in the Lq-norm.

Then, taking S := Su × Sv × F we formulate the following bilinear optimal con-
trol problem:

min
s∈S

J(s) subject to R(s) = 0. (17)

Notice that S ⊂ X is a closed and convex set and that the functional J is weakly lower
semi-continuous on S. The set of the admissible solutions of control problem (17) is given by

Sad := {s = (u, v, f ) ∈ S : R(s) = 0},

which, by virtue of Theorem 1, is a nonempty set.
It is important to mention that in problem (17), the choice of bilinear type control is

due to fact that the solution (u, v) of system (2)–(4) must be non-negative. If the control
were of distributed type as an external sink, the positivity of v could not be warranted,
because it would be conditioned by the sign of control f . In fact, f must be a non-negative
function, but this is a very strong restriction, since the set of controls is reduced. Thus, the
bilinear control makes sense.

We are interested in proving the existence of global optimal solutions to problem (17)
and deriving the so-called first-order necessary optimality conditions for any local optimal
solution of control problem (17). In the following definitions, we present the concepts of
global optimal solutions and local optimal solutions of problem (17), respectively.

Definition 2 (Global optimal solutions). A triplet s̃ = (ũ, ṽ, f̃ ) is called a global optimal solution
of control problem (17) if

J(s̃) = min
s∈Sad

J(s). (18)

Definition 3 (Local optimal solutions). We say that a triplet s̃ = (ũ, ṽ, f̃ ) ∈ Sad is a local
optimal solution of problem (17) if there exists ε > 0 such that for any s = (u, v, f ) ∈ Sad satisfying

‖ũ− u‖Su + ‖ṽ− v‖Sv + ‖ f̃ − f ‖Lq(ω) ≤ ε,

then J(s̃) ≤ J(s).
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3.1. Existence of Optimal Solutions

In this subsection, we will prove the existence of at least one global optimal solution
s̃ = (ũ, ṽ, f̃ ) ∈ Sad for control problem (17). Specifically, we will prove the following result:

Theorem 4 (Existence of global optimal solutions). Consider the assumptions of Theorem 1.
Then, the optimal control problem (17) has at least one global optimal solution s̃ = (ũ, ṽ, f̃ ) ∈ Sad.

Proof. Since f ∈ B(K̂) (hence, in particular, ‖ f ‖Lq(ω) < β ≤ K̂), from Theorem 1 we
deduce that the admissible set Sad is nonempty. Moreover, considering that the functional
J is bounded from below, we deduce that there exists a minimizing sequence {sm}m≥1 :=
{(um, vm, fm)}m≥1 ⊂ Sad such that

lim
m→∞

J(sm) = inf
s∈Sad

J(s).

Now, from the definition of J and because the control set F is bounded in Lq(ω), we
determine that the sequence

{ fm}m≥1 is bounded in Lq(ω). (19)

On the other hand, by definition of the admissible set Sad, for each m ∈ N, the triplet
(um, vm, fm) satisfies system (2)–(4). Thus, from estimate (9) we conclude that there exists a
positive constant C, independent of m, such that

‖um‖Su + ‖vm‖Sv ≤ C. (20)

Therefore, because of (19)–(20) and the fact that the control set F is a closed and convex
subset of Lq(ω), by Mazur’s lemma (see [28]), which is weakly closed in Lq(ω), we deduce
that there exists a limit element s̃ = (ũ, ṽ, f̃ ) ∈ Su × Sv ×F and a subsequence of {sm}m≥1,
which, for simplicity, is still denoted by {sm}m≥1, such that the following convergences
hold, as m→ ∞:

um → ũ weakly in L2(H2
n) and weakly∗ in L∞(H1),

vm → ṽ weakly in Lq(W2,q
n ),

∂tum → ∂tũ weakly in L2(Q),
fm → f̃ weakly in Lq(ω) with f̃ ∈ F .

(21)

In particular, following the arguments given in [14], we determine that um converges
strongly to ũ in L4(Q), which implies that

up
m → ũp weakly in L2(Q). (22)

Furthermore, from (21)1, (21)3, the Aubin–Lions lemma (see [29], Theorem 5.1), and ([30],
Corollary 4) we have

um → ũ strongly in C(L2) ∩ L2(H1). (23)

Therefore, considering the convergences (21)–(23) and following a standard argument (see,
for instance, [14]), we can pass to the limit in system (2)–(4) writing by (um, vm, fm), as m
goes to ∞; and thus, we deduce that (ũ, ṽ, f̃ ) is a solution of (2)–(4). Therefore, the limit
element (ũ, ṽ, f̃ ) belongs to Sad and

lim
m→∞

J(um, vm, fm) = inf
(u,v, f )∈Sad

J(u, v, f ) ≤ J(ũ, ṽ, f̃ ). (24)

Also, considering that the cost functional J is weakly lower semi-continuous on Sad, we have

J(ũ, ṽ, f̃ ) ≤ lim inf
m→∞

J(um, vm, fm);
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which together with (24) implies (18). Therefore, the triplet (ũ, ṽ, f̃ ) is a global optimal
solution of problem (17).

3.2. Optimality System

In this subsection we will obtain first-order necessary optimality conditions and derive
an optimality system for a local optimal solution s̃ = (ũ, ṽ, f̃ ) of control problem (17),
using a generic result on the existence of Lagrange multipliers in Banach spaces. This
result, concerning on the existence of Lagrange multipliers, was established by Zowe and
Kurcyusz in 1979 (see [31]).

The following results related to the differentiability of the functional J, and the operator
R can be easily deduced.

Lemma 1. The cost functional J : X→ R is Fréchet-differentiable and the Fréchet derivative of J
at the point s̃ = (ũ, ṽ, f̃ ) ∈ X in the direction r = (U, V, F) ∈ X is given by

J′(s̃)[r] = αu

∫ T

0

∫
Ω
(ũ− ud)U + αv

∫ T

0

∫
Ω
(ṽ− vd)V + α f

∫
ω

sgn( f̃ )| f̃ |q−1F. (25)

Lemma 2. The operator R : X→ Y, defined in (16), is continuously Fréchet-differentiable and its
Fréchet derivative at the point s̃ = (ũ, ṽ, f̃ ) ∈ X, in the direction r = (U, V, F) ∈ X, is the linear
and continuous operator R′(s̃)[r] := (R′1(s̃)[r], R′2(s̃)[r], R′3(s̃)[r]) defined by

R′1(s̃)[r] = ∂tU − ∆U −∇ · (U∇ṽ)−∇ · (ũ∇V),
R′2(s̃)[r] = −∆V + V − pũp−1U − f̃ V 1ω − Fṽ,
R′3(s̃)[r] = U(0).

(26)

By adapting the abstract sense given in [31], we have the following definition:

Definition 4. An admissible element s̃ = (ũ, ṽ, f̃ ) is a regular point for the optimal control
problem (17) if for each triplet ( fu, fv, U0) ∈ Y there exists r = (U, V, F) ∈ Su × Sv × C( f̃ )
such that

R′(s̃)[r] = ( fu, fv, U0). (27)

Here, C( f̃ ) := {δ( f − f̃ ) : δ ≥ 0, f ∈ F} is the conical hull of f̃ in F .

Our aim is to prove the existence of Lagrange multipliers, which is guaranteed if a
local optimal solution of control problem (17) is a regular point. The following result goes
in that direction.

Proposition 1. Suppose that the assumptions of Theorem 4 hold. Then, an element s̃ = (ũ, ṽ, f̃ ) ∈
Sad is a regular point for the optimal control problem (17).

Proof. Let s̃ ∈ Sad be a fixed element and ( fu, fv, U0) ∈ Y. Notice that 0 belongs to the
conical hull C( f̃ ); hence, it is suffices to prove the existence of a pair (U, V) ∈ Su × Sv
such that

∂tU − ∆U −∇ · (U∇ṽ)−∇ · (ũ∇V) = fu in Q,
−∆V + V − pũp−1 − f̃ V 1ω = fv in Q,

U(0) = U0 in Ω,
∂U
∂n

=
∂V
∂n

= 0 on (0, T)× ∂Ω.

(28)

Now, we define the linear operator S : (U, V) ∈Wu×Wv 7→ (U, V) ∈ Su× Sv ↪→Wu×Wv,
where (U, V) is the solution of the problem{

∂tU − ∆U = ∇ · (ũ∇V) +∇(U∇V) + fu in Q,
−∆V + V = pũp−1U + f̃ V 1ω + fv in Q,

(29)
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endowed with the respective initial and boundary conditions (28)3 and (28)4. The weak
spaces Wu and Wv are defined as follows:

Wu := C(L2) ∩ L
2q

q−2 (H1) and Wv := Lq(L∞), with 2 < q < ∞.

Following [15], we can prove easily that operator S is well-defined from Wu×Wv to Su× Sv
and completely continuous from Wu ×Wv onto itself (see [15], Lemma 3.2). Also, from
([15], Lemma 3.1) we determine that the space Su × Sv is compactly embedded in Wu ×Wv.

On the other hand, we consider the set

Sα := {(U, V) ∈ Su × Sv : (U, V) = αS(U, V) for some α ∈ [0, 1]}.

The set Sα is bounded in Su × Sv, independently of the parameter α ∈ [0, 1]. Indeed, let
(U, V) ∈ Sα and α ∈ (0, 1] (the case α = 0 is clear). Then, since operator S is well-defined
from Wu ×Wv to Su × Sv, we deduce that (U, V) ∈ Su × Sv and satisfies point-wisely a.e.
in Q the following problem:{

∂tU − ∆U = ∇ · (ũ∇V) + α∇ · (U∇ṽ) + α fu,
−∆V + V = αpũp−1U + α f̃ V 1ω + α fv,

(30)

endowed with corresponding initial and boundary conditions. Then, testing (30)1 by U
and considering that ∇ · (ũ∇V) = ũ∆V +∇ũ · ∇V, we have

1
2

d
dt
‖U‖2 + ‖∇U‖2 ≤ |(ũ∆V, U)|+ |(∇ũ · ∇V, U)|+ α|(U∇ṽ,∇U)|+ α|( fu, U)|. (31)

Now, we will bound the terms on the right-hand side of (31). Applying the Hölder and
Young inequality and taking into account the 2D interpolation inequality (13) and that
α ≤ 1, we can obtain

|(ũ∆V, U)| ≤ ‖ũ‖L4‖∆V‖‖U‖L4 ≤ ε‖∆V‖2 + C‖ũ‖2
L4‖U‖‖U‖H1

≤ ε(‖∆V‖2 + ‖U‖2
H1) + C‖ũ‖4

L4‖U‖2, (32)

|(∇ũ · ∇V, U)| ≤ ‖∇V‖‖∇ũ‖L4‖U‖L4

≤ ε(‖∇V‖2 + ‖U‖2
H1) + C‖∇ũ‖4

L4‖U‖2, (33)

α|(U∇ṽ,∇U)| ≤ ‖U‖‖∇ṽ‖L∞‖∇U‖
≤ ε‖∇U‖2 + C‖∇ṽ‖2

L∞‖U‖2, (34)

α|( fu, U)| ≤ ‖ fu‖‖U‖ ≤ ‖ fu‖2 + ‖U‖2, (35)

where ε > 0 is arbitrary. Then, replacing (32)–(35) in (31) and adding to both sides ‖U‖2 in
order to complete the H1-norm, we obtain

1
2

d
dt
‖U‖2 + ‖U‖2

H1 ≤ ε
(
‖∇U‖2 + ‖U‖2

H1 + ‖∇V‖2 + ‖∆V‖2
)

+C
(
‖ũ‖4

L4 + ‖∇ũ‖4
L4 + ‖∇ṽ‖2

L∞ + 1
)
‖U‖2 + ‖ fu‖2. (36)

Also, testing Equation (30)2 by (V − ∆V) we have

‖V‖2
H1 + ‖∆V‖2 + ‖∇V‖2

≤ αp|(ũp−1U, V)|+ α|( f̃ V 1ω, V)|+ α|( fv, V)|
+αp|(ũp−1U, ∆V)|+ α|( f̃ V 1ω, ∆V)|+ α|( fv, ∆V)|. (37)
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Thus, working in a similar way as we did to obtain the estimate (36), we arrive at

1
2

(
‖V‖2

H1 + ‖V‖2
H2

)
≤ ε

(
‖U‖2

H1 + ‖V‖2 + ‖∆V‖2
)
+

1
4

(
‖V‖2 + ‖∆V‖2

)
+C‖ũ‖4(p−1)

L4(p−1)‖U‖2 + 2K2
1‖ f̃ ‖2

Lq(ω)‖V‖
2
H1 + C‖ fv‖2

Lq . (38)

Here, the positive constant K1 := K1(|Ω|) is given by the Sobolev embedding H1 ↪→
Ls, for s ∈ (2, ∞). This injection is necessary to estimate the terms α|( f̃ V 1ω, V)| and
α|( f̃ V 1ω, ∆V)|. Indeed, from the Hölder inequality we have the estimate α|( f̃ V 1ω, V)| ≤
‖ f̃ ‖Lq‖V‖Ls‖V‖, with 1

q + 1
s = 1

2 . Thus, using H1 ↪→ Ls, we determine that there ex-
ists a constant K1 > 0 such that ‖V‖Ls ≤ K1‖V‖H1 ; consequently, we deduce that
α|( f̃ V 1ω, V)| ≤ K1‖ f̃ ‖Lq‖V‖H1‖V‖. Similarly, we can obtain that α|( f̃ V 1ω, ∆V)| ≤
K1‖ f̃ ‖Lq‖V‖H1‖∆V‖.

Now, adding inequalities (36) and (38), and choosing ε > 0 suitably, we can obtain the
following estimate

d
dt
‖U‖2 + C‖V‖2

H1 +
1
2
‖V‖2

H2 ≤ C
(
‖ũ‖4

L4 + ‖ũ‖
4(p−1)
L4(p−1) + ‖∇ũ‖4

L4 + ‖∇ṽ‖2
L∞ + 1

)
‖U‖2

+4K2
1‖ f̃ ‖2

Lq(ω)‖V‖
2
H1 + C

(
‖ fu‖2 + ‖ fv‖2

Lq

)
≤ C

(
‖ũ‖4

L4 + ‖ũ‖
4(p−1)
L4(p−1) + ‖∇ũ‖4

L4 + ‖∇ṽ‖2
L∞ + 1

)
‖U‖2

+4K2
1‖ f̃ ‖2

Lq(ω)‖V‖
2
H2 + C

(
‖ fu‖2 + ‖ fv‖2

Lq

)
,

which implies

d
dt
‖U‖2 + C‖V‖2

H1 +

(
1− 8K2

1‖ f̃ ‖2
Lq(ω)

2

)
‖V‖2

H2

≤ C
(
‖ũ‖4

L4 + ‖ũ‖
4(p−1)
L4(p−1) + ‖∇ũ‖4

L4 + ‖∇ṽ‖2
L∞ + 1

)
‖U‖2

+C
(
‖ fu‖2 + ‖ fv‖2

Lq

)
. (39)

From assumption (9) given in Theorem 1 we deduce that ‖ f̃ ‖Lq(ω) < 1
2
√

2K1
; thus, we

conclude that 1− 8K2
1‖ f̃ ‖2

Lq(ω) > 0. Hence, from (39) and Gronwall’s lemma we determine

that U is bounded in L∞(L2) ∩ L2(H1). Moreover, integrating (39) in (0, T) we obtain that
V ∈ L2(H2).

It remains to prove that the pair (U, V) is bounded in Su × Sv. Indeed, notice that due
to ũ ∈ L∞(H1) ∩ L2(H2

n), from Sobolev embeddings we deduce that ũ ∈ Ls(Q) for any
s ∈ [1, ∞). Also, since p ∈ (1, 2) we have ũp−1 ∈ Ls(Q), and since U ∈ L2(L2)∩ L2(H1) ↪→
L4(Q), we determine that αpũp−1U belongs to Lq(Q) for any q ∈ (2, ∞). Moreover, using
that V ∈ L2(H2

n) (in particular, from Sobolev embeddings, V ∈ L2(L∞)), ( f̃ , fv) ∈ Lq(ω)×
Lq(Ω), we deduce that

αpũp−1(t, ·)U(t, ·) + α f̃ V(t, ·) 1ω + α fv ∈ Lq for any t ∈ (0, T).

Therefore, applying Theorem 3 (for s = q > 2) we conclude that V(t, ·) ∈W2,q
n for any time

t ∈ (0, T), satisfies the elliptic problem −∆V + V = αpũp−1U + α f̃ V 1ω + α fv in Ω,
∂V
∂n

= 0 on ∂Ω,
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and the following estimate holds

‖V‖W2,q ≤ αC
(

p‖ũp−1U‖Lq + ‖ f̃ ‖Lq(ω)‖V‖L∞ + ‖ fv‖Lq

)
≤ C

(
p‖ũp−1U‖Lq + ‖ fv‖Lq

)
+ K2‖ f̃ ‖Lq(ω)‖V‖W2,q

n
,

where K2 := K2(|Ω|) > 0 is a constant given by the Sobolev injection W2,q
n ↪→ L∞. Thus,

we have (
1− K2‖ f̃ ‖Lq(ω)

)
‖V‖

W2,q
n
≤ C

(
‖ũp−1U‖Lq + ‖ fv‖Lq

)
. (40)

Moreover, from Theorem 1 we deduce that K2‖ f̃ ‖Lq(ω) < 1; hence, from (40) we con-
clude that

‖V‖q

W2,q
n
≤ C(

1− K2‖ f̃ ‖Lq(ω)

)q

(
‖ũp−1U‖Lq + ‖ fv‖Lq

)q
. (41)

Since ũp−1U ∈ Lq(Q), after integrating (41) in time, we deduce V ∈ Lq(W2,q
n ) = Sv.

On the other hand, testing (28)1 by −∆U we have

1
2

d
dt
‖∇U‖+ ‖∆U‖2 ≤ |(ũ∆V, ∆U)|+ |(∇ũ · ∇V, ∆U)|+ α|(U∆ṽ, ∆U)|

+α|(∇U · ∇ṽ, ∆U)|+ α|( fu, ∆U)|,

and working in a similar way as we did to obtain the estimate (36), we can obtain

1
2

d
dt
‖∇U‖+ ‖∆U‖2 ≤ ε‖∆U‖2 + C

(
‖∇ṽ‖2

L∞ + ‖∆ṽ‖2
Lq

)
‖U‖2

H1

+C‖ũ‖2
Ls‖∆V‖2

Lq + C‖∇ũ‖2‖∇V‖2
L∞ + C‖ fu‖2, (42)

where ε > 0 is arbitrary and s ∈ (2, ∞) is chosen in such a way that 1
s +

1
q = 1

2 . Also,
integrating the U-equation (28)1 in the spatial variable we obtain

d
dt

∫
Ω

U = α
∫

Ω
fu,

which implies the following inequalities

1
2

d
dt

(∫
Ω

U
)2

≤ C
(∫

Ω
fu

)2
+ C

(∫
Ω

U
)2
≤ C|Ω|2

(
‖ fu‖2 + ‖U‖2

)
, (43)∣∣∣∣∫Ω

U(t)
∣∣∣∣2 =

∣∣∣∣∫Ω
U0 + α

∫ t

0

∫
Ω

fu

∣∣∣∣2 ≤ C. (44)

Adding estimates (42)–(44) and taking into account the equivalent norms given in (11)–(12)
we deduce that

1
2

d
dt
‖U‖2

H1 + ‖U‖2
H2 ≤ ε‖∆U‖2 + C

(
‖∇ṽ‖2

L∞ + ‖∆ṽ‖2
Lq + |Ω|2

)
‖U‖2

H1

+C‖ũ‖2
Ls‖∆V‖2

Lq + C‖∇ũ‖2‖∇V‖2
L∞ + C‖ fu‖2 + C;

which, for ε > 0, suitably implies

d
dt
‖U‖2

H1 + C‖U‖2
H2 ≤ C

(
‖∇ṽ‖2

L∞ + ‖∆ṽ‖2
Lq + |Ω|2

)
‖U‖2

H1

+‖ũ‖2
Ls‖∆V‖2

Lq + C‖∇ũ‖2‖∇V‖2
L∞ + C‖ fu‖2 + C. (45)

Then, from (45), Gronwall’s lemma, and taking into account that ũ ∈ L∞(H1) ∩ L2(H2
n)

(hence ũ ∈ L∞(Ls), for any s ∈ (2, ∞), and∇ũ ∈ L∞(L2)), we conclude that U ∈ L∞(H1)∩
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L2(H2
n); thus, using that ∆U ∈ L2(Q), ũ, U ∈ L∞(H1) ∩ L2(H2

n) and ṽ, V ∈ Lq(W2,q
n ), we

deduce that ∂tU = ∆U +∇ · (ũ∇V) + α∇ · (U∇ṽ) + α fu ∈ L2(Q). Then,

‖∂tU‖L2(Q) ≤ ‖∆U +∇ · (ũ∇V) + α∇ · (U∇ṽ) + α fu‖L2(Q)

≤ ‖∆U‖L2(Q) + ‖∇ · (ũ∇V)‖L2(Q) + ‖∇ · (U∇ṽ)‖L2(Q) + ‖ fu‖L2(Q)

≤ C.

Therefore, U ∈ Su.
Consequently, we deduce that the operator S and the set Sα satisfy the conditions of

the Leray–Schauder fixed-point theorem. Thus, there exists a pair (U, V) ∈ Su × Sv such
that S(U, V) = (U, V), which is a solution of system (28). Moreover, following a classical
comparison argument we can deduce the solution (U, V) of problem (28) is unique.

We are now in a position to prove the existence of Lagrange multipliers for the optimal
control problem (17).

Theorem 5. Suppose that assumptions of Theorem 4 hold. Let s̃ = (ũ, ṽ, f̃ ) ∈ Sad be a local
optimal solution of the control problem (17). Then, there exists a triplet of the Lagrange multipliers
(ϕ, ψ, χ) ∈ L2(Q)× (Lq(Q))′ × (H1(Ω))′ such that for all (U, V, F) ∈ Su × Sv ×C( f̃ ) one has

αu

∫ T

0

∫
Ω
(ũ− ud)U + αv

∫ T

0

∫
Ω
(ṽ− vd)V + α f

∫
ω

sgn( f̃ )| f̃ |q−1F

−
∫ T

0

∫
Ω
(∂tU − ∆U −∇ · (U∇ṽ)−∇ · (ũ∇V))ϕ

−
∫ T

0

∫
Ω

(
−∆V + V − pũp−1U − f̃ V 1ω

)
ψ−

∫
Ω

U(0)χ +
∫ T

0

∫
ω

Fṽϕ ≥ 0. (46)

Proof. From Proposition 1 we determine that s̃ ∈ Sad is a regular point. Then, from
([31], Theorem 3.1) we deduce that there exist Lagrange multipliers (ϕ, ψ, χ) ∈ L2(Q)×
(Lq(Q))′ × (H1(Ω))′ such that the following variational inequality holds

J′(s̃)[r]− 〈R′1(s̃)[r], ϕ〉 − 〈R′2(s̃)[r], ψ〉(Lq)′ − 〈R′3(s̃)[r], χ〉(H1)′ ≥ 0 (47)

for all r = (U, V, F) ∈ Su × Sv × C( f̃ ). Therefore, inequality (46) follows from (25), (26),
and (47).

From Theorem 5 we can derive an optimality system for the control problem (17); for
this purpose we will consider the following linear subspace of Su:

Ŝu := {u ∈ Su : u(0) = 0}. (48)

The choice of the space Ŝu permits us to focus our analysis on the Lagrange multipliers ϕ
and ψ.

Corollary 1. Under assumptions of Theorem 4, let s̃ = (ũ, ṽ, f̃ ) ∈ Sad be a local optimal solution
of control problem (17). Then, the Lagrange multipliers (ϕ, ψ) ∈ L2(Q)× (Lq(Q))′, provided by
Theorem 5, satisfy the following variational formulation∫ T

0

∫
Ω
(∂tU − ∆U −∇ · (U∇ṽ))ϕ− p

∫ T

0

∫
Ω

ũp−1Uψ

= αu

∫ T

0

∫
Ω
(ũ− ud)U ∀U ∈ Ŝu, (49)∫ T

0

∫
Ω
(−∆V + V)ψ−

∫ T

0

∫
ω

f̃ Vψ−
∫ T

0

∫
Ω
∇ · (ũ∇V)ϕ

= αv

∫ T

0

∫
Ω
(ṽ− vd)V ∀V ∈ Sv (50)
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and the optimality condition∫
ω

(
α f sgn( f̃ )| f̃ |q−1 +

∫ T

0
ṽϕ

)
( f − f̃ ) ≥ 0 ∀ f ∈ F . (51)

Proof. Notice that Ŝu × Sv is a vector space. Hence, (49) can be obtained by taking
(V, F) = (0, 0) into (46). Similarly, taking (U, F) = (0, 0) in (46) we deduce (50). Finally,
taking (U, V) = (0, 0) in (46) we obtain

α f

∫
ω

sgn( f̃ )| f̃ |q−1F +
∫ T

0

∫
ω

Fṽϕ ≥ 0 ∀F ∈ C( f̃ ),

which implies ∫
ω

(
α f sgn( f̃ )| f̃ |q−1 +

∫ T

0
ṽϕ

)
F ≥ 0 ∀F ∈ C( f̃ ). (52)

Therefore, by choosing F = ( f − f̃ ) ∈ C( f̃ ) in (52) we deduce inequality (51).

Finally, we will derive an optimality system for a local optimal solution s̃ = (ũ, ṽ, f̃ ) of
control problem (17). Firstly, we must improve the regularity of the Lagrange multipliers
obtained in Theorem 5. The following result goes in that direction.

Theorem 6. Suppose that assumptions of Theorem 4 hold. Let s̃ = (ũ, ṽ, f̃ ) ∈ Sad be a local
optimal solution of control problem (17). If ‖ũ‖L4(p−1) and ‖ f̃ ‖Lq(ω) are small enough such that

‖ũ‖4(p−1)
L4(p−1) + ‖ f̃ ‖2

Lq(ω) <
1

min{C, K2
1, K̂2

2}
, (53)

where C, K1, and K̂2 are positive constants that depend on |Ω|. Then, the Lagrange multipliers
(ϕ, ψ) ∈ L2(Q)× (Lq(Q))′, provided by Theorem 5, have the following strong regularity:{

ϕ ∈ Sϕ := {ϕ ∈ L∞(H1) ∩ L2(H2
n) : ∂t ϕ ∈ L2(Q)},

ψ ∈ Sψ := Lr(W2,r), for any r ∈ (1, 2).
(54)

Proof. Notice that the pair of functions (ϕ, ψ) ∈ L2(Q)× (Lq(Q))′, obtained in Theorem 5,
corresponds with the concept of a very weak solution of the following adjoint system

−∂t ϕ− ∆ϕ +∇ϕ · ∇ṽ− pũp−1ψ = αu(ũ− ud) in Q,
−∆ψ−∇ · (ũ∇ϕ) + ψ− f̃ ψ 1ω = αv(ṽ− vd) in Q,

ϕ(T) = 0 in Ω,
∂ϕ

∂n
=

∂ψ

∂n
= 0 on (0, T)× ∂Ω.

(55)

Thus, first we will analyze the regularity of the solutions of problem (55) and then we
will improve the regularity of the pair of the Lagrange multipliers (ϕ, ψ). Indeed, let
τ := T − t, with t ∈ (0, T) and ϕ̂(τ) = ϕ(t). Then, system (55) is equivalent to the
following forward problem

∂τ ϕ̂− ∆ϕ̂ +∇ϕ̂ · ∇ṽ− pũp−1ψ = αu(ũ− ud) in Q,
−∆ψ−∇ · (ũ∇ϕ̂) + ψ− f̃ ψ 1ω = αv(ṽ− vd) in Q,

ϕ̂(0) = 0 in Ω,
∂ϕ̂

∂n
=

∂ψ

∂n
= 0 on (0, T)× ∂Ω.

(56)

Since system (56) is a linear problem, we argue in a formal sense, proving that any regular
enough solution is bounded in the space Sϕ × Sψ (a rigorous proof can be performed
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using the Leray–Schauder fixed point theorem, similar to what was used for the proof of
Proposition 1).

Testing (56)1 by ϕ̂− ∆ϕ̂, applying the Hölder and Young inequalities, and taking into
account the 2D interpolation inequality (13) for the L4-norm, we can obtain the following
estimate

1
2

d
dτ
‖ϕ̂‖2

H1 + ‖∇ϕ̂‖2 + ‖∆ϕ̂‖2

≤ ε
(
‖∆ϕ̂‖2 + ‖∇ϕ̂‖2 + ‖ψ‖2

H1

)
+ C

(
‖ũp−1‖2

L4 + ‖∇ṽ‖2
L∞ + 1

)
‖ϕ̂‖2

H1

+C‖ũ‖4(p−1)
L4(p−1)‖ψ‖2

H1 + C‖ũ− ud‖2, (57)

where ε > 0 is arbitrary. Similarly, testing the ψ-equation (56) by ψ we can arrive at

‖ψ‖2
H1 ≤ ε

(
‖ψ‖2 + ‖∇ψ‖2 + ‖ϕ̂‖2

H2

)
+ C‖ũ‖4

L4‖∇ϕ̂‖2

+K2
1‖ f̃ ‖2

Lq(ω)‖ψ‖
2
H1 + C‖ṽ− vd‖2, (58)

where ε > 0 is arbitrary and the constant K1 := K1(|Ω|) > 0 is given by the Sobolev
embedding H1 ↪→ Ls for s ∈ (2, ∞).

Now, summing estimates (57) and (58) and then adding ‖ϕ̂‖2 on both sides of the
resulting inequality, with the aim of completing the H2-norm, it is possible to obtain

1
2

d
dτ
‖ϕ̂‖2

H1 + ‖ϕ̂‖2
H2 + ‖ψ‖2

H1

≤ ε
(
‖∆ϕ̂‖2 + ‖∇ϕ̂‖2 + ‖ϕ̂‖2

H2 + ‖ψ‖2 + ‖∇ψ‖2 + ‖ψ‖2
H1

)
+C
(
‖ũp−1‖2

L4 + ‖ũ‖4
L4 + ‖∇ṽ‖2

L∞ + 1
)
‖ϕ̂‖2

H1

+
(

C‖ũ‖4(p−1)
L4(p−1) + K2

1‖ f̃ ‖2
Lq(ω)

)
‖ψ‖2

H1 + C
(
‖ũ− ud‖2 + ‖ṽ− vd‖2

)
.

Thus, choosing ε > 0 suitably in the last inequality, we can obtain

d
dτ
‖ϕ̂‖2

H1 + C‖ϕ̂‖2
H2 +

(
1−

(
C‖ũ‖4(p−1)

L4(p−1) + K2
1‖ f̃ ‖2

Lq(ω)

))
‖ψ‖2

H1

≤ C
(
‖ũp−1‖2

L4 + ‖ũ‖4
L4 + ‖∇ṽ‖2

L∞ + 1
)
‖ϕ̂‖2

H1 + C
(
‖ũ− ud‖2 + ‖ṽ− vd‖2

)
. (59)

Notice that assumption (53) implies that 1−
(

C‖ũ‖4(p−1)
L4(p−1) + K2

1‖ f̃ ‖2
Lq(ω)

)
> 0. Hence, from

(59), Gronwall’s lemma, and taking into account that the terms ‖ũp−1‖2
L4 , ‖ũ‖4

L4 , ‖∇ṽ‖2
L∞ ,

‖ũ− ud‖2, ‖ṽ− vd‖2 are integrable in time, we deduce that ϕ̂ ∈ L∞(H1)∩ L2(H2
n). Similarly,

integrating in time (59) for τ ∈ (0, T), we determine that ψ ∈ L2(H1).
Now, using that (ũ, ṽ) ∈ Ŝu × Sv (in particular ũp−1 ∈ L∞(Ls), for any s ∈ (1, ∞), and

∇ṽ ∈ Lq(L∞)) and that ∇ϕ̂ ∈ L∞(L2), we deduce that

pũp−1ψ + αu(ũ− ud)−∇ϕ̂ · ∇ṽ ∈ L2(Q).

Hence, applying Theorem 2 to (56)1 (for s = 2), we deduce that ϕ̂ ∈ Sϕ, which implies that
ϕ ∈ Sϕ. Moreover, using that ũ ∈ Ls(Q), for any s ∈ (1, ∞), and ∆ϕ̂ ∈ L2(Q), we deduce
that ∇ · (ũ∇ϕ̂) + f̃ ψ 1ω + αv(ṽ− vd) ∈ Lr(Q), for any r ∈ (1, 2). Thus,

∇ · (ũ(τ, ·)∇ϕ̂(τ, ·)) + f̃ ψ(τ, ·) 1ω + αv(ṽ(τ, ·)− vd(τ, ·)) ∈ Lr(Ω),
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for any r ∈ (1, 2) and any time τ ∈ (0, T). Then, applying elliptic regularity to (56), for
s = 2, (see Theorem 3) we conclude that ψ ∈W2,r and satisfies the estimate

‖ψ‖W2,r ≤ C
(
‖∇ · (ũ∇ϕ̂)‖Lr + ‖ṽ− vd‖Lr + ‖ f̃ ‖Lq(ω)‖ψ‖L∞

)
≤ C(‖∇ · (ũ∇ϕ̂)‖Lr + ‖ṽ− vd‖) + K̂2‖ f̃ ‖Lq(ω)‖ψ‖W2,r ,

where K̂2 := K̂2(|Ω|) is a constant given by the embedding W2,r ↪→ L∞. Thus, we obtain(
1− K̂2‖ f̃ ‖Lq(ω)

)
≤ C(‖∇ · (ũ∇ϕ̂)‖Lr + ‖ṽ− vd‖). (60)

From assumption (53) we deduce that K̂2‖ f̃ ‖Lq(ω) < 1; then, from (60) we have

‖ψ‖r
W2,r ≤

C(
1− K̂2‖ f̃ ‖Lq(ω)

)r (‖∇ · (ũ∇ϕ̂)‖Lr + ‖ṽ− vd‖)r. (61)

Therefore, by integrating (61) in time we conclude that ψ ∈ Lr(W2,r) = Sψ for any r ∈ (1, 2).
Moreover, following a classical comparison argument we can deduce the uniqueness of the
pair (ϕ, ψ) solving the adjoint system (55).

It remains to be proven that the pair of Lagrange multipliers, provided by Theorem 5,
have strong regularity (54). Indeed, let (ϕ̃, ψ̃) ∈ Sϕ × Sψ, the unique solution of adjoint
problem (55), and (U, V) ∈ Su × Sv, the unique solution of the linear problem (28), be used

with data fu := (ϕ − ϕ̃) ∈ L2(Q) and fv := sgn(ψ − ψ̃)|ψ − ψ̃|
1

q−1 ∈ Lq(Q). We recall

that ψ ∈ (Lq(Q))′; that is, ψ ∈ L
q

q−1 (Q), thus fv = sgn(ψ− ψ̃)|ψ− ψ̃|
1

q−1 ∈ Lq(Q) make
sense. Then, in order to prove that the pair (ϕ, ψ) have the regularity (54), it suffices to
identify (ϕ, ψ) with (ϕ̃, ψ̃) . Now, writing (55) for (ϕ̃, ψ̃) instead of (ϕ, ψ), then testing the
first equation by U and the second by V, after integrating by parts, we can obtain∫ T

0

∫
Ω
(∂tU − ∆U −∇ · (U∇ṽ))ϕ̃− p

∫ T

0

∫
Ω

ũp−1Uψ̃ = αu

∫ T

0

∫
Ω
(ũ− ud)U, (62)∫ T

0

∫
Ω
(−∆V + V)ψ̃−

∫ T

0

∫
ω

f̃ Vψ̃−
∫ T

0

∫
Ω
∇ · (ũ∇V) = αv

∫ T

0

∫
Ω
(ṽ− vd)V. (63)

Taking the difference between (49) and (62) and between (50) and (63), and adding the
respective equalities, we deduce∫ T

0

∫
Ω
(∂tU − ∆U −∇ · (U∇ṽ)−∇ · (ũ∇V))(ϕ− ϕ̃)

+
∫ T

0

∫
Ω

(
−∆V + V − pũp−1U

)
(ψ− ψ̃)−

∫ T

0

∫
ω

f̃ V(ψ− ψ̃) = 0. (64)

Thus, considering that the element (U, V) is the unique solution of system (28) for (ϕ− ϕ̃) ∈
L2(Q) and sgn(ψ− ψ̃)|ψ− ψ̃|

1
q−1 ∈ Lq(Q), from (64) we conclude that

‖ϕ− ϕ̃‖2
L2(Q) + ‖ψ− ψ̃‖

q
q−1

L
q

q−1 (Q)

= 0.

Therefore, (ϕ, ψ) = (ϕ̃, ψ̃) ∈ L2(Ω)× (Lq(Q))′. Consequently, the Lagrange multiplier
(ϕ, ψ), provided by Theorem 5, has the strong regularity (54).

Theorem 6 allows us derive an optimality system for the control problem (17).
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Corollary 2. Under conditions of Theorem 6, let s̃ = (ũ, ṽ, f̃ ) ∈ Sad be a local optimal solution of
optimal control problem (17). Then the pair of Lagrange multipliers (ϕ, ψ) ∈ Sϕ × ψ satisfies the
following optimality system

−∂t ϕ− ∆ϕ +∇ϕ · ∇ṽ− pũp−1ψ = αu(ũ− ud) a.e. (t, x) ∈ Q,
−∆ψ−∇ · (ũ∇ϕ) + ψ− f̃ ψ 1ω = αv(ṽ− vd) a.e. (t, x) ∈ Q,

ϕ(T) = 0 in Ω,
∂ϕ

∂n
=

∂ψ

∂n
= 0 on (0, T)× ∂Ω,∫

ω

(
α f sgn( f̃ )| f̃ |q−1 +

∫ T

0
ṽϕ

)
( f − f̃ ) ≥ 0 ∀ f ∈ F .

(65)

Remark 2. The optimality system (65) can serve as the basis for computing approximations to
optimal solutions numerically of control problem (17).

4. Some Comments

It is important to note that a bilinear optimal control problem related with the chemo-
repulsion system (2)–(4) has been studied. The choice of bilinear control is due to the
fact that the solutions (u, v) of (2)–(4) must be non-negative. If we had worked with the
typical distributed control, we would have had to condition the sign of the control f . In
fact, f should have been a non-negative function. The latter is very restrictive for the
set of controls, since in theory this set should be the largest possible set. When working
with bilinear control, we do not need to impose sign on the control. Furthermore, from a
biological point of view, this makes sense, since we manage to manipulate the behavior of
cells and chemistry by injecting or extracting chemical substance in a subregion ω ⊂ Ω.

Furthermore, this paper concludes with the derivation of an optimality system for
local optimal solutions of control problem (17). The optimality system can serve as the basis
for computing approximations to optimal solutions numerically of control problem (17).
Therefore, we provide a starting point for anyone interested in carrying out a numerical
study of control problems similar to problem (17).

5. Conclusions

In this article, we have studied an optimal control problem for a 2D parabolic–elliptic
chemo-repulsion model with a nonlinear chemical signal production term. We controlled
the system, applying a bilinear control on a subdomain ω ⊂ Ω, which acts on the chemical
Equation (2)2 as the degradation/proliferation coefficient. We proved the existence of at
least one global optimal solution and derive first-order necessary optimality conditions for
a local optimal solution, applying a generic result on the existence of Lagrange multipliers.
Also, for the Lagrange multipliers obtained, we improve their regularity, which allows us
conclude that they satisfy point-wisely an adjoint system related to primal problem (2)–(4).
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25. Nečas, J. Direct Methods in the Theory of Elliptic Equations; Springer: Berlin/Heidelberg, Germany, 2012.
26. Feireisl, E.; Novotný, A. Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics; Birkhäuser

Verlag: Basel, Switzerland, 2009.
27. Grisvard, P. Elliptic Problems in Nonsmooth Domains; Pitman Advanced Publishing Program: Boston, MA, USA, 1985.
28. Brézis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: New York, NY, USA, 2011.
29. Lions, J.L. Quelques Métodes de Résolution des Problèmes aux Limites non Linéares; Dunod: Paris, France, 1969.
30. Simon, J. Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 1987, 146, 65–96. [CrossRef]
31. Zowe, J.; Kurcyusz, S. Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim.

1979, 5, 49–62. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/0022-5193(70)90092-5
http://www.ncbi.nlm.nih.gov/pubmed/5462335
http://dx.doi.org/10.1016/0022-5193(71)90050-6
http://www.ncbi.nlm.nih.gov/pubmed/4926701
http://dx.doi.org/10.3934/dcds.2010.28.1437
http://dx.doi.org/10.1137/0505061
http://dx.doi.org/10.1016/0022-247X(75)90172-9
http://dx.doi.org/10.3934/dcdsb.2013.18.2705
http://dx.doi.org/10.1016/j.camwa.2020.04.009
http://dx.doi.org/10.1016/j.camwa.2020.04.010
http://dx.doi.org/10.1051/cocv/2019012
http://dx.doi.org/10.1137/18M1209891
http://dx.doi.org/10.1007/s10440-020-00365-3
http://dx.doi.org/10.15672/hujms.1133453
http://dx.doi.org/10.1007/s00574-023-00356-6
http://dx.doi.org/10.1016/j.camwa.2013.05.014
http://dx.doi.org/10.1038/376049a0
http://www.ncbi.nlm.nih.gov/pubmed/7596432
http://dx.doi.org/10.1016/j.jmaa.2014.07.038
http://dx.doi.org/10.1090/qam/1976365
http://dx.doi.org/10.1051/cocv/2021055
http://dx.doi.org/10.3934/dcdsb.2017208
http://dx.doi.org/10.1006/jmaa.2000.7254
http://dx.doi.org/10.1007/s00245-023-09988-y
http://dx.doi.org/10.1007/BF01762360
http://dx.doi.org/10.1007/BF01442543

	Introduction
	Preliminaries
	The Bilinear Optimal Control Problem
	Existence of Optimal Solutions
	Optimality System

	Some Comments
	Conclusions
	References

