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Abstract: The output of a single-degree-of-freedom (SDOF) piecewise linear system with asymmetric
damping and linear stiffness excited by Dirac impulse excitation is studied. Analytical solutions
of the response for piecewise linear systems are obtained by replacing the equation of motion with
Dirac excitation by a homogeneous differential system with zero initial displacement and a given
initial velocity. A significant improvement of the response consisting in a substantial reduction in the
after-shock vibrations was obtained. The obtained results are applied to the damping optimization of
a shock isolation system for forging hammers.
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1. Introduction

The study of reducing the effects of shocks on mechanical structures aims to minimize
the transmitted forces through a shock isolation system and maintain absolute displace-
ments within the admissible limits. The effects of nonlinear stiffness on a shock isolator’s
performance were studied in [1]. An optimal shock isolation system with quadratic damp-
ing and linear stiffness showed better performance than conventional isolators [2]. A
methodology to derive the optimal parameters for shock isolated systems for high accel-
eration levels arising from explosions was presented in [3]. The influence of a damper on
the dynamic responses of a vehicle are investigated analytically under bump and pothole
excitations [4]. A method of obtaining the closed-form displacement response of free
undamped vibrations and the steady state of forced damped vibrations of systems with
piecewise linear springs is presented in [5]. An effective and low-cost method to assess the
condition of vehicles’ shock absorbers, based on the measurement of vertical accelerations
on sprung and unsprung masses for a shock input, was proposed in [6]. The effects of shock
absorber asymmetry on the vibration responses of a seat-occupant system under impact
conditions are explored in [7]. Another type of device widely used for shock vibrations is
represented by wire rope isolators, characterized by symmetric responses (hysteresis loops)
when they deform transversally, as show in [8], and asymmetric responses when they are
loaded along their axial direction, as illustrated in [9].

For linear shock isolation systems, an optimal relative damping value was determined
so as to minimize the acceleration output for any stiffness [10–12]. In this case, the con-
trol of the maximum displacement is achieved through a convenient choice of system
stiffness, so that the maximum acceleration does not exceed the admissible limit. For an
imposed maximum admissible displacement, the optimal value of the relative damping
that minimizes the transmitted acceleration was determined in [10–12]. Therefore, the
maximum acceleration is controlled by the stiffness of the system, which is determined by
the maximum imposed displacement.
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In the case of piecewise linear (PWL) systems, the maximum acceleration and the
maximum displacement of the system’s response to shock input are the same as those
obtained in the case of linear systems. The advantage of PWL systems lies in the fact that
the after-shock oscillations can be substantially reduced by the asymmetry of the damp-
ing characteristic without affecting the optimal values of acceleration and displacement
obtained in the case of linear systems.

In most cases, shock isolation systems have constant stiffness and different compres-
sion and extension values of their dissipative characteristic. These systems can be practically
made more simply than those with different values of compression and expansion stiffness.
The beneficial effect of asymmetric damping is studied in the present paper for a shock
isolation system with a Dirac input. This approach allows us to obtain analytical solutions
for the response of PWL systems in the first sequence by replacing the equation of motion
with Dirac excitation (with zero initial conditions) with a homogeneous differential system
with zero initial displacement and given initial velocity [13].

The response of hammer foundations to different pulse loadings is investigated in [14].
The effects of pulse shape and pulse duration on the dynamic response of a one-mass
hammer-foundation system were studied in [15]. A system dynamics model for an isolated
foundation and solution technique for obtaining the system response under impact loads is
introduced in [16]. The effects of the shape and duration of a pulse load on the dynamic
response of a hammer-foundation forging system were assessed in [17]. The mechanical
vibrations of a specific forging hammer were investigated in order to understand the
influence of different control parameters on forging efficiency [18]. A linearization method
for the hysteretic dissipative characteristics of devices used for reducing shocks generated
by forging hammers is presented in [19].

In this paper, the output of an SDOF piecewise linear system with asymmetric damping
and linear stiffness, excited by Dirac impulse excitation, is studied. The obtained results
are applied to the damping optimization of a shock isolation system for forging hammers.
A significant improvement in the response consisting in a substantial reduction in the after-
shock vibrations was obtained. This improvement leads to the possibility of shortening the
action time of the forge hammer between two blows.

This paper is organized as follows: Section 2 includes some results regarding the opti-
mization of linear systems with respect to the minimum absolute value of the acceleration
response. The optimization of the acceleration response for an imposed maximum value of
displacement is presented in Section 3. Section 4 contains the response of the PWL system
to the shock input, and the optimization of the PWL system for shock input is illustrated in
Section 5. An application of shock isolation for forging hammers is described in Section 6.
The last section presents our conclusions.

2. Optimization of Linear Systems with Respect to the Minimum Acceleration Response

Consider the linear system with Dirac impulse excitation:
..
x + 2ζω

.
x +ω2x = −V0δ(t), V0 > 0

x(0) = 0,
.
x(0) = 0

. (1)

System (1) has the same solution as the linear system with nonzero initial velocity.
..
x + 2ζω

.
x +ω2x = 0

x(0) = 0,
.
x(0) = V0

. (2)

The solution of system (2) is given by [13]:

x(t, ζ,ω) =
V0

ω
√

1− ζ2
e−ζωt sin

[
ω

√
1− ζ2t

]
, t ≥ 0 (3)

The maximum absolute values xm1(ζ,ω) and xm2(ζ,ω) of the first and second peaks
of displacement x(t, ζ,ω) are obtained for
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td1(ζ,ω) =
θ+ π

2

ω
√

1− ζ2
, td2(ζ,ω) =

θ+ 3π
2

ω
√

1− ζ2
(4)

where

θ = arctan

(
−ζ√
1− ζ2

)
(5)

Introducing (4) into (3), the ratio rd(ζ) of absolute values of the second and first peaks
of displacement x(t, ζ,ω) are given by

rd(ζ) =
xm2(ζ,ω)

xm1(ζ,ω)
= e

− ζπ√
1−ζ2 . (6)

The ratio rd(ζ) is plotted in Figure 1.
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The velocity and acceleration of the sprung mass are
.
x(t, ζ,ω) = V0√

1−ζ2
e−ζωt cos

(
ω
√

1− ζ2t− θ
)

..
x(t, ζ,ω) = −ω V0√

1−ζ2
e−ζωt sin

(
ω
√

1− ζ2t− 2θ
) (7)

The time moments at which the maximum absolute values of velocity and acceleration
are reached, are given by

tv(ζ,ω) = 2θ+π
ω
√

1−ζ2

ta(ζ,ω) =
3θ+π2
ω
√

1−ζ2

(8)

As a consequence, the maximum absolute value of velocity is

.
xm(ζ,ω) = V0e−ζωtv = V0e

−ζ 2θ+π√
1−ζ2 , (9)

and the maximum absolute value of acceleration is given by

.
xm(ζ,ω) = V0e−ζωtv = V0e

−ζ 2θ+π√
1−ζ2 , (10)

The value of ζopt that minimizes the maximum absolute value of acceleration is
obtained from the equation

d
..
xm(ζ,ω)

dζ
= 0. (11)

Solving this nonlinear Equation (11) yields ζopt ∼= 0.265, for any value of ω [10–12].
Figure 2 shows the variation in the maximum acceleration

..
xm(ζ,ω) of the linear system (2)

in relation to the damping ratio ζ forω = 2π rad/s.
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Figure 2. Variation in maximum acceleration versus damping ratio.

This result is important from a practical point of view because it shows that the
minimum force transmitted due to the shock for any stiffness value of the isolation system
is obtained for the same value of the relative damping coefficient. This optimization
criterion could be contradictory to the limitation of maximum travel, admissible by the
geometry of the vibration isolation system.

3. The Optimization of the Acceleration Response for an Imposed
Maximum Displacement

The optimization of the acceleration response
..
xm for an imposed maximum displace-

ment xm, required by the maximum admissible stroke of the shock isolation device, is
based on relations (6) and (10):

V0
ωe
−ζ

arctan( −ζ√
1−ζ2

)+π2
√

1−ζ2 = xm

..
xm(ζ,ω) = ωV0e

−ζ
3arctan( −ζ√

1−ζ2
)+π2

√
1−ζ2 = min

. (12)

From the first equation of system (12), we obtain

ω =
V0

xm
e
−ζ

arctan( −ζ√
1−ζ2

)+π2
√

1−ζ2 . (13)

By introducing (13) into the second equation of (12), we achieve

..
xm(ζ) =

V2
0

xm
e
−ζ

4arctan( −ζ√
1−ζ2

)+π

√
1−ζ2 . (14)

From d
..
xm(ζ)
dζ = 0, one can derive

4ζ
√

1− ζ2 + 4arctan
ζ√

1− ζ2
− π = 0. (15)

which has a unique solution ζm ∼= 0.4 at the interval (0, 1). This result shows that for this
value of the relative damping coefficient, the force transmitted due to the shock, for any
imposed value of the maximum displacement isolation system, is minimal.

Introducing this value into (13) and (14), yields

ωm ∼= 0.6
V0

xm
(16a)
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..
xm ∼= 0.52

V2
0

xm
. (16b)

The relationship between the optimal value of maximum acceleration
..
xm(ζm) obtained

for an imposed maximum displacement xm and initial velocity V0 is
..
xm(ζm)xm ≥

V2
0

2 . As
one can see, this relation, which is used to specify the performance of the shock isolator, is
fulfilled for any values of xm and V0 in the case of Dirac impulse excitation [2].

From the equation
...
x (t, ζm,ωm) = 0, the second peak value of acceleration is given by

..
xLIN

m2 = V0ωm exp

−
ζmarccos

(
2ζ2

m − 1
)

√
1− ζ2

m

+

ζmarctan
(√

1−ζ2
m

ζm

)
√

1− ζ2
m


 ∼= 0.13

V2
0

xm
. (17)

Using (16) and (17), the ratio of the maximum values of the second peak
..
xm2 and first

peak
..
xm1 =

..
xm(ζm) of the acceleration for optimum linear systems is

..
xLIN

m2 /
..
xm1 ' 0.25.

4. Response of PWL System to Shock Input

In this paper, the design principle of a device with PWL asymmetric damping and
linear stiffness characteristics, shown in Figure 3, is a modified version of that presented
in [19], adapted for a vertical shock input.
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The equation of motion for vibration isolation systems, shown in Figure 3, is given by

m
..
x + Fd

( .
x
)
+ kx = −mV0δ(t), V0 > 0. (18)

where x is the absolute displacement of the sprung mass, relative to its static equilibrium
position, and F0(t) = −mV0δ(t) is the shock applied to the sprung mass modeled by the
Dirac delta function. The absolute acceleration is a measure of the mitigation of dynamic
forces transmitted through the sprung mass suspension.

The asymmetrical damping characteristic is given by Fd
( .
x
)
=

{
c1

.
x,

.
x ≤ 0

c2
.
x,

.
x > 0

, where

c1, c2 > 0 are the damping coefficients for bound and rebound strokes, respectively, and x
is the travel of the vibration isolation system.
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Figures 4 and 5 show the plots of the asymmetrical damping characteristic versus
velocity and displacement, respectively.
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The analytic expressions of asymmetric damping characteristic Fd
( .
x
)
, shown in

Figure 4, can be written as

Fd
( .
x
)
= 0.5

[
c1
(
1− sgn

.
x
)
+ c2

(
1 + sgn

.
x
)] .

x. (19)

Introducing the notations



Symmetry 2023, 15, 1921 7 of 13

c2 = βc1, ω0 =
√

k
m ,

ζ1 = c1
2ω0m , ζ2 = c2

2ω0m , β = ζ2
ζ1

fd
( .
x
)
=

Fd(
.
x)

m

. (20)

Equation (18) becomes
..
x + fd

( .
x
)
+ω2

0x = 0
x(0) = 0,

.
x(0) = V0, V0 > 0

. (21)

where

fd
( .

x
)
=

{
2βζ1ω0

.
x,

.
x ≥ 0

2ζ1ω0
.
x,

.
x < 0

. (22)

Relation (22) can be written as

fd
( .
x
)
= ζ1ω0

[
(β+ 1)

.
x + (β− 1)

∣∣ .
x
∣∣]. (23)

and (21) becomes { ..
x + 2ζ2ω0

.
x +ω2

0x = 0,
.
x ≥ 0

..
x + 2ζ1ω0

.
x +ω2

0x = 0,
.
x < 0

. (24)

The solution of (24) is given by

x(t) =

{ V0
A2

e−ζ2ω0t sin(A2t), x ∈ [0, ε1]
V0
Ai

e−ζiω0t
[
C(k)

1 cos(Ait) + C(k)
2 sin(Ait)

]
, x ∈ [εk, εk+1]

(25)

where

i =
{

1, k is odd
2, k is even

, ε1 =
1

A2
arctan


√

1− ζ2
2

ζ2

, ε2 = ε1 +
π

ω

√
1− ζ2

1

(26)

and

Ai = ω0

√
1− ζ2

i , i = 1, 2, ε2k+1 = ε1 +
2kπ
A2

, k ∈ N, ε2k = ε2 +
2kπ
A1

, C(k)
1 , C(k)

2 ∈ R, k ∈ N∗ (27)

For the interval [ε1, ε2], one can derive

x(ε1) =
V0

ω
√

1−ζ2
2
e−ζ2ωε1 sin

(
ωε1

√
1− ζ2

2

)
x(ε2) =

V0
A1

e
−( πζ1√

1−ζ2
1
+ε1ωζ2){

cos(ε1 A1)
[
sin(ε1 A1) + sin

(
(π+ε1 A2)A1

A2

)]
ζ1+

+
[
− cos(ε1 A1)

2 + sin(ε1 A1) sin
(
(π+ε1 A2)A1

A2

)]√
1− ζ2

1

}
C(1)

1 = eωε1(ζ1−ζ2)
sin
(
ωε1
√

1−ζ2
2

)[
cos
(
ωε1
√

1−ζ2
1

)√
1−ζ2

1−sin
(
ωε1
√

1−ζ2
1

)
ζ1

]
√

1−ζ2
2

C(2)
1 = eωε1(ζ1−ζ2)

sin
(
ωε1
√

1−ζ2
2

)[
cos
(
ωε1
√

1−ζ2
1

)
ζ1+sin

(
ωε1
√

1−ζ2
1

)√
1−ζ2

1

]
√

1−ζ2
2

.

(28)

From the equation
...
x (t) = 0, the second peak value of acceleration at the interval

[ε1, ε2] is obtained as follows:

..
xPWL

m2 = V0ω0 exp

−
ζ1arccos

(
2ζ2

1 − 1
)

√
1− ζ2

1

+

ζ2arctan
(√

1−ζ2
2

ζ2

)
√

1− ζ2
2


. (29)

The time histories of the analytic and numerical simulated displacements for ζ1 = 0.25,
ζ2 = 0.1, and f = 1 Hz are presented in Figure 6.
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5. Optimization of PWL System for Shock Input

The steps of the optimization procedure are as follows:

- For an imposed maximum feasible displacement xm, the value ofωm is determined
from (16a);

- The optimum value of ζ that minimized the maximum value of absolute acceleration
is ζ2 = ζm = 0.4 (for any imposed value of displacement);

- A value of ζ1 is chosen in the interval range (0.4, 1), depending on the practical
possibilities, to build shock absorbers that ensure the desired reduction in the second
peak of displacement.

The beneficial effect of the asymmetry consists in the possibility of reducing the
second peak of the acceleration (29) relative to the optimal linear (17), according to the
graph presented in Figure 7.
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Using this approach, the chosen solution does not lead to an increase in the maximum
transmitted force, which is not possible in the linear case. Also, the output of the PWL
system has fewer and smaller after-shock oscillations (better self-centering capacity) than
the optimal linear system.

From relations (17) and (29), the ratio of the second peaks of acceleration for the PWL
and optimum linear systems versus ζ1, shown in Figure 7, is

ra(ζ1) =

..
xPWL

m2 (ζ1)
..
xLIN

m2 (ζm)
. (30)

6. Application to Shock Isolation of Forging Hammers

In forging hammer operation, the foundations are subjected to impact loads with high
intensity and short duration (shocks). In the design of these foundations, the following
contradictory requirements must be taken into account:

• Maintaining the free vibration amplitudes of the equipment within the admissible
limits for their stability and efficient operation. Usually, the maximum displacement
xm should be less than 0.006 m.

• Reducing as much as possible the transmissibility of the dynamic loads produced by
the operation of the forging hammer to the foundation structure.

• Ensuring the proper frequency of the free oscillations produced by the impact of the
hammer, which is approx. 2 times higher than that corresponding to the maximum
number of strokes per minute that the machine can produce (approx. 200 strokes/min,
i.e., approx. 3.3 Hz).

In general, to achieve these goals, devices with elastic and dissipative properties are
used for the base isolation of a forging hammer [16,20]. In this paper, we considered the
case study of a forging hammer (Figure 8) with the following characteristics:

- Hammer weight: 1250 kg;
- Assembly weight: 36,000 kg;
- Maximum shock energy: 36 kJ.
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The shock isolation system consists of linear springs and viscous damping modules.
In Figure 9, schematics of the shock isolation device (left) and the design principle (right)
are presented.
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Figure 9. Schematics of (a) linear springs and (b) viscous damping module.

The metallic bellows, filled with hydraulic fluid, are welded at both ends and, therefore,
the fluid damper is leak-proof. The asymmetry of the damping force shown in Figure 5 is
controlled by the openings of compression and extension valves (c1 > c2). The dimensions
of the valve openings and fluid viscosity must be assessed so as to have laminar flow within
the range of damper operating conditions. Since the bellows geometry is identical, there is
no need for any volume compensation system.

Figure 10 shows a sequence of hammer strikes recorded on the anvil block under
operating conditions. Since the recorded shock accelerations are significantly affected by
the structural noise, in order to compare the efficiency of the proposed PWL system, a
linear system is identified based on the shock response. The parameters of the linear SDOF
model (2), identified from experimental data, are f = 7.3 Hz, ζ= 0.12, V0 = 0.43 m/s. The
output of this system is plotted in Figure 11.
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The amplitude spectra of the measured and calculated acceleration responses deter-
mined by applying FFT for the after-shock records corresponding to one strike are shown
in Figure 12.
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The calculated acceleration and displacement for the identified linear, linear opti-
mum, and PWL systems are shown in Figures 13 and 14. As one can see, the after-shock
oscillations are significantly reduced in the case of the PWL system.
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7. Conclusions

The output of an SDOF piecewise linear system with asymmetric damping and linear
stiffness, excited via Dirac impulse excitation, is analytically determined. Using the analyti-
cal results, an optimization procedure of a PWL system for shock input is proposed for the
damping optimization of a shock isolation system.

By using PWL shock isolation systems, optimized according to the proposed proce-
dure described in this paper, one can obtain better fulfillment of the following requirements:
minimum absolute acceleration, maximum imposed displacement, and a substantial reduc-
tion in after-shock vibrations. This improvement leads to the possibility of shortening the
action time of the forging hammer between two blows.
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