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Abstract: Singular singularly-perturbed problems (SSPPs) are a powerful mathematical tool for
modelling a variety of real phenomena, such as nuclear reactions, heat explosions, mechanics, and
hydrodynamics. In this paper, the numerical solutions to fourth-order singular singularly-perturbed
boundary and initial value problems are presented using a novel quintic B-spline (QBS) approxima-
tion approach. This method uses a quasi-linearization approach to solve SSPNL initial /boundary
value problems. And the non-linear problems are transformed into a sequence of linear problems by
applying the quasi-linearization approach. The QBS functions produce more accurate results when
compared to other existing approaches because of their local support, symmetry, and partition of
unity features. This method can be applied to immediately solve the SSPPs without reducing the
order in which they are presented. It has been demonstrated that the suggested numerical approach
converges uniformly over the whole domain. The proposed approach is implemented on a few
problems to validate the scheme. The computational results are compared, and they illustrate that
the proposed approach performs better.

Keywords: singular singularly-perturbed non-linear initial/boundary value problems; uniform
convergence; fourth-order Emden—fowler type equation; QBS function; fourth-order BVP and IVP

MSC: 65L11; 34B16; 35G16; 41A15; 65D07; 65M12

1. Introduction

Fourth-order BVPs are found in a wide variety of applications of practical mathematics,
including continuum mechanics, reaction kinetics, fluid mechanics, wave mechanics, sta-
tistical mechanics, linear dynamics, rotational dynamics, thermodynamics, hydrokinetics,
and geophysics, see [1-5]. The term “singular perturbation” was thought up in the 1940s
by kurt Otto Friedriches and Wolfgang R.Wasow. In mathematics, a singular perturbation
problem (SPP) is one that has a small parameter that cannot be approximated by setting the
parameter value to zero. If a differential equation includes at least one negative or positive
shift parameter and the highest-order derivative is multiplied by a tiny parameter, it is said
to be singularly perturbed in mathematics.

The approximate solution to any perturbation problem, regardless of whether it be
in space or time, can be found. There are two distinct forms of perturbation problem:
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regular perturbation and singular perturbation. A regular perturbation problem is one
whose perturbation series is a power series in € with a persistent radius of convergence. By
just substituting the tiny parameter € with zero throughout in the problem, it is possible
to get a satisfactory approximate solution to a regular perturbed problem in almost all
applications. This translates into simply using the first term of the expansion, which results
in an approximate solution that converges, as € reduces, although potentially slowly, to the
exact solution. This method cannot approximate the solution for a singularly perturbed
problem. As seen in the above discussion, when a tiny parameter is multiplied with the
highest operator, it is said to be singularly perturbed. If the value of the parameter is set to
zero, the problem’s fundamental structure is altered. In the context of differential equations,
boundary conditions cannot be met; when speaking related to algebraic equations, the
number of possible solutions is reduced.

In fluid mechanics, a mildly viscous fluid has very distinct characteristics both within
and outside of a small boundaries layer. As a result, the fluid displays different spatial
scales. SPPs and SSPPs have numerous applications in fluid mechanics [6], some models
are listed below.

¢  Formal thin-airfoil expansion problem

*  Solution of the thin-airfoil problem

*  Non-uniformity for elliptic airfoil problem

*  Problem of leading edge drag

*  Local solution problem near a round edge

*  Problems of matching with solution near round and sharp edges
*  Hypersoic flow past thin blunted wedge problem

When real-world phenomena in science and engineering are mathematically mod-
elled, singular singularly perturbed boundary value problems (SSPBVPs) typically appear.
According to how setting € approaches zero affects the order of the original differential
equation, SPP are classified. Here, the DE’s higher derivative is multiplied by a little
parameter €. When the differential equation’s order is lowered by one, the SPP becomes
convection diffusion. The reaction diffusion type is indicated if the order is lowered by two.
As a result of the singularity of the derivative term’s coefficient, we are now employing the
word singular twice. There is extremely little literature on SSPPs compared to SPPs, and
these problems are quite difficult to solve.

O’Malley [7] provided singular perturbation theory for the solution of ODEs. PDEs
with critical parameters, Kaper and Pieper [8] developed asymptotic and numerical meth-
ods. Daba and Duressa [9] worked on artificial viscosity for time dependent singularly
perturbed DDEs. Ascher [10] presented some difference schemes for solving SSPBVPs.
Zhu [11] contributed to the asymptotic solution using a modified Vasil’eva approach for
SSPBVPs of second-order quasilinear systems. It has been shown in a study [12] that the
fitted mesh B- spline approach is employed for the second-order SSPBVPs. For the purpose
of solving SPBVPs with a delay, see [13] modified reproducing kernel method is imple-
mented. In the order to solve singularly perturbed delay IVPs, a piecewise reproducing
kernel method is utilized in [14] by Geng and Qian. Bawa and Natesan [15] has employed
a quintic spline to handle self-adjoint SPPs.

A novel QuBS approach for third-order self-adjoint SPBVP was developed by Saini
and Mishra in [16]. Lang and Xu [17] proposed a QuBS collocation approach for fifth-order
BVPs. For SPP of fourth-order, Gupta and Kumar [18] employed a B-spline based numerical
approach. In [19] Deniz and Bildik worked with the adomian decomposition approach to
solve SPBVPs of the fourth-order. Development on the fourth-order SPBVPs employing
initial value techniques are being done by Mishra and Saini [20]. Wang and Ni [21]
talked about the contrast structure for the SSPBVP problem. For the numerical solution of
Burger’s equation, Jiwari [22] presents a Haar wavelet-based quasi-linearization method.
The QBS collocation approach has been extensively used by Lang and Xu [23] for second-
order non-linear mixed BVPs. Akram [24] solved the third-order SPBVPs analytically
by using QuBS. For the solution of the fourth-order two parameters SPBVP, Mahesh
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and Phaneendra [25] employed a non-polynomial cubic spline. The use of a novel QBS
approximating approach was investigated by Abbas et al. [26] in the numerical analysis of
fourth-order SBVPs. The new extended direct algebraic method is used by Nasreen et al. [27]
to the solved the coupled nonlinear Schrodinger equations. The conformable ion sound
and Langmuir waves dynamical system is solved by Nasreen et al. [28] using new extended
direct algebraic method.

The QBS approach has been used in this study to solve a SSPNLBVP of fourth-order.
Second-order convergence is made available by this strategy. Think about the subsequent
problem type:

eo™® (1) + %v”’(r) + év”(r) + %v’(r) + %v(‘r) = h(t,v), 1)

where T € [0, 1] and
U(O) = po, 'U”(O) = Plzv(l) = 00, U”(l) =01, (2)

where po, p1, 09, 01 € R, € > 0 is a little number, (7, v) is non-linear term and «, 8, v, and
0 are unchanging factors. The reason for considering the above problem mentioned in
Equation (1) is that this problem is singular because of the term 7, singulary perturbed
because the small parameter multiplied with the highest order derivative term and non non-
linear due to the term (7, v). So, by resolving the aforementioned problem Equation (1), the
singular singularly-perturbed linear initial/boundary value problem (SSPLIVP/SSPLBVP)
addressed in this.

This article has the following structure: In Section 2, a short description of the QBS
technique and its derivative is given. In Section 3, the origin of the QBS collocation method
for solving the fourth-order SSPNLBVP is explained. Section 4 contains the derivation of
uniform convergence. In Section 5, four examples are provided to show how accurate the
proposed strategy is. Finish out Section 6 with some closing thoughts

2. Quintic B-Spline Interpolation

In this portion, the interval [c,d] such thatc = 1) < 73 < ... < Ty = d is uniformly
divided by n + 1 equal-sized knots 7 = 19 +kh, k = 0,1,...,N, where N € Zt and
h = 4=¢ being the piecewise uniform width.

Now, the fifth-degree basis spline function Bs () at the knot 7 is given as:

(T —1%-3)°, T € [Tk_3, Tk—2]
(T —Te—3)® — 6(T — T—2)>, T € [Th—2, Th—1]
1| (= T3)? —6(T—Tp)° +15(T — T_1)°, T € [T_1, T
Bs () = B (Tkrz — T)° = 6(Tpso — 7)° +15(Tey1 — T)°, T € [T, Tepa] 3)

—1)° —6(Tjyp — 7)° T € [Tt1, Teso)

(T3 — T) k+2 , k+1s The4-2

(Thgs — T)Sr T € [Tiq2, Tht3]

0 otherwise

The first four derivatives of Equation (3) are given below.

5(T— T_3)*, T € [Th—3, T—2]
5(1 — 5—3)* = 30(7 — 7—2)*, T € [Tk2, T1]
5(1— 1—3)* = 30(T — G_2)* +75(T — 5—1)*, T € [n_1, T
! 1 4 4 4
B (1) = s —5(Thky3 — 7)* +30(Thg2 — T)* = 75(T1 — T)%, TE Fkr Ty 1) 4
TE

—5(Tps3 — T)* 4 30(Tpy2 — T)%, Tt 1 Tey2)
—5(Tk3 — 1)%, T € [Thr2, Teya]
0. otherwise
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Similarly,
ZO(T - Tk73)3/ € [Tk73/ Tk*ﬂ
20(T — T—3)® — 120(T — T 2)3, € [Tk—2, T—1]
. 1| 20(r = Te3)? = 120(7 — 745)* +300(7 — 1), T € [T, T]
Bs (1) = 75 20(Tys — 7)> =120(Tk 2 — 7)> +300(T 1 — 7)°, T € [T Ty ©)
20713 — T)° = 120(T442 — 7)°, € [Ter1, Tet2]
20(tit3 — 7)°, T € [Tet2, Tt s)
0. otherwise
60(T — 7_3)?, € [Tk—3, Tk—2]
60(T — T_3)* — 360(T — _»)?, € [T—2, Tk—1]
1 | eo(r— Te_3)% —360(T — Tp_5)? +900(T — T_1)?, € [T—1, T
Bgi(T) = 5 00(Tes — T)% +360(Tiy2 — T)* = 900(Tey1 — T)%, T € [T, Tps1] (6)
[

—60(Thy3 — T)% +360(T4 0 — 7)%,
—60(Tk 43 —7)%,
0.

120(T — T%_3),
) =720

120(7 — 1_3) — 720
) —720
) —720
)

(
( T—Tk-2),
BW () = 1 (
p(1) =359 120(Tys — 7
(
(

( )
(T — Te—2) +2700(T — T—1),
(Ter2 = T) +2700( T — T),
120(T 43 — 7 (T2 — T),

120(Ty3 — T),

0.

€ [Tet1, Tet2]
T € [Tky2, Teys]
otherwise

€ [Tk—3, Tk—2]

€ T2, Tk—1]
TE [kaerk]

€ [T, Teq1]

€ [Tet1, Teyo]

T € [Tk, Tt 3]
otherwise

@)

Eight additional knotas 19 > 71 > 72 > 73 > T4 and Ty > TN41 > TN42 >
TN+3 > TN+4 are introduced here. It is simple to confirm from Equation (3) that each
function Bs x(T) is four times continuous and differentiable throughout the whole real line.

Now, evaluate the QBS function Bs;(7) at particular knot T = T, as:

66, ifk=m

26, ifk—m=+1
Bsy(tm) =< 1, ifk—m=+2

0, ifk—m==3

0 ifk—m=+4

For T < Ty_4 and T > T4 the QBS function Bs;(7) = 0.

Similarly,
0, ifk=m
+50  ifk—m=+1
Bf () = ié:, ifk—m= 42
0, ifk—m= 43
0 ifk—m=+4

For T < Ty_4 and T > Ty 4 the QBS fuention Bf , (1) = 0.

12, ifk=m
O ifk—m=+1
Bip(tn) =9 2, ifk—m=+2

0, ifk—m=4=3
0. ifk—m=+4

®)

)

(10)
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For T < Ty_4 and T > T4 the QBS function Bf, (7) = 0.
0, ifk=m
T2 ifk—m = +1
Bg (Tm) = +2, ifk—m=42 (11)
0, ifk—m=43
0 ifk—m==+4
For T < Ty_4 and T > Ty 4 the QBS function B} (7) = 0. And
711240, ifk=m
—30 ifk—m=+1
B (t) = 2, ifk—m=42 (12)
0, ifk—m=43
0. ifk—m=44

For T < 744 and T > T4 the QBS function Bé4k) (t) =0.
Table 1 shows the tabular view of QBS function Bs () values at a particular knot

T = T, and its derivatives.

Table 1. The QBS function Bs;(7) and its derivatives values at T = .

T Ti—a Ti-3 Ti—2 Ti—-1 Ti Ti+1 Tit2 Ti+3 Ti+a
Bsx(7) 0 0 1 26 66 26 1 0 0
B}, (7) 0 0 2 _ 0 0 2 0 0
A N T T i . S I
O T U S .
B 0 0 R oogmoomoogw o o o

Let W(1) represent the QBS interpolation of the knot points for the function v(7),
so that

N+2

W(t) = ) diBsi(1), (13)
k=2

where d;’s are constants (unknown coefficients) and Bs (7)’s are QBS basis functions given
in Equation (3). Assume that Uy, Ly, My, Ny and Oy stand for the corresponding QBS
approximations of v(7) and its first four derivatives at the kth knot. For the solving fourth-
order BVP given in Equation (1), the B-spline approximating function given in Equation (13)
evaluated at the particular knot point T = T is necessary. Using Equations (8)—(12) in
Equation (13) gives the following relations:

N+2
U, =W(tg) = 2 diBs (k) = dg_p + 26dj_1 + 66d) + 26d) 41 + dii2. (14)
k=-2
, N+2 , 5
Ly=W'(%) = Z dkBS,k(Tk) = E(—dk,z —10dg_1 + 0dy + 10dy 1 + di12)- (15)
k=-2

N+2 20
M =W'(%) = ) dB5i(n) = 72 (ko + 2dpq — 6dy +2dje g +dyin).  (16)
k=2
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N+2

60
Ne=W"(w) = 3 dBgi(n) = 15 (~diz + 21 + 0 — 2di1 +deya).  (17)
k=-2
O = Z dkBSk = h4 (dk 92— 4dk 1 —|—6dk—4dk+1 +dk+2) (18)
k=-2

3. Derivation of the QBS Collocation Technique for SSPNLBVP

For the numerical solution of the fourth-order SSPNLBVP given in Equation (1) with
the BCs mentioned in Equation (2), the aforementioned methodology based on the QBS
is taken into account in this section. It can be observed that Equation (1) contains the
non-linear factor /(t,v). Before solving the SSPNLBVP provided in Equation (1), it is
necessary to break down the non-linear term #(t,v) of the problem into a sequence of
linear problems by using the quasi linearization technique. In this technique, v(%) () stands
in for 11(7,v). Then, h(t,v) is spent in terms of the function v(¥)(7) as:

oh

h(t,oM (1)) = h(r,00 (1)) + (V) (1) =00 (1)) x ———+---.  (19)
ov(t, 00 (1))
Generally, the above Equation (19) can be expressed as:
h(z, 0 (1)) = h(T, o9 (1)) + (0 (1) — 0 (1)) x — 2 4. (0
9v(t,v0) (1))
where s is called the iteration index and s = 0,1,2, .. .. Then Equation (1) can be approxi-
mated as:
1)
ol (1) + 2ol (1) + Lol () 4 Lol (1) 4 041 (1) = bz, 0 (1))
oh
(S+1) _ (S) - 21
(@) o () x 5T @D
After some simplification,
(s+1) & (s+1) B_(s+1) T (s+1) 6 (s+1 5+1 oh
€07 (T) + ;UTTT (T) + ;vTT (T) + ;UT (T) + ;ZJ( )(T) - U( )(T) X W
oh
(e (@) =) x — @
(00 (1)) ~ o) x g @D

The Equation (22) is now fourth-order SSPLBVP. It is evident that the Equation (22)
contains a singularity at T = 0 that may be eliminated by applying L. Hospital’s method.

(23)

Accordingly,
(eJFD‘)UTSTJ-rr}c (T )+/3‘UTSTJ;.1 (t) + 70-(rs-[+1)( )+5U.(Cs+1)(‘f)
+§S( )-0 (s+1) ( ) gs(T), fort 0,
)

ol (1) + 2ol (1) + Lol (1) 4+ 2ol (1)

HE0CH (1) (ol () = (1), for 7 £0,
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where &(7) = m and ¢°(1) = h(t,0) (1)) — o) (1) x m Above
Equation (23) can be evaluated at a particular point T = 7 which gives the following
equations:

(€ + a)oltY () + ol () + 1S (1)
+(sv<fl“>< ) + §S<Tk1>v<5+l><rk> — (%), for k =0,
oY (m) + 20l (1) + Lol ()

+4 U(TSH)( %) + 2ul () + & (q) o () = ¢°(%), fork=0,1,...,N.

(24)

Assume that the precise solution v(7) of Equation (1) has an approximate solution in
the form of QBS interpolation W(7) as

s+l Z d s+1 (25)
k=-2

Thus, the above Equation (25) satisfy Equation (24)

(e + )WY (1) + BWSHY () + WS ()

Tk
W () + E (WO () = (7). fork =0, 26)
WSty (w) + 2 Wi () + £ ()
LW () + 05 (WO () = ¢°(),  fork=0,1,...,N,
with the B.Cs
W(Tk) = Po, fork=0
" _ —
W’ (1) = p1, fork=0 27)

W(Tk) = 0y, fork=N
W”(Tk) = 0. fork=N

Apply Table 1 to the above Equation (26), and after some simplification, the first
equation in (26) yields

[120(€ + &) — 60Bh + 207H> — 5513 + & (1) h*]d" ;") 4 [~480(e + &) + 120k
+ 407k — 506K + 268 (1)h*]d TV + [720(e + &) — 1209h2 + 6625 (1) h4]dS T +
[—480(e + ) — 12081 + 407h? + 5061 + 26¢° () h4]dS" ™) + [120(e + a) + 60Bh
+ 20yh* + 56K% + ijs(rk)h‘*]dgsﬂ) =¢* ().

The above equation can be written as:
70d 5 + 2od T + 00dSY + Aod T 4 podlY = g¥(10), (28)

where

1o = 120(€ + a) — 60Bh + 20vh? — 56h3 + & (7 )h*.

o = —480(e + a) + 120Bh + 40vh? — 506h3 + 26¢° (7. ) h*

0o = 720(e + &) — 120yh? + 66&° (i) h*.

Ag = —480(e + a) — 120Bh + 40vh? + 5051 + 26¢° (1) h*

po = 120(€ + &) + 60Bh + 20yh? + 56h3 + & (1) h.

Use Table 1 on Equation (26), and after some simplification, the second part of
Equation (26) gives
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120e 600 208 5y 8¢ (% )d(SH) 480e 120a =~ 408  50v

Gttty e T T e
266’5
n (Tk)

S, (720 120/3+665’5(Tk) 4o+ (_480e 1200 40 50y

ty ) k=1 ( W tih? t ) k ( h* tih th? tki}l

260" (i) | ,(s+1) 1206~ 60a 208 57  8(T)\ ,(s+1) s
+T)dk+l +(hT tk?+tk? tk7h+T)dk+2 =g (Tk),

where k =1,2,..., N. The above equation can be written as:

mdi 5+ Gt 0T M ) = g (), (29)
where
G = — 480 4 1;% + %@ _ 5% + 2655(3)(&).
0, = 7ige _ 1;% + 665’5(;?)(&)
Nom e 0 S
iy = 1206+603_|_t2(;g+t7 +M'
Fork=1,2,...,N in Equation (29)
md Y+ 0adg ™ Lo a4t = g5 (m), fork =1
qzd((f“) + 0d 4 0,d8 ) 4 4,d8 T 4gdTY = g5(), for k =2
: (30)

N— 1d§\] 3 +On- 1dN 2)+9N 1d1(\] 1)+/\ - d(s+)+ﬂ —1d§\]+1)—g(TN 1), fork=N-1
ndSTY + ndST) - onaS 42 dl(sﬂ)erNd;m) — &°(Tv). fork =N

From Equations (28) and (29), the following matrix form develop:

)

d(s—i—l
m Co 6 Ao po O o - 0 0 1) 8* (1)
0m & 66 M M1 0 e 0 0 d-y g (1)
0 0 m & 6 A pp 0 0 gt §°(12)
L . . . . . . . = . (31)
0 0 -~ 0 #n-1 ON-1 ON-1 ANt EN-1 O dz(\iﬂ) g (tv-1)
0 0 - 0 0 Oy In Oy AN Hn ey $° ()
N+2
Above Equation (31) can also be written as:
AD =F,
where 46+
Mo Go 6o Ao Ho 0 0 e 0 0 1) $° (1)
0 m & 6 M om 0 e 0 0 d(_}kl) g*(m)
0 0 m & 6 Ag 2 0 0 dy (1
a=| Dm0 2t . .. |.b=| " | F= g(.) :
0 0 0 #n-1 ON-1 On-1 AN-1 pn-1 O d(;}ﬂ) g (tv-1)
O 0 --- 0 0 Onn N N AN UN d(s+l) gs(TN)

N+2
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where D and F are column matrices and A is a non-singular square matrix of order
(N + 1) x (N +5). Four more equations, which may be stated using B.Cs given in
Equation (27), are required for a unique solution.

A 1264 1 66al T 4264l 4l = gy,
20/ 4(s+1) (s+1) (s+1) (s+1) (s+1)y
e R Wy W W (32)
s+ s+ s+ s+ s+1)
dN_2( Jj;)26dN_(1+1—i)_ 66dN( +1)—§— 26dé\]ill) —i—d(Ni_lz) = 0y,
20/ 4(s s s s s _
Ny +2dy 7 —6dy" T +2dy ) +dyL, ) =01
Substituting Equation (32) into Equation (31)
d(s+1)
2
Vi1 V12 V13 V14 V1,5 0 0 0 0 d(s+1) 00
Va1 Voo V23 V24 V25 0 0 0 0 d(}}H) 00
V31 V32 V33 V34 V35 0 0 0 0 0 g (1)
d(s+1) s
0 w41 v Va3 Vg Vys 0 0 0 - g (m)
0 0 w1 vsp  Us3 V54 Us5 0 0 I | &)
0 0 0  UNt2N VUN+2N+1 VN42N+2 VUN+2,N+3 VN+2N+4 0 df,f 1) g (tn-1)
0 0 0 0 VN{3N+1 VN43N+2 VN43,N+3 VUN43N+4 VNI3N45 4+ ()
0 0 0 0 UN+4N+1 VN+4N+2 VUN+4N+3 VUN+4,N+4  VN+4,N+5 d?SIH) %)
0 0 0 0 UN45N+1  VN45N+2 VUN+5N+3 VUN+5N+4 VN+45N+5 f\s]ﬂ) 1
dN2
Above equation can also be written as:
AD = F, (33)
where
Vi1 Y12 Vi3 V14 Vi 0 0 0 0
Vo1 V22 V23 Vog o V25 0 0 0 0
V31 V32 V33 V34 V35 0 0 0 0
0 vg1 vy w3 Vg Vg5 0 0 0
A 0 0 w1 vsp2 vsg Vs 4 V55 0 0
0 0 0  VUNt2N UN+2N+1 VUN+2,N+2 VN+2,N+3 VN+2,N+4 0
0 0 0 0 UN+3,N+1 VUN+3,N+2 VUN+3N+3 VN43N+4 VN+3N+5
0 0 0 0 UN+4N+1 VUN+4N+2 VN+4,N+3 VN+4N+4 UN+4,N+5
0 0 0 0 UN+5N+1 VUN+5N+2 VUN+5N+3 VN45N+4 VN+5N+5
+1
) :
S
4 oo
d(s+1) 0
((Js+1) gs(To)
d% o g'(m)
dS S TZ
D= 2_ and F = & ( )
s.+1 S '
Gt g (STN—l)
PRy &' ()
N 1%
d(s+1) 1
d(pslﬂ) P
N+2

If matrix A is a non-singular square matrix, then Equation (33) gives us a solu-
tion; otherwise, SSPNLBVP provided in Equation (1) has no solution. The order of A
is (N + 5) x (N + 5). The order of D is (N + 5) x (1) and the order of F is the same

s+1) d(s+1) d(s+1) d(s+1)

as that of D. After calculating values of d(f;l), d(_sfl), d(() N Nt ONi2 from
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Equation (33) and then substitute these values into Equation (33). Then Equation (33) can
provide us with a very accurate approximate solution that guarantees to be matchable with
the given exact solution, if any exist.

Where the matrix A has following entries:

1/1,1 = 1, 1/1,2 = 26, 1/1,3 = 66, 1/1,4 = 26, 1/][5 =1.
1= 20, Voo = 40, V3 = —120, V4 = 40, V55 = 20.
v31 = 1o = 120(e + &) — 60Bh + 20vh? — 55h3 + &h?,
v3p = (o = —480(e + &) + 20Bh + 40vh* — 505k + 26&h*,
V33 = 0 = 720(e + &) — 120yh? + 66&°h*,
V34 = Ag = —480(e + a) — 1208h + 40vh? + 506h3 + 26&°h*,
Va5 = o = 120(€ + a) + 60Bh + 20vh? + 56h3 + Eh*.
120e _ 60 208 _ 5v +4 5’5

VAL TIT e T s T e

Vip =0y = 4806 + 12011 + iohé 507 + 265/5

Vg3 =01 = 7526 - 1;*25 + 66‘5/5,

Vgg = A = 4225 12;%‘ + fﬁg + 5?15}1 s + X 265
208

_ _ 1206 60a 5475 (5’5
V4,5 — ]/ll — + h3 + t1h2 + tlh +
1206 600c 208 5/’
+ tzh +

Vs1 =M2= T8 — 4,13 T 52

Vsp =0{p = — 4805+120 +:120T/527%+265’5’
V5,3:92:7§$—272§ 66;25/5,
V5,4=/\2=—%—1tf%+f2%+%+26y5
v5,5:]42:120€+6h3+t22%+t +5/s

_ _ 120e _ _60a 208 5/5
UN#2ZN = IIN-1 = 58 — o3 T e tN 1h Ty
_ _ 480e 120a 408 50y 2625’5
UN+2N+1 = EN-1 = T T T Bk T

—9 _ 720e _ 1208 666"
VUN+2,N+2 = UN-1 = Tz N2 T

N-1

_ _ 480 __ 120w 408
VN+2'N+3 - ANil - e EN— 1h3 + EN— 1h2 + tN 1h tN 17

120 60 20 5’5
UN+42N+4 = UN-1= S5 + 75 7 '82 + tN 1h + 1y
1zoe 6004 + 208 57 + 4 5’5

50’)’ + 266"

UN+BN+1 =IN = T = 33 T 012~ Inh
_ 480 120 408 50y 265’S
UN43N+2 = (N = s T Tk T
— O — 7205 _ 120/3 664"
UN+3,N+3 = UN = i th2 NI
_ __ _ 480e _ 120a , 408 507 2615’5
UN43N+4 = AN = =55 N3 _I_zotévhz +an T
_ 120€ 60 5’5
UN+3,N+5 = UN = + h3 + K + tNh +
UN+4N+1 = 20, VN+4,N+2 =40, UN+4 N3 = —120 UN+4,N+4 = 40, UNt4,N+5 = 20.

UN+5N+1 = 1, UN+5N+2 = 26, UN5N+3 = 66, UN45N+4 = 26, UNy5N+5 = 1.

4. Error Analysis

This section designates a method for computing TE for the QBS technique across the
range 0 < 7 < 1. In [17,26], the QBS approximations are used to provide the following
relations, which may be shown using Equations (14)—(18).

Equations (14) and (15) give the following relation:

h[W/(Tk,z) + 26W,(Tk71) + 66W/(Tk) + 26W,(Tk+1) + WI(Tk+2)]
=5[-0(Tk—2) — 100(Tj—1) + 100(Te11) + 0(Tes2)]- - (34)
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Equations (14) and (16) give the following relation:

W (G_3) + 26W" (T_1) + 66W" (1)) + 26W" (T 1) + W (Tiy2))]
= 20[0(Tk—2) +20(T4—1) — 60(Tk) + 20(Tp11) + 0(Tpr2)].  (35)

Equations (14) and (17) give the following relation:

WPIW" (te_2) +26W" (1) + 66W"" (1) + 26W"" (T4 1) + W (Ti12)]
= 60[—v(Tk—2) +20(Tk—1) — 20(Tp11) + 0(Thy2)]-  (36)

Equations (14) and (18) give the following relation:

HIWW (1) + 26W W (1) + 66W W (1) + 26W 1) (1ie11) + W (1i1)]
= 120[v(Tj—2) — 40(Te—1) + 60(Tk) — 40(Tj1) + 0(Tes2)]. (37)

By means of the operator notation E" (W) (1;)) = W].(J':zn, m € Z and n is any order of
derivative, Equations (34)—(37) can be expressed as:

BE~2 +26E~! + 66 +26E' + EJW' (1) = 5[-E~2 —10E"' + 10E' + E?Jo(%),  (38)
W?[E~2 4+ 26E~! + 66 + 26E' + E2JW" (1) = 20[E 2 4+2E 1 — 6 +2E' + F*Ju(%), (39)
W3 [E~2 4+ 26E~! + 66 + 26E' + E2JW"' (1) = 60[—E 2 +2E~' —2E' + E?Jo(7;),  (40)

WE™2 +26E~" 4+ 66 4+ 26E' + E2JW®) (1) = 120[E"2 —4E~' + 6 — 4E' 4+ EJo(7). (41)
After some simplification

5(—E~2 —10E~! +10E! + E?)
h(E=2+426E~1 + 66 + 26E! + E2)

W (%) = o(), (42)

20(E"2 +2E7' — 6 +2E' + E?)
W (1) = , 13
(%) = 2B 2526 T+ 661 2681 1 £7) "\ (43)

60(—E~2+2E"1 —2E! + E?)
W _ , 44
(%) = e 2y 26E T+ 66+ 2687 1 1) W) (44)

120(E~2 —4E~!' +6 —4E' + E2)
W (g) = . 45
(%) = FaE2 1 26 T+ 66 7 2687 7 E3) %) (45)

Employing E" = ¢""P where m € 7 and Dv(7) = v/'(%), D*v(%) = 0" (%), ...,
DMy (1) = v (7). Equations (42)—(45) can be written as:

5(—e2"D _10e~"P 1 10e"P + £2'D)
h(e=2hD + 26e~"D 4 66 + 26eD + ¢2'D)

W' () = o(T), (46)

W (1) = 20(e’ZhD +2¢7"D — 64 2eMD 4 eZhD) o(1) 47)
¥ 12(e= 2D 1 260D 1 66 + 26D + ¢2D) ’

W///(Tk) - 60(—6_2hD + 2e_hD — zehD + eZhD)

- , 18
(e 2D+ 26 7D 1 66 + 2600 4 D) " %) (48)
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B 120(€f2hD _ 4eth 16— 4€hD + eZhD)
"~ h4(e=2hD 4 26D + 66 + 26¢!D + ¢2hD)

W (1) o). (49)

Expand the series expansions of exponential functions in powers of hD.

D22 D33 D*ht DR

hD
=14+D .
e +Dht ——+ ——+ 5+ 055 (50)
D> D343  D*h*  DSH®
—hD _ 1 _ _ _
e’ =1-Dh+—; Y 50 (51)
31,3 41,4 51,5
2D — 1 4 oDp 42D + AP 2D 4D (52)
3 3 15
31,3 41,4 51,5
e~2"P — 1 _2Dh + 2D%h? — 4D3h + 2D3h — 42; : (53)

Substituting Equations (50)—(53) into Equations (46)—(49) then simplifying gives the
following equations:

1 1
W) — o Wou7) (7,) — 185) ,10,,(11)
(1) = (%) + 555" (%) ~ 37600 @ (%) + 1gp080" @ (W)
583 19
_ 983 ,12(13) _ D 105 AL 4
Tais232000" 0 (%) T g7gonz000” ¢ () FOUT), (54)
1 1
W//(Tk) = ’()//(Tk> + %h4’()(6) (Tk) — %hﬁv(s) (Tk) + thU(lO) (Tk)
221 1681 433
_ 22l 410,012) _ 1681 .1 () I C AR UL ) AL
* 230500800 ¢ (%)~ ggossssoo0” © ) * Tote00a000" ¢ () TOKT) (59

W (1) = 0" (1) — 241170}140(7)(”@) +
37

10, (13)
+ Tiaomso0” ¢ (W)

e 0y L s oan)
30240 0 () ~ 5ggpp™ 0 ()

_ 2993
15850598400

1

12,(15) B
o () — 6386688000

h4917) (1) + O(h'®), (56)

_ 18 s 2
so7200" ¢ ()

196843
12,(16)
0 () + 3923023102000

1 1
W(4)(Tk) = Z’(4)(Tk) - ﬁhzv(@(Tk) + %h%(g)(ﬁc) - %h%(lo)(Tk)
643

465737
10,,(14)
+ T59667200" ¢ ()

__ F0osor 14,(18) 15
871782912000 40U (1) + O(h). (57)

Currently, the error term is defined at the kth knot as (7)) = W(1;) — v(T). Substitut-
ing Equations (54)—(57) into error term,

¢ (1) = W'() — 0/ (1) = =60 (1)) — =180 () +

_ 10,,(11)
5040 21600 ot ()

190080

583 12 (13) 19 14_(15) 15
tas232000" © %)Y gzgonzo00” O (W) H O, (58)
1" o o _ 1.4 (6) _ 1 .6 (8) 8_(10)
221 1681 433
p10,(12) () _ }12,(14) j14,,(16) AL
230500800" © (%)~ ggossssoo0” ¢ (%) Torgoveannn” ¢ () HOUT), (59)
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" (1) = W' () -

e (1)

e(T + ¢h) =

v (1) = 7@;14 o7 )( ) + ﬁhév(g)(ﬁ() _ mhs (11)(Tk)
n ﬁhm (13) () — %huv(@(m _ mhmvum(m +O(S), (60)
= W (g) — o (z) = —lhzv(é)(fk) + ﬁh%(s)(fk) - %hév(w)(fk)

907200}18 " (m) + i§§g%;§66hu%ﬂl®(1k)_‘é?Iéggg%§666 o0 ()

oo™ (W) + O%).  (61)
Employing the Equations (58)—(61) in the TS expansion of the error term
%hg (@) + %hm " (m) + %hu ()
e

Pl ) 0, 1

where, 0 < ¢ < 1. Observe Equation (62), where the TE of the improved QBS approximation
is clearly O(h®).

5. Numerical Findings and Consensus

To demonstrate the effectiveness and dependability of the suggested QBS approach
for the solution of fourth-order SSPLBVPs and SSPNLBVPs, four problems are taken into
consideration in this section. The experimental outcomes of the novel QBS approximation
approach are also displayed. The residual error represents the differences between the
observed v(T) values and the corresponding approximate values W(t).

Example 1. Take into account the subsequent fourth-order SSPLBVP [29]:

1 1 2 2 8 7
(4) Lon = — T <) _“ o 7
v (1) + _ (1) + 1_v(T) e (e(r+4) +2+ T) A LA
(o2 0<r<1, 3
3 2 o=
with the B.Cs

v(0) =v(1) =0,9"(0) =" (1) = 0. (64)
Example 1’s exact solution is v(7) = Te” + (3 — 1e)T — T2 + (3 — e)7°. The results

of the numerical calculations used in Example 1 are dlsplayed in Tables 2 and 3. The
point-wise AEs are shown in Tables 2 and 3, respectively, for e = 0.0625 and N = 10
and € = 0.0001 and N = 10, respectively. When € = 0.0001 and € = 0.0625, Figure 1
illustrates how the exact and approximate solutions to Example 1 behave. Table 4 shows
the maximum AEs for various tiny values of € for various values of N. When N = 500 and
€ = 0.0001, Table 5 compares point-wise AEs for the solution to Example 1 between the
proposed technique and QBS in [29].
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Table 2. With h = % and € = -, point-by-point errors in the solution to Example 1.

167

T Exact Solution Approximate Solution Absolute Error
0.0 —0.00000 —0.00000 0.00000 x 1090
0.1 —0.07994 —0.07994 9.15934 x 1016
0.2 —0.15252 —0.15252 7.21645 x 10716
0.3 —0.21126 —0.21126 1.83187 x 10~15
0.4 —0.25086 —0.25086 4.05231 x 10715
0.5 —0.26739 —0.26739 5.55112 x 1016
0.6 —0.25857 —0.25857 2.66454 x 10715
0.7 —0.22406 —0.22406 3.05311 x 10~15
0.8 —0.16582 —0.16582 3.33067 x 1016
0.9 —0.08852 —0.08852 2.85882 x 10~ 15
1.0 —0.00000 —0.00000 0.00000 x 1090

Table 3. With 1 = % and € = W, point-by-point errors in the solution to Example 1.

T Exact Solution Approximate Solution Absolute Error
0.0 —0.00000 —0.00000 0.00000 x 109
0.1 —0.07994 —0.07994 0.00000 x 1090
0.2 —0.15252 —0.15252 2.77556 x 10~17
0.3 —0.21126 —0.21126 0.00000 x 1090
0.4 —0.25086 —0.25086 555112 x 10~
0.5 —0.26739 —0.26739 2.22045 x 1016
0.6 —0.25857 —0.25857 555112 x 10~17
0.7 —0.22406 —0.22406 0.00000 x 1090
0.8 —0.16582 —0.16582 2.77556 x 10~17
0.9 —0.08852 —0.08852 1.38778 x 1016
1.0 —0.00000 —0.00000 2.77556 x 10~17

Table 4. Maximum AEs of Example 1 with varying combinations of N and e = 10™"".

e=10""

N=8

N=16

N=32

N=64

N =128

10700
10—01
10702
1093
10—04
10795
1070
10797
10798
10799
10—10

1.05471 x 101
8.88178 x 10716
9.99201 x 10~16
1.11022 x 1016
2.77556 x 10~17
2.77556 x 10~17
1.38778 x 10717
1.38778 x 10717
1.38778 x 10717
1.38778 x 10717
1.38778 x 10717

448530 x 10714
7.53841 x 1074
4.06342 x 10714
5.55112 x 1015
4.44089 x 10716
5.55112 x 1017
2.77556 x 10~17
2.77556 x 10~17
1.38778 x 10717
2.77556 x 10~17
2.77556 x 10~17

1.36713 x 10712
1.07947 x 10712
5.46119 x 1013
9.25926 x 1014
1.25455 x 1014
1.33227 x 10715
1.11022 x 1016
2.77556 x 10~17
2.77556 x 10~17
2.77556 x 10~17
2.77556 x 10~17

2.63349 x 10~
2.24331 x 10~
1.11223 x 10~1
1.50002 x 10712
1.59650 x 10~13
257572 x 10714
1.99840 x 10715
2.22045 x 10~1°
2.77556 x 1017
2.77556 x 1017
2.77556 x 10~17

3.84210 x 1010
2.77389 x 10~10
1.48288 x 10~10
3.02446 x 101
3.13072 x 1012
2.71450 x 1013
2.69784 x 1014
3.77476 x 1015
3.33067 x 10716
555112 x 1017
2.77556 x 1017

Table 5. Point-by-point AEs comparison between the proposed method and QBS in [29] for the
solution of Example 1, when N =500 and € = 0.0001.

T

Method in [29]

Proposed Method

0.000
0.002
0.018
0.034
0.124
0.220
0.500
0.720
0.780
0.876
1.982
1.996
1.000

0.00000 x 10~
427811 x 10714
3.96132 x 10713
7.40092 x 10~13
2.70092 x 10~12
456300 x 10~12
9.10411 x 10712
1.10860 x 10~11
1.07286 x 10~11
8.47087 x 1012
3.18125 x 10~12
2.10516 x 10~12
0.00000 x 10~

0.00000 x 109
1.55989 x 1016
3.21670 x 1016
1.32567 x 10~1°
3.79909 x 10~15
6.30401 x 10715
3.34622 x 1014
473746 x 10714
1.89879 x 10~ 14
3.25088 x 10~ 14
419127 x 10~ 14
2.10516 x 10~ 14
0.00000 x 109
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w(T)

o.10f oo %00,
y 4 ‘®.
po
o’ o,
o.08} o LN
/ ]
/. \
’” Exact solution .

0.06 / L]

¥ PS Approximate solution \

o N\
0.04- .' ]
s R
002t @ ]
o ]
. . . . N
0.2 0.4 0.6 0.8 1.0

Figure 1. When /1 = %, € = 0.0625, and € = 0.0001, the attitude of exact and approximate solution of
Example 1.

Example 2. Think about the subsequent fourth-order SSPLBVP [29]:

—ev® (1) — %v(r) = e (€(8 +71+1) - (1— T)) + %e(l —),0<t<1, (65

with the B.Cs
v(0) = v(1) = 0,9"(0) =o"(1) = 0. (66)

Example 2’s exact solution is v(t) = T(1 — T)e” — 3et(1 — 72). The results of the
numerical calculations used in Example 2 are displayed in Tables 6 and 7. The point-wise
AEs are shown in Tables 6 and 7, respectively, for € = 0.0625 and N = 10 and € = 0.0001
and N = 10, respectively. When € = 0.0001 and € = 0.0625, Figure 2 illustrates how the
exact and approximate solutions to Example 2 behave. Table 8 portrays the maximum AEs
for various tiny values of € for various values of N. When N = 500 and e = 0.0001, Table 9
compares point-wise AEs for the solution to Example 2 between the proposed method and
QBS in [29].

Table 6. With h = % and € = 1%' point-by-point errors in the solution to Example 2.

T Exact Solution Approximate Solution Absolute Error
0.0 0.00000 0.00000 0.00000 x 1090
0.1 0.03024 0.03024 3.33067 x 10716
0.2 0.05758 0.05758 9.15934 x 1016
0.3 0.07952 0.07952 4.44089 x 10~16
0.4 0.09409 0.09409 6.66134 x 10716
0.5 0.09990 0.09990 7.77156 x 10~16
0.6 0.09621 0.09621 1.33227 x 10715
0.7 0.08304 0.08304 2.22045 x 1016
0.8 0.06124 0.06124 5.73847 x 1015
0.9 0.03260 0.03260 4.44089 x 10716
1.0 0.00000 0.00000 0.00000 x 10~

Table 7. With h = % and € = W, point-by-point errors in the solution to Example 2.

T Exact Solution Approximate Solution Absolute Error
0.0 0.00000 0.00000 0.00000 x 10~
0.1 0.03024 0.03024 3.46945 x 10718
0.2 0.05758 0.05758 6.93889 x 10~18
0.3 0.07952 0.07952 416334 x 10V
0.4 0.09409 0.09409 2.77556 x 1017
0.5 0.09990 0.09990 416334 x 10V
0.6 0.09621 0.09621 0.00000 x 10~
0.7 0.08304 0.08304 0.00000 x 10~
0.8 0.06124 0.06124 2.77556 x 1017
0.9 0.03260 0.03260 6.93889 x 1018

1.0 0.00000 0.00000 0.00000 x 10~%
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w(7)
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Figure 2. When I = %, € = 0.0625, and € = 0.0001, the attitude of the exact and approximate
solution of Example 2.

Table 8. Maximum AEs of Example 2 with varying combinations of N and € = 10~

e=10"" N=8 N =16 N =32 N =64 N =128
107 2.33147 x 1071 1.71085 x 10713 3.59152 x 10712 7.89434 x 10711 1.10196 x 107
107 248412 x 1071 1.82632 x 10713 3.68444 x 10712 5.45033 x 10~ 6.64096 x 10710
10702 2.30371 x 1071 1.11994 x 10713 1.03767 x 10712 2.12168 x 10~ 3.45862 x 10710
1070 5.55112 x 10716 2.54241 x 1071 4.44700 x 10713 4.19526 x 10712 8.91627 x 10~
1070 1.11022 x 1071¢ 1.27676 x 1071 2.78666 x 10714 5.57276 x 10713 9.21263 x 10712
107% 5.55112 x 10717 1.66533 x 1071¢ 2.88658 x 10715 4.99600 x 10714 8.18012 x 1013
1070 5.55112 x 10717 5.55112 x 1077 1.11022 x 10716 6.10623 x 10716 9.27036 x 10715
10797 2.77556 x 10717 2.77556 x 10717 2.77556 x 1077 222045 x 10716 3.77476 x 10715
107% 2.77556 x 10717 5.55112 x 1077 5.55112 x 1077 1.11022 x 10716 1.11022 x 1071%
107% 2.77556 x 10717 2.77556 x 10717 5.55112 x 1077 5.55112 x 1077 1.11022 x 10716
10710 5.55112 x 10717 5.55112 x 1077 5.55112 x 1077 5.55112 x 1077 5.55112 x 10717

Table 9. Point-by-point AEs comparison between the proposed method and QBS in [29] for the
solution of Example 2, when N =500 and € = 0.0001.

T Method in [29] Proposed Method
0.000 0.00000 x 10—9% 0.00000 x 10~
0.002 1.42286 x 10~12 1.27626 x 10~14
0.018 1.27219 x 10~ 11 2.56264 x 10~ 14
0.034 2.37708 x 10~11 1.11115 x 10713
0.124 7.88766 x 10~ 11 1.33951 x 10~ 13
0.220 1.24021 x 10710 2.47738 x 10712
0.500 3.94267 x 10710 3.87702 x 10712
0.720 1.30052 x 10~% 4.12510 x 10~ 11
0.780 1.50042 x 10797 7.70917 x 10~ 1
0.876 1.36220 x 10~% 443062 x 10~11
1.982 4.83877 x 10710 3.30951 x 1012
1.996 2.61038 x 1010 2.51630 x 1012
1.000 0.00000 x 1090 0.00000 x 109

Example 3. Consider the following non-linear Emden-Fowler type initial value problem [26,30]:

o™ (1) + %v@’)(r) = f(t,v),0<7t<1, (67)
with the 1.Cs
v(0) = 9'(0) = v"(0) = v"'(0) = 0. (68)

Example 3's exact solution is v(7) = log(1+ 7*) and f(7,v) = 96(1 — 107* 4 578)e~4(7),
The point-wise AEs are shown in Table 10, for h = . Figure 3 illustrates how the exact and
approximative solutions to Example 3 behave when I = %. Table 11 gives a point-wise
absolute error comparison between the proposed method and the method in [26] for the
solution of Example 3 when N = 100.
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Table 10. With 1 = %, point-by-point errors in the solution to Example 3.

T Exact Solution Approximate Solution Absolute Error
0.0 0.00000 x 100 0.00000 x 1070 0.00000 x 1070
0.1 9.99950 x 10—° 5.19552 x 10~° 4.80398 x 10~°
0.2 1.59872 x 103 1.50168 x 103 9.70440 x 10~
0.3 8.06737 x 1073 7.91339 x 103 1.53985 x 107>
0.4 2.52778 x 1072 2.50354 x 1072 2.42396 x 10~°
0.5 6.06246 x 102 6.02134 x 102 411259 x 107>
0.6 1.21860 x 1071 1.21145 x 1071 7.24394 x 107>
0.7 2.15190 x 10! 2.13984 x 101 1.21564 x 104
0.8 3.43310 x 101 3.41478 x 101 1.83187 x 1074
0.9 5.04470 x 101 5.02046 x 101 242343 x 104
1.0 6.93140 x 101 6.90341 x 101 2.80740 x 104
v(T)
0.7 j
i o
0.6 Exact solution
[ [ ) Approximate solution
0.5}
04t
[ [ J
0.3F o
0.2i @ o
¥ p ®
0'1f ® @
eccccscscese®? ‘ ‘ 7
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Figure 3. When h =

1

10

the attitude of the exact and approximate solution of Example 3.

Table 11. Point-by-point AEs comparison between the proposed method and QBS in [26] for the

solution of Example 3 when N = 20.

T

Method in [26]

Proposed Method

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.00000 x 100
9.99841 x 10~°
1.59865 x 103
8.06714 x 103
2.52772 x 1072
6.06234 x 102
1.21860 x 1071
2.15180 x 10!
3.43300 x 101
5.04460 x 101
6.93140 x 101

0.00000 x 1090
412793 x 1010
7.74459 x 1010
1.83463 x 10~%
5.82965 x 10~
1.75771 x 10798
434990 x 1008
8.71255 x 1098
1.43235 x 10~
1.96797 x 10~%7
2.29445 x 10~%

Example 4. Consider the following non-linear Emden-Fowler type initial value problem:

with the I.Cs

o® (1) 4 %0(3)(7) = f(t,v),0<7<1,

(69)

(70)
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Example 4's exact solution is v(7) = —4log(1 + ) and f(t,v) = —32(15 — 1297* +
4978 + le)ev(T). The point-wise AEs are shown in Table 12, for h = 11—0. Figure 4 illustrates
how the exact and approximative solutions to Example 4 behave when h = %.

Table 12. With I = %, point-by-point errors in the solution to Example 4.

T Exact Solution Approximate Solution Absolute Error
0.0 —0.00000 x 1079 —0.00000 x 1070 0.00000 x 109
0.1 —3.99980 x 10~* —3.99793 x 10~* 1.86537 x 102
0.2 —6.39489 x 1073 —6.39452 x 1073 3.60941 x 102
0.3 —3.22695 x 1072 —3.22687 x 1072 7.68977 x 1077
0.4 —1.01111 x 101 —1.01109 x 101 2.17310 x 108
0.5 —2.42498 x 101 —2.42492 x 101 6.19462 x 108
0.6 —4.87454 x 107! —4.87439 x 1071 1.49111 x 10~7
0.7 —8.60768 x 101 —8.60739 x 101 2.92107 x 107
0.8 —1.37322 x 1070 —1.37318 x 1070 4.67654 x 10~7
0.9 —2.01786 x 1070 —2.01780 x 1070 6.18909 x 107
1.0 —2.77259 x 1070 —2.77252 x 1070 6.81352 x 10~7
V(T)
i 0ree%e0e, - 0.6 0.8 10
®e
—05f ®e
e
[ [ ]
-1.0} .
i Exact solution @
I _ _ ®
- 1-5j o Approximate solution ®
[ [ ]
—Z-Of °®
1 )
-25} .

Figure 4. When 1 = 11—0, the attitude of the exact and approximate solution of Example 4.

Example 5. Take into account the subsequent fourth-order SSPLBVP:

eo™® (1) + %v(r) =" [(1—1)—e(8+7T+ 7)) — %e(l —),0<7t<1. (71)

with the B.Cs
v(0) = v(1) = 0,9"(0) =" (1) = 0. (72)

There is no exact solution available in the literature of this example. So, the approxi-
mate solution at e = 0.001 and N = 200 is as observed exact solution of above SSPLBVP. The
results of the numerical calculations used in this example are displayed in Tables 13 and 14.
The point-wise residual errors are shown in Table 13 for € = 0.01 and N = 10. Figure 5
illustrates the observed exact and approximate solutions when € = 0.01 and N = 10.
Table 14 shows the maximum residual errors for various tiny values of € for various values
of N.



Symmetry 2023, 15, 1929

19 of 21

Table 13. With N = 10 and € = 0.01, point-by-point residual errors in the solution to Example 5.

T Observed Exact Solution  Approximate Solution Residual Errors
0.0 —0.00000 —0.00000 0.00000 x 1090
0.1 —1.69460 —1.69460 1.66755 x 1015
0.2 —1.54428 —1.54428 2.82596 x 1015
0.3 —1.36562 —1.36562 472511 x 10715
0.4 —1.16420 —1.16420 1.05449 x 10~ 14
0.5 —0.94696 —0.94696 1.23679 x 10~15
0.6 —0.72249 —0.72249 2.08011 x 10~ 14
0.7 —0.50132 —0.50132 6.68576 x 10~ 14
0.8 —0.29630 —0.29630 9.85989 x 1015
0.9 —0.12295 —0.122951 5.24580 x 10~15
1.0 —0.00000 —0.00000 0.00000 x 1090

Table 14. Maximum residual errors of Example 5 with varying combinations of N and € = 10~".

e=10"" N=8 N=16 N=32 N =64 N =128
109 3.59712 x 10~ 4.14853 x 1013 1.01803 x 10~ 12 1.21552 x 10710 3.71410 x 10~
10~ 3.28626 x 10~ 447642 x 10713 8.00959 x 1012 1.41209 x 10710 3.30666 x 10~
102 1.17684 x 10714 2.26708 x 10~13 3.07954 x 1012 531172 x 10~ 9.55786 x 1010
109 1.33227 x 10712 2.97540 x 10~ 5.61329 x 10~13 6.96837 x 1012 1.24716 x 10710
10-% 6.66134 x 10716 5.32907 x 1015 417444 x 10714 821232 x 1013 1.36269 x 10712
10-% 1.55431 x 10712 8.88178 x 10716 4.44089 x 1016 9.76996 x 10~15 2.04503 x 1013
10-% 1.15374 x 10712 1.96287 x 10713 2.66454 x 1015 4.44089 x 1015 222045 x 1015
10-%7 221512 x 1012 1.16795 x 1012 3.68594 x 10~14 3.55271 x 1015 2.66454 x 1015
108 1.18527 x 1012 1.15896 x 1012 1.25694 x 10714 2.59674 x 10715 5.63214 x 1015
10-% 5.25903 x 1012 6.59812 x 10712 256912 x 10~13 2.77556 x 10~14 5.55112 x 1015
1010 6.10800 x 1012 6.62492 x 10712 6.51035 x 10713 3.68594 x 10~ 2.66454 x 10715
v(7)
[ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \.
H 0.2 0.4 0.6 0.8 e® 1.0
L @
. @
r Observed exact solution pe L
r @
-0.5 [ ] Approximate solution P o
[ @
r @
L po @
L . pe
-1.0 i o ®
= @
L ® @
L ° @
-1.5+- ® @
L . .
L . . .

Figure 5. Behaviour of observed exact and approximate solutions of Example 5 when N = 10 and
€ =0.01.

6. Concluding Remarks

When different initial and boundary conditions are present, it is frequently exceedingly
challenging to derive the analytical solutions to these equations. So, in order to tackle
problems, we need to find some trustworthy numerical techniques. The goal of this work is
to propose enforceable numerical algorithms for fourth-order SSPNLBVP, SSPNLIVP and
SSPBVP using QBS. Additionally, systems involving sparse matrices are produced using
B-spline approaches and these systems can be managed by suitable techniques at minimal
computational and time complication.

The following are the contributions of this study:

¢  The previously suggested numerical methodology for the fourth-order SSPPs was
based on a effective QBS approximation.
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. For SSPNLBVP, SSPNLIVP and SSPBVP the aforementioned method was innovative.

¢  The approximation solution becomes closer to the precise analytical solution when
the step size is decreased, ensuring convergence with the suggested methodology.

*  Thestrategy was created to enhance a QBS for fourth-order problems without lowering
lower-order DEs.

*  This approach generates a spline function that may be used to find the answer any-
where throughout the range.

¢  In the whole domain, the scheme is uniformly convergent.

The B-spline approach has several benefits over the standard finite difference formula-
tion because it yields highly precise continuous approximations of the unknown function
and its derivatives at each point of the spectrum of integration. Despite its benefits, QBS
interpolation has many drawbacks. If no free parameter is involved, the resultant curve
cannot be altered. As a result, once the control points have been identified, the curve cannot
be altered. Furthermore, it operates globally, therefore any effort to modify the control
points will need resolving all associated systems once again. To address SSP linear, non-
linear, initial, and boundary value problems of various orders, we will in the future utilize
polynomial, exponential, trigonometric, and hyperbolic trigonometric B-spline functions of
various degrees.
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