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Abstract

:

Symmetry in a differential evolution (DE) transforms a solution without impacting the family of solutions. For symmetrical problems in differential equations, DE is a strong evolutionary algorithm that provides a powerful solution to resolve global optimization problems. DE/best/1 and DE/rand/1 are the two most commonly used mutation strategies in DE. The former provides better exploitation while the latter ensures better exploration. DE/Neighbor/1 is an improved form of DE/rand/1 to maintain a balance between exploration and exploitation which was used with a random neighbor-based differential evolution (RNDE) algorithm. However, this mutation strategy slows down convergence. It should achieve a global minimum by using 1000 × D, where D is the dimension, but due to exploration and exploitation balancing trade-offs, it can not achieve a global minimum within the range of 1000 × D in some of the objective functions. To overcome this issue, a new and enhanced mutation strategy and algorithm have been introduced in this paper, called DE/Neighbor/2, as well as an improved random neighbor-based differential evolution algorithm. The new DE/Neighbor/2 mutation strategy also uses neighbor information such as DE/Neighbor/1; however, in addition, we add weighted differences after various tests. The DE/Neighbor/2 and IRNDE algorithm has also been tested on the same 27 commonly used benchmark functions on which the DE/Neighbor/1 mutation strategy and RNDE were tested. Experimental results demonstrate that the DE/Neighbor/2 mutation strategy and IRNDE algorithm show overall better and faster convergence than the DE/Neighbor/1 mutation strategy and RNDE algorithm. The parametric significance test shows that there is a significance difference in the performance of RNDE and IRNDE algorithms at the 0.05 level of significance.
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1. Introduction


Today, the modern world has entered a post peta scale era; the requirements are growing exponentially for computation and data processing, and the need for high-performance computation is increasing day by day; thus, the trend has changed from serial execution to high-performance computation. For achieving high-performance computation, several hurdles need to be tackled. Examples are those problems where the solution is very hard to find, or the solution merely exists or is very hard to achieve, e.g., NP-complete problems. To achieve the solution to those problems, we have very well-known heuristic techniques which provide the solution to these types of problems, but those solutions are not completely optimized. However, using optimization algorithms, such as the differential evolution (DE) and particle swarm optimization (PSO), optimized solutions to such problems can still be found.



Moreover, we will observe and discuss its variants, as it is already known that the original DE was first proposed by Storn and Price [1] in 1995; this drew the attention of many researchers as it was the simplest algorithm that provided the optimized solutions to many real-world problems. Thus, based on the original DE algorithm, different variants were introduced later. Some of the well-known approaches were the hybridization with other techniques, modification of mutation strategies, adaptation of mutation strategy and parameter settings, and use of neighbor information.



1.1. Problem Statement


The local optima issue is a challenging issue if the population loses its diversity in the differential evolution algorithm. The selection of parents is important to incorporate diversity in mutation and crossover operations’ DE algorithm. The perturbation of a vector that evolves the population around the neighborhood will be stuck in local optima because of the imbalance between the exploration and exploitation capability of the algorithm. The RNDE algorithm utilizes only one difference vector and a neighbor best vector from a set of N neighbors, where N is taken from the interval of   N  L L    and   N  U L   . Less diversity and slow convergence degrade the convergence speed of the RNDE Algorithm 1 [2].






	Algorithm 1: Improved Random Neighbor-Based Differential Evolution



	
	1:

	
Randomly initialize population




	2:

	
Evaluate the objective function




	3:

	
FEs = NP




	4:

	
while    F E s < M a x ( F E s )    do




	5:

	
 Calculate the number of neighbor’s Ni for each individual



    N i  =  N  l b   +  (  N  u b   −  N  l b   )  .   f  (  X i  )  −  f  m i n   + ψ    ∑  j = 1   N P    ( f   (  X j  −  f  m i n   )  + ψ    




	6:

	
  for    i = 1 : N P    do




	7:

	
  Randomly choose Ni neighbors for ith individual and the best one Xnbest




	8:

	
  Generate IRNDE mutant vector   



    V i   according to    V i  =  X  n b e s t   + F  (  X  r 1   −  X  r 2   )  + F  (  X  r 3   −  X  r 4   )   




	9:

	
  Execute the crossover operation to generate a trial vector   U i  




	10:

	
  Evaluate the trial vector   U i  




	11:

	
  FEs = FEs + 1




	12:

	
   if    X i > f (  U i  )    then




	13:

	
       X i  >  U i   




	14:

	
  else




	15:

	
   Update CR by using adaptive shift




	16:

	
   if    f (  U i  ) > f (  X i  )    then




	17:

	
    Flag = − Flag




	18:

	
   end if




	19:

	
   if Flag==1  then




	20:

	
       C R =   C R   large   + 0.1 ∗ randn  




	21:

	
   else




	22:

	
       C R =   C R   small   + 0.1 ∗ randn  




	23:

	
   end if




	24:

	
  end if




	25:

	
 end for




	26:

	
end while















1.2. Research Significance


The selection of the number of parents used in the perturbation of any individual is considered important in the evolution of the DE algorithm. The RNDE algorithm utilizes a difference vector that reduces the diversity in the population and, as a result, the algorithm converges slowly. The perturbation of one neighborhood’s best vector results in more exploitation than exploration and ultimately results in being stuck in local optima that can be fixed by increasing the exploration capability of the DE algorithm.




1.3. Research Contributions


	
This paper presents a novel mutation strategy in the RNDE algorithm to maintain the balance between the exploration and exploitation of the DE algorithm. The proposed IRNDE is helpful in increasing the convergence speed and average fitness solution quality of results.



	
Experimental results show that the performance of the improved RNDE algorithm is superior, as compared to the RNDE algorithm for the standard test suit of benchmark functions.



	
Convergence graphs confirm the quick convergence of the proposed IRNDE algorithm and statistical results show the significance of the IRNDE algorithm.







1.4. Research Question and Hypothesis


	
Ways to increase population diversity and incorporate a balance between exploration and exploration during the evolution process of the RNDE algorithm.



	
Finding significance in the performance of the RNDE algorithm and proposed algorithm.






In the rest of the paper, Section 2 shows how the DE algorithm works; a brief literature review is presented in Section 3; material and methods are given in Section 4; results and discussion are presented in Section 5; statistical analysis is given in Section 5.4; conclusion and future are given in the last section.





2. Principle of the Classical Differential Evolution Algorithm


As mentioned earlier, the purpose of the DE algorithm is to provide optimized solutions [3]. The algorithm keeps searching for the best individual among the given population [4]. It is also considered that DE can solve the problem for immediate goals using a given population and a set of parameters [5]. It is a population-based algorithm, such as genetic algorithms, and uses crossover and mutation as operators; the last step is the selection step. Moreover, it is self-adaptive, where all solutions have the same chance of being selected, no matter what their fitness values are [6]. It follows the greedy approach, especially in the selection phase. DE uses NP (number of population) D-dimensional parameter vectors, and it is a parallel direct search method. Once we obtain the result or new offspring from the DE algorithm, we compare the new offspring/generation with their parents and we evaluate both the parents and the new generation based on their fitness value. We obtain a new individual by applying mutation, crossover, and selection operators. Those who are better at fitness are kept, no matter whether it is a new generation or their parents. In the selection operation, the greedy selection is applied to select the individual among the target vector and trial vector [7]. DE uses NP, a Population Size, and D-dimensional parameter vectors, and it is a parallel direct search method. The individual is represented by    X  i , j   , i = 1 , 2 , … , N P , j = 1 , 2 , … , D   and the population size for the population of each generation G. The classical DE works in three phases: mutation, crossover, and selection.



2.1. Mutation Phase


The mutation phase is used to generate a mutant vector or donor vector that is then used in a crossover operation. To calculate each target vector    X  i , j   , i = 1 , 2 ,  …  , N P  , the donor or the mutant vector is generated according to


   V  i , G + 1   =  X  r 1 , G   + F .   X  r 2 , G   −  X  r 3 , G     



(1)







This equation during the   G  t h    generation generates a donor vector,   V  i , G + 1   .   r 1  ,   r 2  ,   r 3   ϵ   1 , 2 , … , N P  , with a mutually different integer and   F > 0  . The random integers   r 1  ,   r 2  , and   r 3   are taken from the running index i; thus, the NP should be greater or equal to four to meet the condition. F is the real time constant factor, in which  ϵ   [ 0 , 2 ]  , and is responsible for amplification of differential variations of   ( X  r 2  , G − X  r 3  , G )  . It shows the two-dimensional illustration which is responsible for the generation of   V  i , G + 1   .




2.2. Crossover Phase


The crossover is introduced to increase the diversity of the disconcerted parameter vectors [8]. The trial vector is


   V i   ,  G + 1   =   X  r 1 , G   + F  .    X  r 2 , G   −  X  r 3 , G     



(2)






   U  i ,   G + 1   =    u  1 i ,   G + 1   ,    u  2 i ,   G + 1   ,     .   .   .   ,   u   D i ,   G + 1      



(3)




where   j = 1 , 2 , … , D  .



In the crossover phase,   r a n d b ( j )   is the   j t h   calculation of an unvarying random number generator with outcome  ϵ   [ 0 , 1 ]  . CR is the crossover constant  ϵ   [ 0 , 1 ]  , and this is set by the user. The   r n b r ( i )   is the randomly chosen index  ϵ   1 , 2 , … , D   which should make sure that   u  i , G + 1    always obtains at least one parameter from   v  i , G + 1   .




2.3. Selection Phase


The selection phase is responsible for deciding whether an individual should become a member of G + 1 or not. Hence, trial vector   u  i , G + 1    is always compared with target vector   v  i , G + 1    by using the greedy approach and if   u  i , G + 1    to achieve minimum fitness value   x  i , G   , then   x  i , G + 1    is set to   u  i , G + 1   ; otherwise, the old value   x  i , G    is taken [1].




2.4. Commonly Used Mutation Strategies


As the focus of the current study is DE neighbor information, for classical DE and in other variants of DE, the most commonly used group of mutation strategies [9] are given below


   V i  =   X  r 1   + F  .     X  r 2   −  X  r 3     



(4)






   V i  =   X best  + F  .     X  r 1   −  X  r 2     



(5)






   V i  =   X i  + F  .    ( X  best  −   X i   ) +  F  .      X  r 1   −  X  r 2     



(6)






   V i  =   X  r 1   + F  .    X  r 2   −  X  r 3    +  F  .    X  r 4   −  X  r 5     



(7)






   V i  =   X best  + F  .     X  r 1   −  X  r 2    +  F  .     X  r 3   −  X  r 4     



(8)







The above-mentioned mutation strategies are used, not only in neighbor information types of DE algorithms, but also by different researchers of different variants of DE. Moreover, these strategies are also used in the classical version of DE.




2.5. Major Contributions of Study


A number of studies by various researchers are available in the literature to handle the local optima issue, balance between exploration and exploitation, improve the convergence speed and improve the solution quality of the DE algorithm. A few of the variants introduced by researchers include tournament selection-based DE [10], rank-based DE [11], fuzzy-based DE [12], self-adaptive DE [13], adaptive DE [14], and Pool-based DE [15] to maintain the balance between exploration and exploitation as well as to improve the convergence performance of the DE algorithm in their research work.



There are two commonly used mutation strategies for DE. The first is DE/best/1, which provides better exploitation, as it obtains the best population but results in poor exploration. On the other hand, in the second strategy of DE/rand/1, in which exploration is better as it obtains the base vector randomly, exploitation is not good, as there is no balance between exploration and exploitation. So far, to overcome this issue, the DE/Neighbor/1 mutation strategy and random neighbor-based differential evolution (RNDE) algorithm were introduced in [2] and tested on 27 extensively used benchmark functions a few years earlier. The authors stated that the DE/Neighbor/1 and RNDE algorithm is successful in maintaining the balance between exploration and exploitation. It is built to use the lower and upper bound limits to control the balance between exploration and exploitation. However, this mutation strategy shows a slow convergence. It should achieve a global minimum as the function falls within 1000 × D, but due to exploration and exploitation balancing trade-offs, it is unable to obtain a global minimum within the range of 1000 × D in some of the objective functions.



This study introduces a new approach, based on the RNDE variant, namely, the improved random neighbor-based differential evolution (IRNDE). The proposed algorithm uses neighbor information similar to RNDE; however, in addition, we added a new concept: weighted differences after various tests. The proposed IRNDE is tested on the same 27 commonly used benchmark functions on which RNDE was tested. Experiments are performed to compare its performance with RNDE. Results demonstrate faster convergence of IRNDE and its superior performance compared to RNDE.



The rest of this article is organized as follows. The related work is given in Section 3, which is followed by a description of the proposed IRNDE algorithm in Section 4. Section 5 presents the results, while the conclusion is given in Section 6.





3. Related Work


Many researchers proposed models/techniques to improve the DE algorithm to provide better and more optimized results [16,17]. Few researchers provided techniques or other algorithms that work with the DE algorithm to provide hybrid techniques obtaining more optimized and satisfactory results. DE algorithm has attracted many scholars around the globe; according to their work, the DE algorithm can be categorized in the following sections.



3.1. Hybridization with Other Techniques


The study [18] proposed a hybrid algorithm CADE which combines a customized canonical version of CA and DE. The canonical CA uses the ’Accept()’ function which selects the best individual from the population; then, it is updated in the belief space knowledge source by using the ’Update()’ function. The ’Influence()’ function selects the knowledge source that affects the evolution of the next generation of the population. The authors state that in CA, the major source of exploration is topographic knowledge, which is the knowledge about the functional landscape. Moreover, DE can also provide a complementary source of exploration knowledge hence it makes the perfect complement of CA. Both algorithms share the same population space and hence follow high-level teamwork. The study [19] proposed a mechanism, called ADE-ALC, which is abbreviated to the adaptive DE algorithm with an aging leader and challenges, which is helpful to solve optimization problems. It is introduced in the framework of DE, which helps in maintaining the diversity of the population. Moreover, in the DE algorithm, it is critical to retain the diversity of the evolutionary population in solving multimodal optimization problems. ADE-ALC achieves the optimal solution with fast-converging speed. In the ADE-ADC approach, the key parameters are updated that depend on the given probability distribution that could learn from their successful experience in the next generation. In the end, the effectiveness of the ADE-ALC algorithm is checked by numerical results of twenty-five benchmark test functions, where they found that ADE-ALC shows better or at least competitive optimization performance in terms of statistical performance. The authors proposed a hybrid technique in [20] to provide a statistically better performance in the optimization problems. The authors used a combination of the DE algorithm and the stochastic fractal search algorithm. As the hybrid approach is used, the combination of both algorithms has the strength of both competent algorithms and produces better results than the single algorithm. Moreover, to test the performance of the hybrid approach, they used the IEEE 30 benchmark suite, IEEE CEC2014. The results show a better performance of the hybrid approach compared to a single algorithm, and results show the statistical superiority of the hybrid approach.




3.2. Modification of Mutation Strategies


The study [21] proposed an approach to improve the search efficiency of the DE algorithm. The performance of DE is badly affected by parameter settings and evolutionary operators, e.g., the mutation, crossover, and selection process. To overcome this issue, the authors proposed a new technique, called a combined mutation strategy. A guiding individual-based parameter setting method and a diversity-based selection strategy are used. The proposed algorithm uses the concept of sub-population and divides the population into two subcategories, superior and inferior. Experiments are performed using CEC 2005 and CEC 2014 benchmarks. Moreover, their algorithm is different from greedy selection strategies; hence, they proved their algorithm produced more efficient results than previous proposed techniques. The study [22] points out that DE uses only the best solution to deal with global optimization problems. Similarly, mutation strategies in the existing literature utilize only one best solution. The authors challenged this concept and introduced the concept of m best candidates. The authors proposed that m best candidates should be selected to obtain the better gain or better achievement. A technique called the collective information-powered DE (CIPDE) algorithm is proposed to obtain the m best candidates and enhance the power of DE. The CEC2013 benchmark functions are used for experiments that prove that the CIPDE technique is much better than existing mutation strategies. The study [23] proposed a new technique in which they improved the structure of the DE algorithm. The authors argue that the performance of DE is based on control parameters and the mutation strategy; if we enhance both the selection of proper mutation strategy and control parameter, we can obtain better results. An automated system is proposed to produce an evolution matrix that later takes the place of the control parameter crossover rate, Cr. Furthermore, parameter F is renewed in the evolution process. The mutation strategy along with the time stamp system is also progressive in this study. The experiment results showed that the proposed technique is very competitive with the existing strategies.




3.3. Adaptation of Mutation Strategy and Parameter Settings


The study [24] proposed a new algorithm that can investigate problem landscape information and the performance histories of operators for dynamically selecting the most suitable DE operator during the evolution process. The need for this mutation strategy is justified by the fact that predominantly existing works use a single mutation strategy. The authors present the concept of using multiple mutation strategies. Multiple mutation strategy-based algorithms are reported to provide far better results than single mutation-based algorithms. In such algorithms, the emphasis is to obtain the better performing evolutionary operator, which will be totally based on performance history for creating new offspring. This procedure is carried out dynamically; it selects the most suitable evolutionary operator. Experimental results using 45 optimization problems show the efficacy of the proposed algorithm. The study [21] proposed a new and improved version of the DE algorithm. Firstly, the search strategy of the previous DE is improved by using the information of individuals to set the parameter of DE and update the population, and the combined mutation strategy is produced by combining two single mutation strategies. Secondly, the fitness value of the original and guiding individual is used. Finally, a diversity-based selection strategy is developed by applying a greedy selection strategy. The performance is evaluated using CEC 2005 and CEC 2014 benchmarks, and better results are reported. The study [25] investigates the high-level ensemble in the mutation strategies of DE algorithms. For this purpose, a multi-population-based framework (MFT) was introduced. An ensemble of differential evolution variants (EDEV) based on three high, popular, and efficient DE versions is utilized. JADE-adaptive DE with optional external archive, CoDE DE with composite trial vector generation strategies and control parameters, and EPSDE DE algorithm with an ensemble of parameters and mutation strategies are joined. Furthermore, the whole population of EDEV is divided into four subcategories. In the end, the EDEV-based test is run on the CEC 2005 and CEC 2014, which shows better performance of EDEV.




3.4. Use of Neighbor Information


The study [26] proposed an adaptive social learning (ASL) strategy for the DE algorithm so that neighborhood relationship information of individuals in the current population can be extracted; this is called the social learning of DE (SL-DE). In the classical DE algorithm, parents in mutation are randomly selected from the population. However, in the ASL strategy, the selection of parents is intelligently guided. In ASL, every individual can only interact with their neighbor and parents. To check the efficacy of SL-DE, it is applied to the advanced DE algorithm. Results demonstrate that SL-DE can achieve a better performance than most of the existing variants of DE. The study [27] proposed the technique in which the authors applied the global numerical optimization and the index-based neighborhood on DE. In this technique, the authors used information and population to enhance the performance of DE. In the existing literature, neighborhood information of the current population has not been systematically exploited in DE design. The authors proposed neighborhood-adaptive DE (NaDE). The NaDE technique is based on the pool of index-based neighborhood topologies. Firstly, several neighborhood interactions for every discrete individual are recorded and later used adaptively for specific function selection. Secondly, the authors introduced a neighborhood-directional mutation operator in NaDE to obtain the new resolution in the designated neighborhood topology. Finally, NaDE is easy to operate and implement and can be matched with earlier DE versions on different kinds of optimization problems. The authors proposed a new approach called enhancing De with a random neighbors-based strategy in [2]. Traditionally, DE/rand/1 and DE/best/1 mutation strategies are used with DE. In DE/rand/1, the base vector is chosen from the population randomly for better exploration. On the other hand, the DE/best/1 strategy has better exploitation and poor exploration. To overcome this issue, the authors proposed DE/Neighbor/1. In the proposed technique, for each individual population at every generation, the neighbors are chosen from the population in a random manner and the base factor of the DE/Neighbor/1 mutation strategy should be the best one among neighbors. Xiong et al. [28] introduced a speciation-based DE algorithm in their research work. The presented algorithm utilizes the mechanism of the adaptive neighborhood by considering multimodal benchmark functions. They used the concept of achievement to store inferior individuals in each iteration and remove similar-performing individuals using the mechanism of crowding relief. In their presented approach, the use can fine-tune the parameters adaptively. Liao et al. [29] considered the system of non-linear equations using the DE algorithm in their research work. They utilized neighborhood-based information to increase the exploitation capability of the DE algorithm. The size of the neighborhood is dynamically selected with the adjustment of parameter adaption in the state of evolution. The search efficiency of the DE algorithm was enhanced by achieving significant results. The research work [30] presented binary differential evolution based on a self-adaptive neighborhood method for change detection in super-pixels. The change detection process is carried out by using a binary DE mutation strategy to reduce the dimension of super-pixels. Lio et al. [31] introduced a variable neighborhood-based DE algorithm by utilizing a history archive in their research work. During the evolution process, the neighborhood size is dynamically controlled in their presented approach. The information exchange process is performed between the current population and the population stored in the achieved research. The information exchange is helpful to escape from local optima during the evolutionary process. Liu et al. [32] considered the economic dispatch problem by incorporating a direction-inducted strategy in neighborhood-based DE algorithm in their research work. They have used a new mutation strategy named a neighborhood-based non-elite direction strategy that enhances the exploitation capability of the presented algorithm. Sheng el al. [33] introduced the concept of an adaptive neighborhood-based mutation in the DE algorithm. The presented technique is helpful to focus on an intensive search followed by an initial search by the DE algorithm. They also used a Gaussian local search to evolve promising individuals during the search process. Wang et al. [34] introduced an adaptive memetic-based neighborhood crossover strategy in their research work. They used the concept of a multi-nitching sampling for the evolution of the sub-population to ensure intensive search. They also presented the design of adaptive elimination-based local search in their research work. Their neighborhood crossover strategy focuses on an exploitation capability in the DE algorithm to encourage a good quality solution. Cai et al. [35] presented a self-organizing DE algorithm in their research work that is helpful in guiding the search process by utilizing neighborhood information. The adaptive adjustment of various individuals in the explored works use a cosine similarity in the self-organizing map. Segredo et al. [36] proposed a neighborhood based on proximity in the DE algorithm that is helpful to balance between exploration and exploitation during the evolution process. They used Euclidean-based distance to measure the similarity between neighbors of individuals and termed it a similarity-based neighborhood search. Baioletti et al. [37] presented algebraic differential evolution based on a variable neighborhood concept in their research work. Their presented algorithm utilizes the information of three neighborhoods for shifting and swapping purposes to form permutations. Tian and Gao [38] introduced the adaptive evolution method by using the neighborhood mechanism in the DE algorithm. They used a selection probability based on the selection of individuals, as well as two mutation operators based on the neighborhood to improve the evolution process. They also used a simple reduction method to adjust the population size to incorporate diversity in the DE algorithm. Tarkhaneh and Moser [39] performed a cluster analysis by incorporating a neighborhood search and Archimedean spiral in the DE algorithm in their research work. Mantegna Levy’s flight mechanism was used in the Archimedean spiral by generating robust solutions to balance between exploration and exploitation during the searching process. In this section, we analyzed the DE variants in terms of mutation strategies, use of neighbor information, hybridization of the DE algorithm, etc. Experimental results and performance reports from these works indicate that the performance of DE can be enhanced in several ways. Some of the studies used hybrid approaches to achieve the enhancement while others used a combination of something likr test functions, etc. We can say that, to some extent, researchers were able to obtain a better performance from enhanced versions rather than from the simple version of the DE algorithm. However, to achieve a better performance of DE, they had to make a trade-off. We realize that there are many research challenges for DE to further improve its performance. This research aims to enhance the concept of random neighbors; the focus is to obtain a faster convergence compared to the existing random neighbors approach.





4. Materials and Methods


4.1. DE with Random Neighbor-Based Mutation Strategy


For this research, we selected the random neighbor-based differential evolution (RNDE) approach by [2]. It was proposed to achieve a balance between a better exploration and exploitation, which cannot be achieved using traditional DE/rand/1 and DE/best/1 mutation strategies. The mutation phase is RNDE, given as


   V i  =   X nbest  + F  .     X  r 1   −  X  r 2      



(9)







The number of neighbors N plays a critical role in leading the balance between exploration and exploitation by using the upper and lower bound limits. A small value of N makes the mutation strategy similar to the DE/rand/1 strategy, which results in better exploration and poor exploitation. Contrarily, the large value of N (near to NP) makes the mutation strategy similar to DE/best/1, which provides a better exploitation. The large value of N is not a wise choice because it can make the algorithm become stuck in the local optimum. The authors also proposed a self-adaptive strategy that dynamically updates N and the number of neighbors for each individual   X i  , as follows


   N i  =  N  l b   +  (  N  u b   −  N  l b   )  .   f   X i   −  f min  + ψ    ∑  j = 1   N P    f   X j   −  f min   + ψ    



(10)




where   N  l b    and   N  u b    show lower bounds and upper bounds, respectively,   f  m i n    is the smallest best value of the objective function in the population in the current generation and  ψ  is used as the smallest constant to avoid a zero division-error.



The RNDE is successful in maintaining the balance between exploration and exploitation, as it was built to use the lower and upper bound limits to control the balance between exploration and exploitation. However, as the whole focus of the RNDE algorithm is to maintain the balance between exploration and exploitation, this mutation strategy makes convergence very slow, thus requiring a larger number of iterations in achieving the global optimum.




4.2. Proposed Approach


To overcome the slower convergence problem of RNDE, this study proposes an improved random neighbor-based mutation strategy for DE (IRNDE). The flow chart of the proposed IRNDE is given in Figure 1. IRNDE also uses neighbor information, such as the RNDE algorithm and DE/Neighbor/1 mutation strategy; however, in addition, we added another term of weighted differences in the DE/neighbor/2 mutation strategy after various tests. As we added an extra-weighted vector in the mutation phase, the upper and lower bound limits of N, which is denoted by neighbors, are also increased. The proposed IRNDE mutation equation is given as


   V i  =   X nbest  + F  .     X  r 1   −  X  r 2    + F  .     X  r 3   −  X  r 4      



(11)







The original/base RNDE algorithm and DE/Neighbor/1 mutation strategy have one weighted difference vector


   V i  =  X nbest  + F   X  r 1   −  X  r 2     



(12)







On the contrary, the proposed IRNDE algorithm and DE/neighbor/2 mutation strategy have two weighted difference vectors


   V i  =  X nbest  + F   X  r 1   −  X  r 2    + F   X  r 3   −  X  r 4     



(13)







In addition, the upper and lower neighbor bounds limits are also adjusted accordingly. In the base algorithm RNDE, the mutation strategy DE/Neighbor/1 lower bound   N  l b    was set to 3, and the   N  u b    upper bound was set to 10 after experimentation. For the proposed IRNDE, using the DE/neighbor/2 mutation strategy, we updated upper and lower bound limits accordingly, and set   N  l b    to 5 and   N  u b    to 12.



We used lower bound 5 because minimum vectors are 5 in our mutation equation. Moreover, the range of implication factor F in the base algorithm RNDE and the proposed algorithm IRNDE is between 0 to 2 and was varied according to the nature of the objective functions. The value of F is kept differently for each function until the best result is achieved. However, we have faced many difficulties during the implementation of IRNDE. In the RNDE algorithm, N denotes the neighbors and is very important in maintaining the balance between exploration and exploitation. If the individual from the population learns the best information from their neighbors, the efficiency of the overall algorithm will be enhanced and more fit offspring can be obtained.



Another major change from the original DE, which is used both by RNDE and the proposed IRNDE, is the dynamic updation of CR, if the trial vector is worse than the target/current vector. The idea behind the dynamic update of CR is that if the trial vector is worse than the target/current vector, i.e.,   f ( U i ) ≥ f ( X i )  , it means current CR cannot provide the best solution; it needs to be updated. Conversely, if a small value of CR is not suitable, then this method can shift the value to the larger one. This strategy, called the adaptive shift strategy, is based on   C  R l    and   C  R s    and uses a standard deviation of 0.1 and the random number denoted by   r a n d n  , which is a real number between 0 and 1. To fulfill this, RNDE uses two terms   C  R l    and   C  R s   , where   C  R l    means large and   C  R s    means the smaller value of CR. The value of   C  R l    is set to 0.85 and the value of   C  R s    is set to 0.1 after conducting many experiments. If the fitness of the trial vector is worse than the target vector, then CR is updated using the negation from   C  R l    to   C  R s    or   C  R s    to   C  R l    using the following equations


  C R = C  R l  + 0.1 × r a n d n  



(14)






  C R = C  R u  + 0.1 × r a n d n  



(15)







In IRNDE, the crossover phase is given as


   U  i j   =       V  i j   ,     if  r a n  d j   ( 0 , 1 )  ≤ C R  or  j =  j  r a n d         X  i j      o t h e r w i s e       



(16)







Equation (16) is responsible for performing the crossover operation, as it is used in the same classical DE crossover phase studies. Moreover, where   G = 1 , 2 , … , D  , and   i = 1 , 2 , … , N P    j  r a n d    randomly choose an integer from   1 , 2 , … , D  ,   r a n  d j    is a random value consistently distributed in [0, 1],   j = 1 , 2 , … , D  , and, normally, CR should be in between [0, 1], as it is a crossover probability.



However, in RNDE and IRNDE, CR is dynamically updated, because if the value of CR is large, then the CR-made trial vector learns more from the mutant vector and less from the target vector; this causes an increase in the population diversity and is contrary to a small value of CR, making the trial vector learn more from the target vector and less from the mutant vector. IRNDE selection phase is denoted as


   U  i j   =       V  i j   ,     if  r a n  d j   ( 0 , 1 )  ≤ C R  or  j =  j  r a n d         X  i j      o t h e r w i s e       



(17)







Equation (17) shows the selection phase of IRNDE, which is different from the classical DE. As in classical DE, greedy choice is used between the   U i   trial vector and   X i   target vector, and if   U i   is better, then   X i   is replaced with   U i  . Hence, it survives in the next generation; however, in RNDE and IRNDE, if the   U i   trial vector is not better than the   X i   target vector, then   X i   will be replaced with   X i   and will dynamically update the CR. This is where   N P   shows the number of individuals in the population,   F E s   is the number of function evaluations,   M a x ( F E s )   is the maximum number of functions evaluated,   V i   is the mutant vector around the individual   X i   (or called a target vector),  U i   is the trial vector,   f  m i n    is the minimum (best) value of the objective function in the population at the current generation, and   x i   is the smallest constant in the computer to avoid a zero-division-error.   F l a g   is used to inverse the value of   C R   and is initialized with 0,   C R   is the crossover probability,   C  R  l a r g e     is the large mean value which is generated by Gaussian distribution,   C  R  s m a l l     is a small mean value that is generated by the Gaussian distribution, and 0.1 is the standard deviation. After some experimentation and surveys,   C  R  l a r g e     is set to 0.85 and   C  R  s m a l l     is set to 0.1.





5. Results and Discussions


To evaluate the effectiveness of the proposed algorithm IRNDE and the new enhanced mutation strategy, namely DE/Neighbor/2, we utilized 27 commonly used benchmark functions in which the previous RNDE algorithm and DE/Neighbor/1 mutation strategy were tested. For fair testing with the base algorithm, we implement both RNDE and the proposed IRNDE using the DE/Neighbor/1 mutation strategy and DE/Neighbor/2 mutation strategy, respectively, on the same parameter settings.



5.1. Parameter Settings


As mentioned earlier, the original/base RNDE algorithm and DE/Neighbor/1 mutation strategy have one amplified difference vector, however, the proposed IRNDE algorithm and DE/neighbor/2 mutation strategy have two amplified difference vectors used to generate the mutant vector or donor vector. In addition, upper and lower bounds limits for the calculation of neighbors are also adjusted accordingly. In the base algorithm, the RNDE mutation strategy DE/Neighbor/1 lower bound   N  l b    was set to 3, and the   N  u b    upper bound was set to 10 after some research and experimentation. We have improved the mutation equation in our algorithm and added an extra weighted difference vector in the proposed IRNDE mutation strategy DE/neighbor/2. We have updated the upper and lower bound limits as well and set    N  l b   =   5 and    N  u b   =   12.



The lower bound is set to 5 because minimum vectors are 5 in our mutation equation. Moreover, the range of implication factor F in the base algorithm RNDE and the proposed algorithm IRNDE was between 0 and 2 and has been varied according to the nature of the objective functions. The value of F is kept different for each function until the best result is achieved. Finally, the selection phase is the same as used in the original DE algorithm except for the updating process of CR, which is already explained.




5.2. Benchmark Functions


For experimental evaluation, we have used a test suite with 27 benchmark functions, which are also used by the RNDE algorithm. The details of the test suit are provided in Table 1.




5.3. Results


The list given in Table 1 is the list of benchmark functions, their ranges, and their global minimum. These are the functions that we used to check the performance of both algorithms, RNDE and IRNDE. For experiments, 5000 iterations are used to evaluate the performance of both algorithms. Convergence graphs are shown only for f1 to f6; however, tabular data are presented for f1 to f15.



Figure 2 shows the graphical representation of the fitness results of f1 to f6, where iterations are 5000, population NP = 150, and dimension D = 50. Moreover, the overall enhancement of the proposed algorithm IRNDE can be clearly observed.



The performance of both algorithms, RNDE and IRNDE, is analyzed with respect to variations in the number of populations (NP) and dimensions that are denoted by D. Results of fitness values are reported in Table 2 for population size NP = 150, dimension size D = 50, and iterations = 5000. The results are divided into the pair of five benchmark functions: f1 to f5, f6 to f10, and f11 to f15. It can be clearly observed that the proposed algorithm IRNDE has performed far better than the base algorithm RNDE. There is a visible difference, as the proposed algorithm IRNDE is reducing more quickly than the base algorithm RNDE.



Results given in Table 3 are generated using population size NP = 150, dimension size D = 50, and iterations = 5000 for f6 to f10. It can be observed that the proposed algorithm IRNDE shows better performance compared to the base algorithm RNDE.



The results for f11 to f15 are given in Table 4, which is indicative of the superior performance of the proposed IRNDE for f11 to f15. Results demonstrate that the proposed IRNDE algorithm can obtain a global optimum with less numbers of iterations than the RNDE algorithm.



In Table 5, results are given for both RNDE and IRNDE regarding the best, mean, and worst values with standard deviation and number of iterations needed to reach the global optimum. Results are generated using the population size NP = 150, dimension size D = 10, and iterations = 5000. It can be observed that f14 RNDE at the 5000th iteration still could not reach the global optimum, as −450 is the rounded value and the original value is (−449.99983911013300), whereas IRNDE reached the global optimum in 3976 iterations. While observing the number of iterations for f1 to f27, it can be observed that IRNDE can achieve a global optimum with much less numbers of iterations compared to RNDE, which shows the superiority of the proposed IRNDE algorithm.



Results given in Table 5, Table 6 and Table 7 report the performance of both RNDE and IRNDE for dimensions D of 10, 30, and 50. The performance is analyzed with respect to the number of fitness evaluations (NFE). This test is based on 10 runs of fitness evaluation and will keep running until the terminating condition is satisfied, where the termination condition is set as 10,000 × D. The size of D varies from 10, and 30 to 50. For example, if the number of dimensions is D = 30 then the algorithm has to run for 10,000 × 30 = 300,000 iterations to achieve the global minimum. Moreover, if the algorithm reaches the global minimum in 300,000 iterations, then we record in how many iterations the global minimum is achieved; if the algorithm is not able to achieve the global minimum in 300,000 iterations, it will consider and mark that the global minimum is not achieved so the output will be the error, as shown for f9 and f25 in Table 6 and Table 7, where both RNDE and IRNDE are unable to obtain the global minimum. Similarly from the above-mentioned discussion, it is concluded that if there is a change in dimensions, then the iterations must change as there is a direct relation between dimensions and iterations.



Moreover, we performed the abovementioned tests on the same well-known 27 benchmark functions that were used by the RNDE algorithm for its evaluation. In addition, we also discussed the different scenarios, such as how many iterations are required for both algorithms to achieve the global minimum if the algorithms obtain the worst, median, or best population data and what the success rate of both algorithms is in achieving the global minimum during the calculation of NFE. Finally, Figure 3 and Figure 4 show a bar graph of the median values of both algorithms and demonstrate the performance of both algorithms. It is noteworthy to point out that the proposed IRNDE outperforms the RNDE algorithm.




5.4. Statistical Significance


The statistical significance performance of average fitness values of two algorithms are analyzed using the two-sampled pair t-test significant test. The null hypothesis states that there is no significance difference between the average fitness performance of the RNDE algorithm (  μ 1  ) and IRNDE algorithm (  μ 2  ). The s.t   μ 1 − μ 2 = 0   and alternate hypothesis state that there is a significance difference between the average fitness performance of the RNDE algorithm and IRNDE algorithm(  μ 2  ) s.t   μ 1 ≠ μ 2  . We used a 0.05 level of significance test to generate significant t-Test results, which are reported in Table 8 of this paper. The degree of freedom used in the research was 34 for 35 observations used to generate test statistics, the sample mean, variance, Pearson correlation, and p values for two-tailed critical t-test values. We generated significant values for fifteen functions; the results of the rest of the functions were similar. It can be observed from the table that all p-values except   f 4   and   f 14   are less than the level of significance (0.05). It can be summarized that overall there is a significant difference in the performance of the RNDE algorithm and IRNDE algorithm.





6. Conclusions


Differential evolution is a strong evolutionary algorithm that provides a powerful solution to resolve global optimization problems. However, the existing mutation strategies, DE/best/1 and De/rand/1, do not provide a balance between better exploitation and exploration. So far, to overcome this issue, the DE/Neighbor/1 mutation strategy and RNDE algorithm have been introduced. The DE/Neighbor/1 mutation strategy maintains a balance between exploration and exploitation, as it was built to use the lower and upper bound limits. However, this mutation strategy makes the whole procedure or convergence very slow, and requires a higher number of iterations for convergence. This study overcomes this limitation by introducing IRNDE with a DE/neighbor/2 mutation strategy. Contrary to the DE/Neighbor/1 mutation strategy in the RNDE algorithm, the proposed IRNDE adds weighted differences after various tests. The proposed IRNDE algorithm and DE/neighbor/2 mutation strategy are tested on the same 27 commonly used benchmark functions, on which the DE/Neighbor/1 mutation strategy and RNDE algorithm were tested. Experimental results demonstrate that the new mutation strategy DE/neighbor/2 and IRNDE algorithm is better and faster overall in convergence. Moreover, while performing successful tests on both state-of-the-art algorithms, we have gone through different situations during the implementation of benchmark functions concerning minimum, mean, and worst values. Although it has been proven that the proposed algorithm IRNDE is better and more successful overall, not only in maintaining the balance between exploration and exploitation but also in converging more quickly than the base RNDE algorithm, it may not provide optimal results in some scenarios. For results using 27 benchmark functions’ test suites, the proposed algorithm IRNDE performs better than the base algorithm RNDE except for the f9 Rastrigin function and f25 Schwefels Problem. The experimental results of the average fitness ensures the significant difference between the performance of RNDE and IRNDE algorithms using a two-tailed paired t-test at a 0.05 level of significance. The limitation of this study is that it is applied to constrained problems. Applying this study to unconstrained problems could be a good idea in future work. Finally, we intend to apply the proposed algorithm to complex, real-world problems, such as steganography, which remains an attractive topic. Another future work of this study could be the usage of memory to store the convergence track of parameters associated with the proposed algorithm based on user-defined time periods.
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Figure 1. Flowchart of proposed IRNDE algorithms. 
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Figure 2. Convergence graphs of f1 to f6 for RNDE and IRNDE. (a) Function f1 convergence graph of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, (b) Function f2 convergence graph of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, (c) Function f3 convergence graph of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, (d) Function f4 convergence graph of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, (e) Function f5 convergence graph of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, and (f) Function f6 convergence graph of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000. 






Figure 2. Convergence graphs of f1 to f6 for RNDE and IRNDE. (a) Function f1 convergence graph of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, (b) Function f2 convergence graph of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, (c) Function f3 convergence graph of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, (d) Function f4 convergence graph of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, (e) Function f5 convergence graph of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, and (f) Function f6 convergence graph of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000.
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Figure 3. Number of fitness evaluations for RNDE and IRNDE. (a) NFE comparison of RNDE and IRNDE when NP = 150 and D = 10; (b) NFE comparison of RNDE and IRNDE when NP = 150 and D = 30. 
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Figure 4. NFE comparison of RNDE and IRNDE when NP = 150 and D = 50. 
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Table 1. Test suite with 27 benchmark functions.
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Function

	
Name

	
Search Range

	
Global Optimum






	
Unimodal Functions




	
f1

	
Sphere

	
[−100, 100]

	
0




	
f2

	
Schwefel2.22

	
[−10, 10]

	
0




	
f3

	
Schwefel1.2

	
[−100, 100]

	
0




	
f4

	
Schwefel2.21

	
[−100, 100]

	
0




	
f5

	
Rosenbrock’s

	
[−30, 30]

	
0




	
f6

	
Step

	
[−1.28, 1.28]

	
0




	
f7

	
Quartic with Noise

	
[−100, 100]

	
0




	
Multimodal Functions




	
f8

	
Schwefel2.26

	
[−500, 500]

	
−418.98




	
f9

	
Rastrigin’s

	
[−5.12, 5.12]

	
0




	
f10

	
Ackley

	
[−32, 32]

	
0




	
f11

	
Griewank’s

	
[−600, 600]

	
0




	
f12

	
Penalized1

	
[−50, 50]

	
0




	
f13

	
Penalized2

	
[−50, 50]

	
0




	
Shifted Unimodal Functions




	
f14

	
Shifted Sphere Function

	
[−100, 100]

	
−450




	
f15

	
Shifted Schwefel’s Problem 1.2

	
[−100, 100]

	
−450




	
f16

	
Shifted Rotated High Conditioned Elliptic Function

	
[−100, 100]

	
−450




	
f17

	
Shifted Schwefel’s Problem 1.2 with Noise in Fitness

	
[−100, 100]

	
−450




	
f18

	
Schwefel’s Problem 2.6 with Global Optimum on Bounds

	
[−100, 100]

	
−310




	
Shifted Multimodal Functions




	
f19

	
Shifted Rosenbrock’s Function

	
[−100, 100]

	
390




	
f20

	
Shifted Rotated Griewank’s Function without Bounds

	
[0, 600]

	
−180




	
f21

	
Shifted Rotated Ackley’s Function with Global Optimum on Bounds

	
[−32, 32]

	
−140




	
f22

	
Shifted Rastrigin’s Function

	
[−5, 5]

	
−330




	
f23

	
Shifted Rotated Rastrigin’s Function

	
[−5, 5]

	
−330




	
f24

	
Shifted Rotated Weierstrass Function

	
[−0.5, 0.5]

	
90




	
f25

	
Schwefel’s Problem 2.13

	
[  − π  ,  π ]

	
−460




	
f26

	
Shifted Expanded Griewank’s plus Rosenbrock’s Function (F8F2)

	
[−3, 1]

	
−130




	
f27

	
Shifted Rotated Expanded Scaffer’s F6 Function

	
[−100, 100]

	
−300











 





Table 2. Fitness values of function f1 to f5 for NP = 150, D = 50, and iterations = 5000.
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Iterations

	
f1

	
f2

	
f3

	
f4

	
f5




	
RNDE

	
IRNDE

	
RNDE

	
IRNDE

	
RNDE

	
IRNDE

	
RNDE

	
IRNDE

	
RNDE

	
IRNDE






	
1

	
107,166

	
107,166

	
197,013

	
197,013

	
91.4529

	
91.4529

	
2.19833e+71

	
2.19833e+71

	
4.31944e+08

	
4.31944e+08




	
5

	
107,166

	
107,166

	
197,013

	
197,013

	
91.4529

	
91.4529

	
1.56318e+71

	
1.25631e+69

	
4.31944e+08

	
4.31944e+08




	
10

	
106,763

	
98,577.1

	
197,013

	
197,013

	
91.4529

	
91.4529

	
1.56318e+71

	
9.13478e+68

	
4.31944e+08

	
4.31944e+08




	
15

	
106,763

	
98577.1

	
197,013

	
197,013

	
91.4529

	
91.4529

	
1.36815e+71

	
6.45164e+68

	
4.31944e+08

	
4.31944e+08




	
20

	
106,763

	
98577.1

	
196,295

	
168,441

	
91.4529

	
91.4529

	
6.09134e+69

	
5.62354e+67

	
4.31944e+08

	
4.31944e+08




	
30

	
102,924

	
93,241.7

	
196,295

	
168,441

	
91.4529

	
91.4529

	
1.10354e+69

	
3.20042e+67

	
4.31944e+08

	
4.31944e+08




	
40

	
93,490.6

	
93,241.7

	
196,295

	
168,441

	
91.4529

	
91.4529

	
8.49963e+68

	
1.1789e+65

	
4.31944e+08

	
4.31944e+08




	
50

	
93,490.6

	
91,660.3

	
196,295

	
168,441

	
91.4529

	
91.4529

	
3.2853e+67

	
6.41441e+63

	
4.31944e+08

	
4.31944e+08




	
100

	
86,431.9

	
56,403.3

	
196,295

	
168,441

	
91.4065

	
89.2837

	
1.27491e+63

	
3.44804e+55

	
4.04911e+08

	
2.99116e+08




	
150

	
69,868.9

	
40,416.5

	
171,358

	
143,138

	
90.3058

	
89.2837

	
1.15333e+62

	
5.90041e+53

	
4.04911e+08

	
2.77088e+08




	
200

	
64,281

	
34,341.9

	
171,358

	
143,138

	
90.3058

	
89.0754

	
4.09299e+60

	
2.93405e+51

	
3.90937e+08

	
1.99466e+08




	
400

	
31,954.4

	
6800.34

	
164,102

	
113,800

	
89.5071

	
85.3248

	
8.52268e+57

	
6.13965e+47

	
2.92851e+08

	
1.51033e+07




	
600

	
17,025.5

	
1761.99

	
153,406

	
96,057.6

	
89.5071

	
74.6393

	
5.21376e+49

	
9.92589e+44

	
2.45835e+08

	
1.92694e+06




	
800

	
7159.23

	
271.509

	
153,406

	
96,057.6

	
88.0884

	
67.8502

	
1.49244e+47

	
4.0476e+43

	
1.54781e+08

	
350747




	
1000

	
2954.65

	
85.033

	
113,349

	
78,643.5

	
85.2505

	
56.0395

	
2.36147e+46

	
3.02577e+42

	
5.83435e+07

	
57207.6




	
1200

	
1411.61

	
12.6946

	
113,349

	
78571.1

	
81.3025

	
51.9173

	
4.34581e+45

	
7.79156e+40

	
1.66845e+07

	
23060.8




	
1400

	
705.528

	
3.36049

	
113,349

	
78,508.4

	
64.4952

	
43.103

	
3.27444e+42

	
1.04872e+38

	
1.06145e+07

	
6365.95




	
1600

	
330.4

	
0.705804

	
103,116

	
77,692

	
64.4952

	
38.9589

	
2.92916e+37

	
9.65888e+34

	
3.61785e+06

	
3784.11




	
1800

	
143.321

	
0.148906

	
103,116

	
76,766.7

	
58.7125

	
27.6752

	
2.68602e+33

	
1.27846e+34

	
1.06625e+06

	
1897.68




	
2000

	
72.6645

	
0.027825

	
102008

	
70697.2

	
49.5419

	
24.4122

	
2.62547e+33

	
1.74314e+32

	
861487

	
1077.72




	
2200

	
28.5524

	
0.00816997

	
100,863

	
61497.6

	
48.856

	
21.7797

	
2.3213e+31

	
2.27938e+30

	
263,768

	
916.068




	
2400

	
15.1582

	
0.00170155

	
97,335.3

	
51,589.8

	
43.1867

	
18.7337

	
2.27744e+30

	
1.26613e+27

	
195775

	
700.118




	
2600

	
5.75624

	
0.000385194

	
94,308.2

	
51,589.8

	
39.6438

	
14.7789

	
2.27744e+30

	
2.4849e+26

	
112,458

	
642.347




	
2800

	
2.84793

	
8.46806e-05

	
94308.2

	
46713.4

	
36.3745

	
12.6463

	
1.06585e+30

	
1.44058e+26

	
108,988

	
578.795




	
3000

	
1.30338

	
1.73096e-05

	
89,843.4

	
45,302.9

	
32.3394

	
9.99071

	
3.97908e+28

	
2.10136e+24

	
80144.5

	
515.251




	
3200

	
0.591442

	
4.38451e-06

	
89,843.4

	
38085.9

	
27.8329

	
8.72914

	
3.97908e+28

	
9.46517e+23

	
49,036

	
462.433




	
3400

	
0.243082

	
1.02105e-06

	
85,722.3

	
38,085.9

	
25.2841

	
6.37169

	
3.97908e+28

	
2.44522e+22

	
38,846.7

	
347.158




	
3600

	
0.112868

	
2.96409e-07

	
58,333.6

	
37,141.8

	
25.2841

	
0.4367

	
3.97908e+28

	
3.53667e+20

	
30,109.7

	
347.158




	
3800

	
0.0454132

	
4.85207e-08

	
58,087.2

	
33,533.5

	
22.1458

	
4.33106

	
3.97908e+28

	
3.23352e+19

	
21,079.1

	
301.099




	
4000

	
0.0233552

	
1.12556e-08

	
58,087.2

	
32429.3

	
20.2136

	
3.77252

	
1.09389e+28

	
1.09388e+18

	
19,657.9

	
248.39




	
4200

	
0.0104778

	
2.35218e-09

	
50,409.5

	
28,602.2

	
19.4409

	
3.06997

	
2.02774e+26

	
5.27283e+16

	
13542.1

	
188.169




	
4400

	
0.00507579

	
3.57897e-10

	
48,908.5

	
24,143

	
16.6239

	
2.6146

	
1.14581e+21

	
2.90392e+16

	
7989.71

	
129.291




	
4600

	
0.00191955

	
5.69887e-11

	
48,908.5

	
21,842.5

	
14.7613

	
2.18745

	
1.14581e+21

	
4.48367e+12

	
5393.15

	
75.9085




	
4800

	
0.000790519

	
1.34205e-11

	
48,908.5

	
19,772.3

	
14.4084

	
1.63888

	
1.14581e+21

	
1.43737e+11

	
4743.71

	
56.1816




	
5000

	
0.000285069

	
2.70302e-12

	
48,861.7

	
19,772.3

	
12.7042

	
1.38764

	
1.14581e+21

	
1.43737e+11

	
4269.41

	
49.7603











 





Table 3. Fitness values of function f6 to f10 for NP = 150, D = 50, and iterations = 5000.






Table 3. Fitness values of function f6 to f10 for NP = 150, D = 50, and iterations = 5000.





	
Iterations

	
f6

	
f7

	
f8

	
f9

	
f10




	
RNDE

	
IRNDE

	
RNDE

	
IRNDE

	
RNDE

	
IRNDE

	
RNDE

	
IRNDE

	
RNDE

	
IRNDE






	
1

	
21

	
21

	
1.42628e+10

	
1.42628e+10

	
−3516.54

	
−3516.54

	
728.486

	
728.486

	
20.7073

	
20.7073




	
5

	
20

	
21

	
1.42628e+10

	
1.42628e+10

	
−4303.27

	
−4484.28

	
710.839

	
728.486

	
20.7073

	
20.7073




	
10

	
20

	
19

	
1.42628e+10

	
1.42628e+10

	
−6262.3

	
−6764.29

	
710.839

	
728.486

	
20.6636

	
20.6009




	
15

	
20

	
19

	
1.42628e+10

	
1.42628e+10

	
−6282.13

	
−6935.1

	
710.839

	
724.258

	
20.6636

	
20.6009




	
20

	
20

	
19

	
1.42628e+10

	
1.12205e+10

	
−7428.17

	
−10,057

	
710.839

	
724.258

	
20.6636

	
20.5467




	
30

	
20

	
16

	
1.42628e+10

	
1.12205e+10

	
−9398.02

	
−14,537.2

	
710.839

	
724.258

	
20.6381

	
20.5467




	
40

	
20

	
16

	
1.42628e+10

	
1.05978e+10

	
−9534.25

	
−16,106.3

	
710.839

	
682.222

	
20.5408

	
20.5467




	
50

	
20

	
16

	
1.32638e+10

	
1.05978e+10

	
−10322.7

	
−19,528.8

	
710.839

	
679.314

	
20.4485

	
20.4571




	
100

	
17

	
13

	
1.26344e+10

	
6.24556e+09

	
−12489.3

	
−20,949

	
698.499

	
594.514

	
20.3311

	
19.7722




	
150

	
16

	
11

	
1.17699e+10

	
3.04017e+09

	
−14,918.2

	
−20,949

	
698.499

	
533.429

	
19.8555

	
19.2148




	
200

	
15

	
7

	
1.17699e+10

	
1.56747e+09

	
−16,420

	
−20,949

	
698.499

	
494.476

	
19.7466

	
17.9631




	
400

	
10

	
2

	
5.23897e+09

	
2.18584e+08

	
−20,949

	
−20,949

	
698.499

	
455.163

	
18.7771

	
13.0003




	
600

	
7

	
0

	
4.14472e+09

	
1.98573e+07

	
−20,949

	
−20,949

	
698.499

	
404.723

	
16.8826

	
8.77267




	
800

	
4

	
0

	
1.17689e+09

	
2.39732e+06

	
−20,949

	
−20,949

	
698.499

	
362.02

	
14.5523

	
5.26086




	
1000

	
4

	
0

	
2.94735e+08

	
229054

	
−20,949

	
−20,949

	
682.614

	
362.02

	
12.3433

	
3.72313




	
1200

	
3

	
0

	
5.57891e+07

	
34096.6

	
−20,949

	
−20,949

	
682.614

	
352.496

	
9.90552

	
2.51792




	
1400

	
2

	
0

	
1.79379e+07

	
2328.99

	
−20,949

	
−20,949

	
682.614

	
349.761

	
7.68546

	
1.84401




	
1600

	
2

	
0

	
4.92482e+06

	
268.371

	
−20,949

	
−20,949

	
682.614

	
349.212

	
5.72134

	
0.697559




	
1800

	
1

	
0

	
1.60315e+06

	
22.3301

	
−20,949

	
−20,949

	
661.983

	
349.212

	
4.52571

	
0.242736




	
2000

	
1

	
0

	
291,084

	
1.7914

	
−20,949

	
−20,949

	
661.983

	
349.212

	
4.08072

	
0.0935032




	
2200

	
1

	
0

	
149,086

	
0

	
−20,949

	
−20,949

	
661.983

	
346.007

	
3.42992

	
0.0420455




	
2400

	
1

	
0

	
64,393.3

	
0

	
−20,949

	
−20,949

	
661.983

	
346.007

	
2.92868

	
0.01849




	
2600

	
0

	
0

	
22,563.6

	
0

	
−20,949

	
−20,949

	
661.983

	
346.007

	
2.76194

	
0.00828884




	
2800

	
0

	
0

	
6538.42

	
0

	
−20,949

	
−20,949

	
661.983

	
346.007

	
2.45848

	
0.00367194




	
3000

	
0

	
0

	
1510.69

	
0

	
−20,949

	
−20,949

	
645.042

	
323.189

	
2.18228

	
0.00170531




	
3200

	
0

	
0

	
434.261

	
0

	
−20,949

	
−20,949

	
645.042

	
323.189

	
1.65711

	
0.00071923




	
3400

	
0

	
0

	
96.3754

	
0

	
−20,949

	
−20,949

	
637.334

	
323.189

	
0.958296

	
0.000306232




	
3600

	
0

	
0

	
29.8399

	
0

	
−20,949

	
−20,949

	
637.334

	
319.548

	
0.389258

	
0.000158771




	
3800

	
0

	
0

	
6.60063

	
0

	
−20,949

	
−20,949

	
618.245

	
319.548

	
0.233483

	
6.64578e-05




	
4000

	
0

	
0

	
3.47587

	
0

	
−20,949

	
−20,949

	
618.245

	
319.548

	
0.176824

	
3.53399e-05




	
4200

	
0

	
0

	
0

	
0

	
−20,949

	
−20,949

	
618.245

	
311.84

	
0.113753

	
1.68176e-05




	
4400

	
0

	
0

	
0

	
0

	
−20,949

	
−20,949

	
618.245

	
311.84

	
0.0665963

	
6.99799e-06




	
4600

	
0

	
0

	
0

	
0

	
−20,949

	
−20,949

	
618.245

	
311.84

	
0.041563

	
3.74626e-06




	
4800

	
0

	
0

	
0

	
0

	
−20,949

	
−20,949

	
601.333

	
311.84

	
0.0263947

	
1.71841e-06




	
5000

	
0

	
0

	
0

	
0

	
−20,949

	
−20,949

	
601.333

	
311.84

	
0.0188713

	
8.13691e-07











 





Table 4. Fitness values of function f11 to f15 for NP = 150, D = 50, and iterations = 5000, * indicates global optimum could not reach.






Table 4. Fitness values of function f11 to f15 for NP = 150, D = 50, and iterations = 5000, * indicates global optimum could not reach.





	
Iterations

	
f11

	
f12

	
f13

	
f14

	
f15




	
RNDE

	
IRNDE

	
RNDE

	
IRNDE

	
RNDE

	
IRNDE

	
RNDE

	
IRNDE

	
RNDE

	
IRNDE






	
1

	
1055.15

	
1055.15

	
1.08539e+09

	
1.08539e+09

	
2.00701e+09

	
2.00701e+09

	
168,301

	
168,301

	
398,585

	
398,585




	
5

	
1055.15

	
1055.15

	
1.0548e+09

	
1.08539e+09

	
2.00701e+09

	
2.00701e+09

	
159,042

	
166,735

	
355,510

	
334,098




	
10

	
1055.15

	
1039.8

	
1.05323e+09

	
1.08539e+09

	
2.00701e+09

	
2.00701e+09

	
125,808

	
163,621

	
355,510

	
283,650




	
15

	
1055.15

	
1039.8

	
1.05323e+09

	
1.08539e+09

	
2.00701e+09

	
2.00701e+09

	
125,808

	
162,531

	
335,683

	
250,962




	
20

	
1052.27

	
937.941

	
1.05323e+09

	
1.08539e+09

	
2.00701e+09

	
2.00701e+09

	
120,207

	
131,129

	
335,683

	
250,962




	
30

	
1052.27

	
937.941

	
1.05323e+09

	
1.08539e+09

	
2.00701e+09

	
2.00701e+09

	
120,207

	
118,288

	
335,683

	
250,962




	
40

	
1052.27

	
894.572

	
1.05323e+09

	
1.08539e+09

	
2.00701e+09

	
2.00701e+09

	
106,490

	
114,755

	
335,683

	
250,962




	
50

	
1002.21

	
710.905

	
1.05323e+09

	
1.08539e+09

	
2.00701e+09

	
2.00701e+09

	
106,490

	
109,345

	
263,847

	
228,577




	
100

	
1002.21

	
542.417

	
1.05323e+09

	
1.01396e+09

	
1.88035e+09

	
1.94988e+09

	
85847.8

	
64180.9

	
224,621

	
185,333




	
150

	
1002.21

	
347.765

	
1.05323e+09

	
5.11633e+08

	
1.88035e+09

	
1.11306e+09

	
81634.2

	
55196.3

	
224,621

	
155,871




	
200

	
966.712

	
270.401

	
9.49775e+08

	
4.21792e+08

	
1.84609e+09

	
8.48217e+08

	
69772.1

	
34856.8

	
224,452

	
155,871




	
400

	
917.708

	
52.6602

	
5.81916e+08

	
3.97822e+07

	
1.3873e+09

	
7.41636e+07

	
24635.1

	
5930.8

	
209,400

	
152,495




	
600

	
917.708

	
13.7598

	
5.63661e+08

	
953763

	
1.26871e+09

	
3.5074e+06

	
12060.9

	
1400.9

	
177,338

	
144,816




	
800

	
759.071

	
3.21318

	
4.32972e+08

	
1005.07

	
1.2686e+09

	
43217.1

	
5247.32

	
−48.6701

	
170,882

	
125,566




	
1000

	
729.991

	
1.60481

	
2.97419e+08

	
22.796

	
7.18698e+08

	
767.809

	
2420.72

	
−370.845

	
154,607

	
97,994.6




	
1200

	
632.36

	
1.10341

	
4.74073e+07

	
9.4321

	
4.88062e+08

	
38.0572

	
838.294

	
−432.312

	
154,607

	
97,768.6




	
1400

	
564.399

	
1.01736

	
1.54405e+07

	
4.53885

	
1.71841e+08

	
16.5448

	
114.425

	
−446.984

	
153,222

	
94,129.1




	
1600

	
450.362

	
0.658333

	
3.30737e+06

	
4.25549

	
4.75411e+07

	
3.86112

	
−167.851

	
−449.317

	
153,222

	
79,506.3




	
1800

	
272.759

	
0.22698

	
310,283

	
2.83376

	
1.47191e+07

	
1.10332

	
-296.65

	
−449.78

	
141,583

	
77,475.6




	
2000

	
254.433

	
0.0445405

	
75,962.6

	
2.3151

	
3.43088e+06

	
0.308245

	
−398.253

	
−449.961

	
135,500

	
74,589.6




	
2200

	
198.676

	
0.00737067

	
126.916

	
2.12297

	
1.16831e+06

	
0.0776809

	
−424.14

	
−449.993

	
135,500

	
69,304.9




	
2400

	
124.491

	
0.00171678

	
31.6576

	
1.76203

	
258,691

	
0.0147251

	
−437.264

	
−449.998

	
127,620

	
62,349.5




	
2600

	
96.0986

	
0.000409527

	
19.7927

	
1.47519

	
19,247.4

	
0.00279349

	
−444.947

	
−450

	
127,620

	
56,522




	
2800

	
66.9394

	
9.89848e-05

	
12.1895

	
0.995179

	
296.106

	
0.000594427

	
−446.741

	
−450

	
123,796

	
55,272.9




	
3000

	
46.4022

	
2.55152e-05

	
11.0036

	
0.913088

	
62.8248

	
0.000129401

	
−449.27

	
−450

	
121,615

	
51,567.8




	
3200

	
34.6919

	
5.18012e-06

	
7.55257

	
0.536102

	
52.5342

	
2.94385e-05

	
−449.568

	
−450

	
112,014

	
47,125.5




	
3400

	
21.599

	
6.62209e-07

	
6.5113

	
0.282837

	
33.2308

	
7.30486e-06

	
−449.82

	
−450

	
97,448.5

	
45,670.9




	
3600

	
17.9387

	
1.96707e-07

	
6.23303

	
0.0455196

	
14.0115

	
1.12448e-06

	
−449.929

	
−450

	
97,356.9

	
44,078.9




	
3800

	
10.8625

	
4.72381e-08

	
5.51551

	
0.00797489

	
6.56287

	
2.64319e-07

	
−449.976

	
−450 *

	
95,037.9

	
43,505.3




	
4000

	
7.99392

	
9.67328e-09

	
3.45958

	
0.00158262

	
3.8305

	
5.15215e-08

	
−449.988

	
−450

	
95,037.9

	
30,530.6




	
4200

	
5.55138

	
1.67994e-09

	
3.33907

	
0.000302378

	
1.87559

	
6.99077e-09

	
−449.994

	
−450

	
79,005.2

	
28,242.5




	
4400

	
4.71148

	
4.01571e-10

	
3.33907

	
6.66714e-05

	
0.657885

	
1.60463e-09

	
−449.997

	
−450

	
79,005.2

	
27,167.2




	
4600

	
3.69465

	
6.71285e-11

	
3.27146

	
1.49248e-05

	
0.458076

	
2.50137e-10

	
−449.999

	
−450

	
79,005.2

	
27,167.2




	
4800

	
2.52784

	
1.32597e-11

	
3.27146

	
3.3658e-06

	
0.255931

	
5.15735e-11

	
−450

	
−450

	
76,609.3

	
18,035




	
5000

	
2.1493

	
2.38842e-12

	
3.27146

	
6.39102e-07

	
0.107353

	
9.56412e-12

	
−450*

	
−450

	
69,629.2

	
17,402.5











 





Table 5. Number of function evaluations for functions f1 to f15 for NP = 150, D = 10, and iterations = 1000 × D.
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10 Runs Fitness Evaluations for NP = 150/D = 10






	

	
Best

	
Median

	
Worst

	
Mean ± Std. Dev.

	
Success Rate

	
RNDE vs. IRNDE (# of Iterations)




	
f1

	
RNDE

	
504

	
518

	
526

	
5.157e+2 ± 8.68012e+0

	
100%

	
516




	
IRNDE

	
340

	
345

	
357

	
3.468e+2 ± 5.05085e+0

	
100%

	
348




	
f2

	
RNDE

	
1457

	
1480

	
1528

	
1.4885e+3 ± 2.25549e+1

	
100%

	
1549




	
IRNDE

	
784

	
819

	
875

	
8.26e+2 ± 3.32031e+1

	
100%

	
802




	
f3

	
RNDE

	
820

	
846

	
874

	
8.456e+2 ± 1.42533e+1

	
100%

	
477




	
IRNDE

	
590

	
625

	
647

	
6.207e+2 ± 1.82638e+1

	
100%

	
336




	
f4

	
RNDE

	
808

	
823

	
847

	
8.251e+2 ± 1.19856e+1

	
100%

	
832




	
IRNDE

	
342

	
349

	
359

	
3.495e+2 ± 5.01664e+0

	
100%

	
618




	
f5

	
RNDE

	
1652

	
1715

	
1757

	
1.7163e+3 ± 3.54622e+1

	
100%

	
1737




	
IRNDE

	
1034

	
1072

	
1132

	
1.0773e+3 ± 3.23661e+1

	
100%

	
1087




	
f6

	
RNDE

	
1

	
15

	
27

	
1.45e+1 ± 7.15309e+0

	
100%

	
13




	
IRNDE

	
7

	
13

	
22

	
1.34e+1 ± 4.29987e+0

	
100%

	
12




	
f7

	
RNDE

	
187

	
192

	
204

	
1.955e+2 ± 6.62067e+0

	
100%

	
205




	
IRNDE

	
122

	
132

	
139

	
1.316e+2 ± 5.05964e+0

	
100%

	
138




	
f8

	
RNDE

	
18

	
27

	
31

	
2.66e+1 ± 3.62706e+0

	
100%

	
30




	
IRNDE

	
9

	
11

	
17

	
1.22e+1 ± 2.65832e+0

	
100%

	
11




	
f9

	
RNDE

	
830

	
871

	
908

	
8.742e+2 ± 2.23696e+1

	
100%

	
915




	
IRNDE

	
906

	
1126

	
1265

	
1.1178e+3 ± 1.04919e+2

	
100%

	
1227




	
f10

	
RNDE

	
797

	
817

	
839

	
8.198e+2 ± 1.18771e+1

	
100%

	
815




	
IRNDE

	
552

	
565

	
574

	
5.653e+2 ± 7.33409e+0

	
100%

	
569




	
f11

	
RNDE

	
1729

	
2065

	
2328

	
2.037e+3 ± 2.02333e+2

	
100%

	
2621




	
IRNDE

	
1996

	
2586

	
3700

	
2.7613e+3 ± 5.16669e+2

	
100%

	
3453




	
f12

	
RNDE

	
446

	
468

	
493

	
4.671e+2 ± 1.26179e+1

	
100%

	
484




	
IRNDE

	
321

	
331

	
344

	
3.327e+2 ± 7.39444e+0

	
100%

	
328




	
f13

	
RNDE

	
472

	
488

	
506

	
4.879e+2 ± 1.13671e+1

	
100%

	
476




	
IRNDE

	
332

	
338

	
346

	
3.393e+2 ± 4.49815e+0

	
100%

	
327




	
f14

	
RNDE

	
503

	
511

	
524

	
5.112e+2 ± 6.47731e+0

	
100%

	
503




	
IRNDE

	
337

	
353

	
359

	
3.512e+2 ± 7.56894e+0

	
100%

	
353




	
f15

	
RNDE

	
1440

	
1484

	
1558

	
1.4951e+3 ± 3.86018e+1

	
100%

	
1539




	
IRNDE

	
810

	
824

	
887

	
8.363e+2 ± 2.70803e+1

	
100%

	
858




	
f16

	
RNDE

	
496

	
522

	
542

	
5.204e+2 ± 1.26947e+1

	
100%

	
499




	
IRNDE

	
343

	
350

	
359

	
3.519e+2 ± 5.95259e+0

	
100%

	
345




	
f17

	
RNDE

	
1471

	
1532

	
1603

	
1.5474e+3 ± 4.45676e+1

	
100%

	
1496




	
IRNDE

	
844

	
858

	
907

	
8.693e+2 ± 2.34902e+1

	
100%

	
832




	
f18

	
RNDE

	
616

	
643

	
679

	
6.494e+2 ± 1.96932e+1

	
100%

	
652




	
IRNDE

	
513

	
535

	
558

	
5.346e+2 ± 1.12862e+1

	
100%

	
518




	
f19

	
RNDE

	
265

	
274

	
295

	
2.777e+2 ± 9.84378e+0

	
100%

	
265




	
IRNDE

	
220

	
227

	
238

	
2.292e+2 ± 5.82714e+0

	
100%

	
233




	
f20

	
RNDE

	
400

	
431

	
484

	
4.396e+2 ± 2.63236e+1

	
100%

	
518




	
IRNDE

	
228

	
261

	
308

	
2.683e+2 ± 2.55345e+1

	
100%

	
352




	
f21

	
RNDE

	
343

	
355

	
369

	
3.562e+2 ± 8.25698e+0

	
100%

	
365




	
IRNDE

	
297

	
304

	
320

	
3.063e+2 ± 8.28721e+0

	
100%

	
310




	
f22

	
RNDE

	
388

	
396

	
411

	
3.991e+2 ± 7.37036e+0

	
100%

	
393




	
IRNDE

	
257

	
268

	
274

	
2.681e+2 ± 5.21643e+0

	
100%

	
267




	
f23

	
RNDE

	
286

	
308

	
316

	
3.066e+2 ± 1.01784e+1

	
100%

	
306




	
IRNDE

	
195

	
206

	
213

	
2.059e+2 ± 5.46606e+0

	
100%

	
196




	
f24

	
RNDE

	
761

	
803

	
831

	
8.008e+2 ± 1.98203e+1

	
100%

	
773




	
IRNDE

	
616

	
634

	
649

	
6.343e+2 ± 1.09143e+1

	
100%

	
612




	
f25

	
RNDE

	
3620

	
5080

	
9495

	
5.83986e+3 ± 2.00043e+3

	
70%

	
3217




	
IRNDE

	
286

	
423

	
1088

	
4.74111e+2 ± 2.39794e+2

	
90%

	
1608




	
f26

	
RNDE

	
179

	
182

	
216

	
1.918e+2 ± 1.31976e+1

	
100%

	
172




	
IRNDE

	
108

	
117

	
123

	
1.164e+2 ± 4.16867e+0

	
100%

	
127




	
f27

	
RNDE

	
214

	
223

	
229

	
2.234e+2 ± 4.74224e+0

	
100%

	
228




	
IRNDE

	
162

	
169

	
171

	
1.683e+2 ± 2.71006e+0

	
100%

	
169











 





Table 6. Number of function evaluations for functions f1 to f15 for NP = 150, D = 30, and iterations = 1000 × D.
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10 Runs Fitness Evaluations for NP = 150/D = 30






	

	
Best

	
Median

	
Worst

	
Mean ± Std. Dev.

	
Success Rate

	
RNDE vs. IRNDE (# of Iterations)




	
f1

	
RNDE

	
2555

	
2627

	
2745

	
2.6491e+3 ± 6.40424e+1

	
100%

	
2675




	
IRNDE

	
1736

	
1753

	
1792

	
1.7634e+3 ± 2.09401e+1

	
100%

	
1802




	
f2

	
RNDE

	
57,202

	
59,993

	
66,380

	
6.05669e+4 ± 2.46933e+3

	
100%

	
57,718




	
IRNDE

	
23,162

	
23,828

	
24,961

	
2.39414e+4 ± 5.28169e+2

	
100%

	
24,016




	
f3

	
RNDE

	
8581

	
8825

	
9258

	
8.9154e+3 ± 2.28402e+2

	
100%

	
9119




	
IRNDE

	
5464

	
5532

	
5841

	
5.6021e+3 ± 1.32403e+2

	
100%

	
5546




	
f4

	
RNDE

	
4294

	
4340

	
4476

	
4.356e+3 ± 6.34333e+1

	
100%

	
4480




	
IRNDE

	
3086

	
3169

	
3395

	
3.1891e+3 ± 8.24155e+1

	
100%

	
3303




	
f5

	
RNDE

	
12504

	
12915

	
13721

	
1.30622e+4 ± 4.15667e+2

	
100%

	
13,426




	
IRNDE

	
7377

	
7580

	
7803

	
7.5919e+3 ± 1.51639e+2

	
100%

	
7659




	
f6

	
RNDE

	
179

	
225

	
272

	
2.27e+2 ± 3.39706e+1

	
100%

	
227




	
IRNDE

	
118

	
143

	
168

	
1.437e+2 ± 1.75439e+1

	
100%

	
142




	
f7

	
RNDE

	
1150

	
1224

	
1289

	
1.2318e+3 ± 4.22816e+1

	
100%

	
1239




	
IRNDE

	
811

	
840

	
902

	
8.455e+2 ± 2.53213e+1

	
100%

	
886




	
f8

	
RNDE

	
70

	
108

	
137

	
1.017e+2 ± 2.17718e+1

	
100%

	
102




	
IRNDE

	
25

	
35

	
58

	
3.68e+1 ± 8.9666e+0

	
100%

	
52




	
f9

	
RNDE

	
39881

	
43,293

	
48,764

	
4.37697e+4 ± 2.6549e+3

	
100%

	
41,835




	
IRNDE

	
-

	
-

	
-

	
-

	
0%

	
6.58946e+1




	
f10

	
RNDE

	
3998

	
4089

	
4208

	
4.0932e+3 ± 7.4265e+1

	
100%

	
4147




	
IRNDE

	
2700

	
2730

	
2770

	
2.7372e+3 ± 2.18469e+1

	
100%

	
2718




	
f11

	
RNDE

	
4072

	
4147

	
4297

	
4.1676e+3 ± 8.43567e+1

	
100%

	
4146




	
IRNDE

	
1827

	
2017

	
2161

	
2.0213e+3 ± 1.14815e+2

	
100%

	
2092




	
f12

	
RNDE

	
2569

	
2701

	
2840

	
2.6904e+3 ± 7.63081e+1

	
100%

	
2782




	
IRNDE

	
1719

	
1739

	
1823

	
1.7558e+3 ± 3.35354e+1

	
100%

	
1752




	
f13

	
RNDE

	
2586

	
2616

	
2719

	
2.6462e+3 ± 5.21575e+1

	
100%

	
2661




	
IRNDE

	
1738

	
1769

	
1838

	
1.7794e+3 ± 3.34139e+1

	
100%

	
1809




	
f14

	
RNDE

	
2646

	
2667

	
2742

	
2.6824e+3 ± 3.43615e+1

	
100%

	
2630




	
IRNDE

	
1746

	
1780

	
1833

	
1.7887e+3 ± 3.41989e+1

	
100%

	
1867




	
f15

	
RNDE

	
58341

	
60,131

	
62,726

	
6.07395e+4 ± 1.69443e+3

	
100%

	
59,989




	
IRNDE

	
23,938

	
24,436

	
24,956

	
2.44474e+4 ± 3.02649e+2

	
100%

	
23,667




	
f16

	
RNDE

	
2574

	
2642

	
2752

	
2.651e+3 ± 5.04094e+1

	
100%

	
2674




	
IRNDE

	
1770

	
1803

	
1842

	
1.8056e+3 ± 2.39499e+1

	
100%

	
1780




	
f17

	
RNDE

	
61,575

	
61,985

	
65,619

	
6.29908e+4 ± 1.38551e+3

	
100%

	
62,862




	
IRNDE

	
25,129

	
26,032

	
27,197

	
2.62584e+4 ± 7.24199e+2

	
100%

	
27,668




	
f18

	
RNDE

	
4695

	
4781

	
4878

	
4.7949e+3 ± 6.23154e+1

	
100%

	
4890




	
IRNDE

	
3486

	
3638

	
3821

	
3.6549e+3 ± 8.90661e+1

	
100%

	
3741




	
f19

	
RNDE

	
1018

	
1039

	
1088

	
1.0458e+3 ± 1.88255e+1

	
100%

	
1023




	
IRNDE

	
805

	
823

	
844

	
8.251e+2 ± 1.46246e+1

	
100%

	
803




	
f20

	
RNDE

	
4386

	
4728

	
5203

	
4.7566e+3 ± 2.72762e+2

	
100%

	
4829




	
IRNDE

	
2633

	
2936

	
3887

	
3.0857e+3 ± 3.68177e+2

	
100%

	
3050




	
f21

	
RNDE

	
1257

	
1279

	
1311

	
1.2815e+3 ± 1.75768e+1

	
100%

	
1307




	
IRNDE

	
1029

	
1050

	
1056

	
1.0457e+3 ± 1.02746e+1

	
100%

	
1082




	
f22

	
RNDE

	
2078

	
2151

	
2228

	
2.1589e+3 ± 4.80681e+1

	
100%

	
2653




	
IRNDE

	
1399

	
1424

	
1507

	
1.4387e+3 ± 3.33801e+1

	
100%

	
1532




	
f23

	
RNDE

	
1629

	
1685

	
1734

	
1.6867e+3 ± 3.29209e+1

	
100%

	
1699




	
IRNDE

	
1084

	
1121

	
1181

	
1.1264e+3 ± 2.89988e+1

	
100%

	
1111




	
f24

	
RNDE

	
6375

	
6465

	
6618

	
6.4829e+3 ± 8.03388e+1

	
100%

	
6556




	
IRNDE

	
4785

	
4939

	
5162

	
4.946e+3 ± 1.2686e+2

	
100%

	
4926




	
f25

	
RNDE

	
50,303

	
-

	
-

	
-

	
10%

	
2549.54




	
IRNDE

	
-

	
-

	
-

	
-

	
0%

	
966.653




	
f26

	
RNDE

	
1988

	
2448

	
3554

	
2.5159e+3 ± 4.72809e+2

	
100%

	
1570




	
IRNDE

	
985

	
1202

	
1350

	
1.1722e+3 ± 1.12576e+2

	
100%

	
937




	
f27

	
RNDE

	
1069

	
1104

	
1148

	
1.1106e+3 ± 2.85081e+1

	
100%

	
1088




	
IRNDE

	
765

	
788

	
806

	
7.859e+2 ± 1.30933e+1

	
100%

	
778











 





Table 7. Number of function evaluations for functions f1 to f15 for NP = 150, D = 50, and iterations = 1000 × D.
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10 Runs Fitness Evaluations for NP = 150/D = 50






	

	
Best

	
Median

	
Worst

	
Mean ± Std. Dev.

	
Success Rate

	
RNDE vs. IRNDE (# of iterations)




	
f1

	
RNDE

	
7214

	
7445

	
7721

	
7.4651e+3 ± 1.41869e+2

	
100%

	
7391




	
IRNDE

	
3869

	
3921

	
4028

	
3.9451e+3 ± 5.64298e+1

	
100%

	
3888




	
f2

	
RNDE

	
109,913

	
113,260

	
120,046

	
1.14284e+5 ± 2.98052e+3

	
100%

	
109,893




	
IRNDE

	
67,118

	
69,546

	
70,788

	
6.91903e+4 ± 1.32311e+3

	
100%

	
74,815




	
f3

	
RNDE

	
38,400

	
39,679

	
41,609

	
4.01089e+4 ± 9.56063e+2

	
100%

	
37,964




	
IRNDE

	
22,579

	
23,704

	
24,492

	
2.35874e+4 ± 6.57373e+2

	
100%

	
24,331




	
f4

	
RNDE

	
19,633

	
21,491

	
22,899

	
2.14575e+4 ± 8.63521e+2

	
100%

	
20,941




	
IRNDE

	
12,048

	
14,038

	
15,583

	
1.4151e+4 ± 1.31694e+3

	
100%

	
11,980




	
f5

	
RNDE

	
53,747

	
56,423

	
65,062

	
5.67883e+4 ± 3.33907e+3

	
100%

	
57,945




	
IRNDE

	
21,985

	
22,926

	
23,565

	
2.29314e+4 ± 5.33276e+2

	
100%

	
23,786




	
f6

	
RNDE

	
2093

	
2695

	
3858

	
2.7862e+3 ± 4.73772e+2

	
100%

	
2801




	
IRNDE

	
390

	
558

	
644

	
5.562e+2 ± 7.65721e+1

	
100%

	
464




	
f7

	
RNDE

	
4389

	
4620

	
4960

	
4.6433e+3 ± 1.99158e+2

	
100%

	
4743




	
IRNDE

	
2012

	
2074

	
2110

	
2.0685e+3 ± 3.06132e+1

	
100%

	
2166




	
f8

	
RNDE

	
174

	
220

	
378

	
2.451e+2 ± 6.85492e+1

	
100%

	
472




	
IRNDE

	
40

	
60

	
77

	
6.e+1 ± 1.09341e+1

	
100%

	
64




	
f9

	
RNDE

	
363687

	
-

	
-

	
-

	
10%

	
2.69166e+1




	
IRNDE

	
-

	
-

	
-

	
-

	
0% 2.17122e+2

	




	
f10

	
RNDE

	
11,610

	
11,833

	
12,182

	
1.19068e+4 ± 1.86668e+2

	
100%

	
12,179




	
IRNDE

	
5818

	
5979

	
6111

	
5.9913e+3 ± 9.06116e+1

	
100%

	
6069




	
f11

	
RNDE

	
20,074

	
21,698

	
23,867

	
2.19229e+4 ± 1.05793e+3

	
100%

	
22,594




	
IRNDE

	
3846

	
4025

	
4310

	
4.0539e+3 ± 1.37402e+2

	
100%

	
4014




	
f12

	
RNDE

	
16,969

	
18,456

	
24,620

	
1.90873e+4 ± 2.41333e+3

	
100%

	
21,185




	
IRNDE

	
5077

	
5680

	
6303

	
5.7656e+3 ± 4.00958e+2

	
100%

	
5537




	
f13

	
RNDE

	
8787

	
9155

	
10266

	
9.484e+3 ± 5.46782e+2

	
100%

	
9104




	
IRNDE

	
3997

	
4158

	
4232

	
4.154e+3 ± 6.94358e+1

	
100%

	
4149




	
f14

	
RNDE

	
7136

	
7254

	
7679

	
7.3257e+3 ± 1.76951e+2

	
100%

	
7320




	
IRNDE

	
3905

	
3945

	
4055

	
3.9735e+3 ± 5.40684e+1

	
100%

	
3999




	
f15

	
RNDE

	
111,558

	
113,908

	
123,780

	
1.15099e+5 ± 3.86545e+3

	
100%

	
115,568




	
IRNDE

	
64,774

	
68,523

	
71,652

	
6.89078e+4 ± 1.95258e+3

	
100%

	
68,125




	
f16

	
RNDE

	
7278

	
7311

	
7637

	
7.3623e+3 ± 1.05346e+2

	
100%

	
7636




	
IRNDE

	
3836

	
3996

	
4063

	
3.9862e+3 ± 7.47274e+1

	
100%

	
4004




	
f17

	
RNDE

	
117,296

	
124,557

	
128,845

	
1.24642e+5 ± 3.76015e+3

	
100%

	
125,185




	
IRNDE

	
74,880

	
78,511

	
82,122

	
7.8798e+4 ± 2.27369e+3

	
100%

	
80,990




	
f18

	
RNDE

	
15,527

	
16,158

	
17,455

	
1.64022e+4 ± 6.10143e+2

	
100%

	
17,064




	
IRNDE

	
12,863

	
13,177

	
13,876

	
1.32738e+4 ± 3.59021e+2

	
100%

	
12,389




	
f19

	
RNDE

	
1896

	
1937

	
2031

	
1.9478e+3 ± 4.20972e+1

	
100%

	
1949




	
IRNDE

	
1519

	
1530

	
1580

	
1.5368e+3 ± 1.88078e+1

	
100%

	
1531




	
f20

	
RNDE

	
14,092

	
16,088

	
20,233

	
1.67794e+4 ± 2.10221e+3

	
100%

	
21,606




	
IRNDE

	
13,981

	
18,900

	
34,239

	
2.20096e+4 ± 5.75139e+3

	
100%

	
25,853




	
f21

	
RNDE

	
2333

	
2433

	
2483

	
2.4255e+3 ± 4.67529e+1

	
100%

	
2434




	
IRNDE

	
1873

	
1933

	
2044

	
1.9509e+3 ± 5.22865e+1

	
100%

	
1949




	
f22

	
RNDE

	
5807

	
6420

	
7360

	
6.4919e+3 ± 4.23616e+2

	
100%

	
6823




	
IRNDE

	
3137

	
3243

	
3660

	
3.3141e+3 ± 1.69914e+2

	
100%

	
3916




	
f23

	
RNDE

	
4805

	
5018

	
5360

	
5.0267e+3 ± 1.55067e+2

	
100%

	
5029




	
IRNDE

	
2509

	
2575

	
2685

	
2.5812e+3 ± 5.33621e+1

	
100%

	
2592




	
f24

	
RNDE

	
15,928

	
16,317

	
16,709

	
1.63417e+4 ± 2.60714e+2

	
100%

	
15,566




	
IRNDE

	
12,581

	
13,007

	
13,582

	
1.31475e+4 ± 3.5