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Abstract: The symmetrical segmentation of brain tumor images is crucial for both clinical diagnosis
and computer-aided prognosis. Traditional manual methods are not only asymmetrical in terms
of efficiency but also prone to errors and lengthy processing. A significant barrier to the process is
the complex interplay between the deep learning network for MRI brain tumor imaging and the
harmonious compound of both local and global feature information, which can throw off the balance
in segmentation accuracy. Addressing this asymmetry becomes essential for precise diagnosis. In
answer to this challenge, we introduce a balanced, end-to-end solution for brain tumor segmentation,
incorporating modifications that mirror the U-Net architecture, ensuring a harmonious flow of
information. Beginning with symmetric enhancement of the visual quality of MRI brain images, we
then apply a symmetrical residual structure. By replacing the convolutional modules in both the
encoder and decoder sections with deep residual modules, we establish a balance that counters the
vanishing gradient problem commonly faced when the network depth increases. Following this,
a symmetrical threefold attention block is integrated. This addition ensures a balanced fusion of
local and global image features, fine-tuning the network to symmetrically discern and learn essential
image characteristics. This harmonious integration remarkably amplifies the network’s precision
in segmenting MRI brain tumors. We further validate the equilibrium achieved by our proposed
model using three brain tumor segmentation datasets and four metrics and by juxtaposing our
model against 21 traditional and learning-based counterparts. The results confirm that our balanced
approach significantly elevates performance in the segmentation of MRI brain tumor images without
an asymmetrical increase in computational time.

Keywords: symmetrical brain tumor segmentation; threefold attention block; biomedical images;
deep learning; residual module

1. Introduction

Biomedical imaging has firmly established itself as an integral component of both dis-
ease diagnosis and subsequent treatment strategies, with its role continuously
expanding [1]. One of the most pressing scientific challenges in the domain of medi-
cal imaging is harnessing the potential of artificial intelligence (AI) and deep learning
methodologies. The ambition is to adeptly analyze the vast repositories of medical imaging
data, ensuring that these technologies not only keep pace with the data influx but also
bring transformative advancements to the field. However, while there is an abundance
of research on MRI segmentation methods, there remains a noticeable gap in leveraging
advanced neural network architectures for efficient and accurate brain tumor segmentation
from MR images. Our work addresses this very gap by proposing an innovative method
that combines the strengths of multiple existing models. The overarching goal is to arm
clinicians with sophisticated tools and methods, facilitating more effective screening, diag-
nosis, therapeutic planning, image-guided interventions, evaluation of treatment outcomes,
and patient monitoring across a myriad of significant medical conditions [2]. Zooming into
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the specific context of brain tumors, these are characterized by the aberrant proliferation of
cells within the cerebral environment [3]. The onset and progression of such tumors can
be subtle yet profoundly harmful, significantly affecting a patient’s well-being and overall
quality of life. Recognizing these challenges, the medical community has continuously
sought better methods for diagnosis and intervention. As a result, as medical advancements
progress, technologies like medical imaging, tumor monitoring, and the ability to predict
patient outcomes have taken center stage [4]. Yet, there exists a tangible need for automated
methods that not only detect these tumors but also predict their progression with higher
accuracy. Our research aims to provide a comprehensive solution that bridges this gap, en-
suring that individuals receive the most comprehensive and effective treatments available.
These advancements are not just about detecting tumors but providing a holistic approach
to patient care, ensuring that individuals receive the most comprehensive and effective
treatments available [5]. The integration of these technologies underscores their importance
in the contemporary treatment of brain tumors [6]. One standout technique in this realm
is Magnetic Resonance Imaging (MRI). MRI is a non-invasive imaging method that uses
radiofrequency signals to produce internal images by exciting target tissues under a power-
ful magnetic field. Some of its unique advantages include excellent soft tissue contrast, no
radiation exposure, and the capability to offer multi-modal and multi-parameter imaging
by varying the contrast agents. This makes MRI particularly suited for detecting brain
abnormalities. For brain MRI, there are four commonly used imaging modes (referenced
in Figure 1): (a) FLAIR (fluid-attenuated inversion recovery) prominently showcases the
edema, or swelling, surrounding brain tumors. (b) T1-weighted images provide clarity in
discerning tumor core contours, consisting of enhanced and non-enhanced tumor regions,
as well as areas of necrosis. (c) T1C images (T1-weighted contrast-enhanced images) em-
phasize the area of enhancing tumors. (d) T2-weighted images offer a clear demarcation
between the whole tumor region, which includes the tumor core and the surrounding
edema, and the healthy tissue areas. The differences between tumor tissue and adjacent
normal brain tissue are significant, but they share a high degree of grayscale similarity. Even
though there has been substantial progress in brain tumor research, automatically identify-
ing tumor contours and their detailed segmentation within multi-modal MRI remains a
challenging task.

Figure 1. MRI images of brain tumors across various modalities. The original images are presented
in the first row, while the images modified using our a contrast-adjusted algorithm [3] are displayed
in the subsequent row. (a) FLAIR, (b) T1, (c) T1ce, (d) T2, and (e) ground truth.

For physicians to formulate effective treatment plans, acquiring precise details re-
garding the size, morphology, and location of brain tumors is of paramount importance.
Traditionally, segmenting brain tumors from MR images is a manual process, demand-
ing considerable time and expertise on the part of medical practitioners. The intricate
nature of brain tumor presentations exacerbates the challenge, rendering the process prone
to errors. This has led to a growing interest in the automatic segmentation of brain tu-
mors in MR images, as it promises to enhance diagnostic efficiency. Nonetheless, this
endeavor is not without its challenges. The inherent variability in the presentation of
brain tumors—manifested in disparities in size, shape, and location across different pa-
tients—compounds the difficulty of the task. Additionally, delineating the boundaries
between normal soft tissues and pathological tissues in MR images can be nebulous, as



Symmetry 2023, 15, 1912 3 of 23

highlighted by Ren Lu et al. [7]. Hence, while automated techniques hold promise, ensuring
their accuracy remains an intricate academic and clinical pursuit.

Extending the discussion, Convolutional Neural Networks (CNNs) have made sig-
nificant strides in the domain of image segmentation [8]. One notable contribution was in
2015, when Long et al. [9] introduced a Fully Convolutional Network (FCN) that is based
on CNNs for semantic segmentation. This model was innovative in its approach; it replaces
the fully connected layer typically found at the end of CNNs with convolutional layers.
This change allows for outputs matching the size of the input image, yielding accurate
segmentation results. Basically, the brain tumor image segmentation network based on the
FCN is an end-to-end semantic segmentation network. However, the FCN disconnects the
association between pixels, resulting in less accurate image segmentation outcomes. While
CNNs have dramatically advanced the field of image segmentation, the pressing need to
continually refine these models stems from the inherent complexities in medical images.
Ghiasi et al. [10] improved the segmentation precision of images by incorporating pyramid
convolution to extract global information from the image. Ronneberger et al. [11] proposed
a symmetrical FCN called U-Net. Using skip connections, U-Net integrates both shallow
and deep image feature information, enhancing the performance in medical image segmen-
tation tasks. In order to further improve image segmentation performance, many studies
have embedded attention mechanisms (AMs) into deep neural networks. For example,
Hu et al. [12] introduced a channel-based Squeeze-and-Excitation attention network, and
Xiao et al. [13] devised the Weighted Res-UNet architecture. This design embeds both the
AM and residual connections, as elucidated by He et al. [14], specifically for retinal image
segmentation. Within this framework, residual connections are systematically incorporated
across all components of U-Net, leading to an optimized feature extraction process. Utiliz-
ing the AM concept, CBAM [15] implements a model that connects two AM modules in a
cascading manner and embeds them into the network. Meanwhile, DANet [16] parallels
the spatial attention module with the channel attention module, which captures feature
dependencies in both spatial and channel dimensions. Delving deeper into the mentioned
studies, it becomes evident that the field has shifted from purely architecture-based inno-
vations to integrating AMs and other heuristics that capture contextual information more
effectively. A significant problem with current brain tumor MRI image segmentation net-
works is their excessive number of layers and the inadequate integration of local and global
feature information. This results in decreased image segmentation accuracy. Furthermore,
Ibtehaz et al. [17] presented an innovative method with their introduction of MultiResUNet
for skin cancer segmentation. Their method expanded multi-resolution blocks and im-
proved upon the residual skip connections inherent to the U-Net model. However, a closer
look at U-Net reveals a limitation: only features of the same scale are amalgamated during
skip connections. This overlooks the potential of amalgamating multi-scale features from
the encoder, each with its distinct receptive field. Furthermore, Nodirov et al. [18] presented
attention U-Net, which incorporates an additive AM to accentuate crucial feature informa-
tion in the skip connection features. Highlighting other advancements, Colman et al. [19]
developed the DR-Unet104 network specifically for brain tumor segmentation tasks. They
made changes to the traditional U-Net by substituting its convolutional blocks in the
encoder with stacked bottleneck residual blocks. Impressively, their model achieved
insightful segmentation results. Considering these benefits, it is unsurprising that the pre-
vailing paradigm in medical image segmentation prominently features CNNs employing
an encoder–decoder approach.

Without a doubt, methods based on deep neural network models have achieved good
results in brain tumor segmentation tasks. However, there is still significant room for per-
formance improvement. The utilization of features in brain tumor images is not exhaustive.
Often, the intrinsic complexities, such as variations in tumor size, shape, location, and
patient-specific characteristics, present unique challenges that have not been completely ad-
dressed by current models. These challenges highlight the nuances of the problem and the
need to capture a broader and more intricate feature spectrum for accurate segmentation.
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Moreover, while there are numerous models available, not all are tailored to the specific
requirements of brain tumor segmentation. Moreover, designing a brand new and efficient
deep neural network model is a costly endeavor. It demands substantial computational
resources, time, and expertise. Furthermore, given the critical nature of medical diagnos-
tics, any new model must undergo rigorous testing and validation processes to ensure
it is reliable and accurate. This adds to the complexity, cost, and time of bringing novel
deep neural networks into clinical practice. Therefore, the research community should
consider both refining existing models and developing optimized strategies to harness the
full potential of neural networks for this pivotal task. In this paper, we introduce a new
approach uniquely tailored for MRI brain tumor image segmentation. We enhance the
clarity of MRI images using a specific pre-processing technique, allowing for the extraction
of hidden features through CNNs. We replace the convolutional units in the conventional
segmentation network with deep residual modules, tackling the vanishing gradient issue
commonly found in deeper networks. By incorporating a threefold attention block (TAB),
the network effectively combines local and global image features, greatly improving pre-
cision in MRI brain tumor segmentation. Our primary goal is to substantially improve
segmentation accuracy, providing invaluable support for clinical diagnosis.

The main contributions of this research can be summarized in three aspects:

• An end-to-end brain tumor MRI image segmentation network is proposed. It not
only extracts more comprehensive contextual image features but also significantly
improves the accuracy of brain tumor image segmentation.

• A TAB and a residual module are introduced within the Fully Convolutional Network.
This effectively connects deep and shallow image information, emphasizing important
feature information. On one hand, the residual module enhances the feature informa-
tion’s expressive capacity, aiding in the extraction of image features during encoding.
On the other hand, the TAB pays more attention to the detail of the brain tumor image
during decoding, enhancing the accuracy of segmentation details.

• The TAB underwent extensive evaluations on BraTS2018, BraTS2019, and other brain
tumor segmentation benchmarks. Experimental results indicate that the segmentation
network with the TAB outperforms prior brain tumor image segmentation networks.

The rest of the sections are organized as follows: Section 2 details the literature review.
Section 3 presents the proposed approach and the modules used. Section 4 showcases the
simulations and results, and Section 5 concludes the findings.

2. Related Work

In this section, we provide a comprehensive overview of existing methods and their
limitations. Further details are provided in the subsequent sections.

2.1. Brain Tumor Image Segmentation

Segmentation techniques utilizing CNNs have shown remarkable success in the do-
main of medical imaging. Among them, the U-Net-based segmentation network stands
out. In a notable study, Abdullah et al. [20] put forward the concept of a light-weighted
rapid semantic segmentation network, known as LBTS-Net. Their approach involved
simplifying the U-Net network by trimming down the feature channels and incorporating
depth-separable convolutions. As a result, they were able to streamline the number of
parameters, thus boosting the overall computational efficiency. In a separate development,
Awasthi et al. [21] rolled out multi-threshold attention U-Net. This innovation relies on
attention U-Net and uses multi-path segmentation to create separate models for different
brain tumor sub-regions. Going a step further, Xu et al. [22] introduced deeply supervised
U-Attention Net. This design integrates both an AM and deep supervision into U-Net,
which facilitates both high- and low-resolution representation of features, a boon espe-
cially for smaller tumor areas. Meanwhile, Shelatkar et al. [23] unveiled a cross-stage local
network structure. This structure is geared towards better feature extraction in U-Net.
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Additionally, they refined the loss function to counter the effects of class imbalances in
training samples, leading to enhanced brain tumor segmentation precision.

2.2. U-Net and Its Advancements

U-Net is widely recognized as the primary network for medical image segmentation.
Both its original and improved versions play a crucial role in many medical imaging
applications. Evidence of its effectiveness came when Ronneberger et al. [11] used U-Net
to win the 2015 International Symposium on Biomedical Imaging Cell Tracking Challenge.
On a different note, Çiçek et al. [24] put forth the idea of replacing all 2D convolution
operations in U-Net with 3D convolutions. The resulting 3D U-Net turned out to be
better suited for medical image voxel processing. However, 3D convolution operations
come with their own set of challenges, mainly because of their complex parameters and
rigorous training requirements. Taking inspiration from residual connections, as mentioned
by Deng et al. [25], Ibtehaz et al. [17] incorporated multi-resolution blocks and residual
skip connections into U-Net. This integration resulted in MultiResUNet, which has been
pivotal in skin cancer image segmentation. In another intriguing approach, Zhou et al. [26]
combined the principles of dense connections, as presented by Liu et al. [27], with U-Net to
craft UNet++. Their approach utilizes nested and densely connected skip paths to bridge
the semantic differences between encoder and decoder features during skip connections.

2.3. Multi-Scale Feature Segmentation Network

Recently, segmentation techniques have increasingly utilized multi-scale features to
enhance the network’s segmentation capabilities. The pyramid parsing network serves
as a prime example. In this network, Zhao et al. [28] demonstrated the effectiveness of
multi-scale feature-pooling modules. These modules gather features from various receptive
fields of a single feature, enhancing the interplay between the local and global aspects of the
feature. In a parallel stride, Wang et al. [29] harnessed information from different layers of
CNNs to design a cutting-edge deep neural network. This network, equipped with a deep
attention feature module, demonstrated superior performance in prostate segmentation
within transrectal ultrasounds. Sinha et al. [30] introduced the concept of multi-scale
features during fusion and aimed to integrate a guided self-attention mechanism. Their
model served as a link between fused and local features, effectively capturing subtle
contextual relationships. Furthermore, Jiali et al. [31] concentrated on the intricacies of
segmenting small targets in the hippocampus and introduced multi-resolution images into
their network. Using dense connections, they utilized encoder and decoder multi-resolution
features to enhance feature propagation, promoting better communication between encoder
and decoder.

2.4. Attention Mechanism

AMs have emerged as a transformative force in image processing, notably in the do-
mains of object detection, classification, and segmentation. Jetley et al. [32] and
Wang et al. [33] introduced the groundbreaking self-attention mechanism, crafted to elim-
inate the dependency on external data sources. Zhou et al. [34] advanced the field by
devising a CNN that utilizes a sophisticated channel attention mechanism, expertly cap-
turing the complex interplay among feature channels. Additionally, their model enables
an adaptive adjustment of the prominence of each channel within the feature set. More-
over, Mazumdar et al. [35] proposed the use of spatial attention based on the channel
AM to model the dependencies among different positions on the feature map, resulting
in a correlation coefficient matrix of these positions. With the emergence of transformers
underpinned by self-attention mechanisms, as elucidated by Valanarasu et al. [36] and
Jiang et al. [37], there has been a marked advancement in discerning extensive interde-
pendencies among features. Furthermore, seminal research on sentence translation by
Bahdanau et al. [38] and Shen et al. [39] introduced the initial versions of additive AMs.
Recently, these mechanisms have gained traction in the domain of image processing. In
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essence, an additive AM merges two input features using post-linear transformation; they
then undergo subsequent activation and linear transformations. Upon transformation,
a sigmoid function is employed to elucidate the interrelation of similarity between the
two features. Taking this to the realm of U-Net, Cai et al. [40] innovatively integrated a
gated attention mechanism between encoder and decoder features, accentuating pivotal
feature data in skip connections. Through the integration of attention mechanisms, neu-
ral networks have been fortified to focus selectively on distinct data points, significantly
augmenting model proficiency in tasks necessitating precise localization.

It is evident that brain tumor segmentation is majorly impacted by CNNs, with U-
Net standing out as a main contributor. Recent innovations, like the more streamlined
LBTS-Net, highlight attempts to boost efficiency in computing. At the same time, tools like
multi-threshold attention U-Net and deeply supervised U-Attention Net demonstrate the
industry’s drive to improve feature accuracy, especially when it comes to identifying smaller
tumor areas. The shift towards 3D convolution in U-Net indicates a deeper exploration,
and the addition of multi-resolution blocks and residual skip connections in MultiResUNet
represents a mix of detailed and broader views in segmentation. Additionally, methods
focusing on multi-scale features are becoming more common, aiming to combine specific
details with a broader view. This makes networks like the pyramid parsing network and
other techniques using multi-scale features increasingly important today. The AM has
brought about major changes, with self-attention strategies and channel attention designs
leading to major progress. These strategies highlight the importance of focusing on certain
areas to increase segmentation accuracy.

With these developments in mind, our new method incorporates the principle of
residual structures, tackling the often-seen issue of vanishing gradients in more complex
networks. Through the addition of a three-part attention feature, we have managed to
merge both specific and broad image features. This not only fits with modern developments
but also greatly improves the accuracy of segmenting brain tumors in MRI scans, presenting
a fresh and enhanced approach to the subject.

3. Proposed Methodology

In this section, we introduce our innovative approach, distinguishing it from existing
methods previously discussed. Here, we delve into the specifics of our technique, outlining
its design and key components. We present a sophisticated technique for detecting brain
tumors using MRI scans. Initially, we improve the clarity of MRI brain images through
a pre-processing step. We then adopt a residual-based approach, replacing conventional
convolutional segments in both the encoder and decoder phases of a standard image
segmentation network with advanced residual units. This method adeptly tackles the
vanishing gradient dilemma often encountered in deeper networks. Following this, we
incorporate a threefold AM within the network. This design allows for a seamless combi-
nation of local and extensive image attributes, bolstering the network’s ability to effectively
identify and comprehend crucial image characteristics. In Figure 2, we delineate the archi-
tecture of the proposed model. Subsequent subsections provide an exhaustive analysis of
each constituent step.
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Figure 2. Overall structure of the proposed model.

3.1. Data Pre-Processing

Given the complexity inherent in the structure of brain tumor images and the influence
of noise, data pre-processing becomes imperative for enhanced performance. The first
step of our proposed model is enhancing the contents in MRI images. In this study, brain
tumor MRI images are subjected to a two-step pre-processing procedure. Initially, each 3D
MRI image possesses dimensions of 240× 240× 155 pixels. These 3D brain tumor images
are sliced along the axial direction, resulting in a series of 2D brain tumor slice images.
Subsequently, slices of size 128× 128 are derived from each 2D slice image. To process
the images according to the first step, we consider the following mathematical equations
and notations:

• Initial dimensions: The dimensions of each 3D MRI image can be represented as
(D3D = (240, 240, 155)), where each coordinate represents the size of the image along
the x-, y-, and z-axes, respectively.

• Axial direction slicing: Upon slicing in the axial direction, a series of 2D slices is
obtained. Let N denote the number of 2D slices. In this case, N = 155, with each slice
having dimensions D2D = (240, 240).

• Sub-slices of size 128× 128: From each 2D slice, sub-slices of dimensions 128× 128
are derived. Let m and n represent the number of sub-slices along the x- and y-axes,
respectively. In this particular instance, the extraction method for the 128× 128 slices
must be specified. However, for the sake of this discussion, we assume that these
sub-slices are non-overlapping and align perfectly within the 240× 240 dimensions.

m =

⌊
240
128

⌋
= 1, n =

⌊
240
128

⌋
= 1 (1)

This gives us m× n = 1× 1 = 1 sub-slice per 2D slice.
• Total number of sub-slices: The total number of (128× 128) slices, (T), is

T = N ×m× n = 155× 1× 1 = 155 (2)

Thus, from each initial 3D MRI image with dimensions of 240× 240× 155, we derive a
total of 155 sub-slices, each of size 128× 128. To further extract hidden features, the visual
quality of the obtained MRI images that are processed in the first step is refined using
a low-complexity algorithm. The enhancement procedure commences by manipulating
the initial MRI images using a logarithmic transformation method to enhance pixels with
medium and low brightness levels. Subsequently, the images undergo treatment utilizing a
straightforward exponential equation to adjust local contrast while reducing the impact
of bright pixels. Following this, an advanced version of the logarithmic-based image
processing model is employed to combine the two altered images for the purpose of
optimizing visual traits and efficiency. Additionally, a revised version of the cumulative
distribution function based on hyperbolic secant distribution is applied to elevate the
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overall luminance of the images. In the final step, pixel values in the images are adjusted to
a standard scope using a linear scaling method, guided by a normalization equation. The
formula that outlines this enhancement is articulated as follows:

IMG1 =
max(Iimg)

log(max(Iimg) + 1)
× log(Iimg + 1)

IMG2 = 1− exp(−Iimg)

IMG3 =
IMG1 + I2

λ + (IMG1 × IMG2)

IMG4 = erf(λ× arctan(exp(IMG3))− 0.5× IMG3)

IMG5 =
IMG4 −min(IMG4)

max(IMG4)−min(IMG4)

(3)

where Iimg signifies the initial MRI image, IMG1 represents the MRI image that is processed
using the logarithmic transformation, IMG2 is the image adjusted using the straightforward
exponential equation, IMG3 is the combined image subsequent to the application of the
advanced logarithmic-based image processing model, IMG4 is the image after being refined
using the updated cumulative distribution function based on hyperbolic secant distribution,
and IMG5 is the image subsequent to adjustment using the linear scaling technique. To
provide a visual representation, Figure 3 showcases original and enhanced MRI brain
tumor images. Within this image, distinct colors demarcate different tumor types: red
signifies necrotic and non-enhancing tumor regions; green highlights peritumoral edema
regions; and yellow delineates enhancing tumor regions. This color-coded approach aids
in intuitive understanding and analysis.

Figure 3. Visual results of original and adjusted images. (a) FLAIR, (b) T1, (c) T1ce, (d) T2, and (e)
ground truth.

3.2. Deep Residual Module

Understanding the architecture of neural networks is paramount for obtaining the
desired results. One of the critical areas that has received significant attention in the realm of
image segmentation is the CNN structure. The configuration of a CNN plays a pivotal role
in determining the quality of segmentation outcomes. Let C(x) denote the transformation
applied by a traditional CNN to an input x. However, deepening this structure has often
led to a pervasive challenge: the vanishing gradient issue. Mathematically, during the
backpropagation phase, gradients ∂L

∂w can approach zero, where L is the loss function and
w are the network weights:

∂L
∂w
−→ 0 (4)
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To mitigate this concern, our research turned to the principles underlying the residual
network [41]. A residual network is comprised of numerous interconnected residual
modules. A representative structure of a single residual unit is depicted in Figure 4.

Figure 4. Structure of the residual unit.

3.2.1. The Residual Unit

Suppose that the input to the neural network is x and the expected output is H(x).
An identity mapping layer y = x is added to the shallow network. Input x is directly
transmitted to the subsequent network layers, and the output results are accumulated.
At this point, what needs to be learned is not an entire output H(x) but the difference
between function value F(x) and x. Now, the output (H(x)) of the residual unit can be
represented as

H(x) = F(x)− x (5)

where H(x) is the residual that the network needs to learn. This effectively changes the
objective from approximating H(x) to learning residual F(x).

3.2.2. Incorporation into Image Segmentation Networks

In traditional CNNs, multiple convolution operations are used to extract image fea-
tures, as depicted in Figure 5a. The output from such a traditional network can be formu-
lated as

HCNN(x) = Cn ◦ Cn−1 ◦ . . . ◦ C1(x) (6)

where ◦ represents the composition of functions, Ci represents the transformation per-
formed by the i-th convolutional layer, and n is the total number of layers. Our study
replaces these original convolution modules in both the encoder and the decoder of the
segmentation network with deep residual modules, as demonstrated in Figure 5b. In this
residual architecture, output H(x) can be formulated as

H(x) =
n

∑
i=1

Fi(x) + x (7)

where Fi(x) is the transformation by individual deep residual modules and n is the number
of such modules. This equation essentially represents the addition of residuals Fi(x) to
identity mapping x. Moreover, the deep residual module refines the vanishing gradient
problem during network training. Typically, during backpropagation, the gradient of the
loss (L) with respect to the weights (w) is calculated as follows:

∂L
∂w

=
∂L

∂H(x)
∂H(x)

∂w
(8)

In traditional deep networks, the term ∂H(x)
∂w may become vanishingly small, leading

to the vanishing gradient problem. However, in deep residual networks, the presence of
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the identity mapping ensures that ∂H(x)
∂w contains terms that are not prone to vanish. Thus,

gradient ∂L
∂w is less likely to diminish significantly during backpropagation:

∂L
∂w
≈ ∂L

∂H(x)

(
∂F1(x)

∂w
+

∂F2(x)
∂w

+ . . . + 1
)

(9)

By encouraging these gradients to propagate without significant diminishment, the
deep residual module effectively alleviates the vanishing gradient issue. This architecture
thus enhances the extraction of feature information, addressing the problem of incomplete
feature extraction in image segmentation networks.

(a) Original convolutional module

(b) Deep residual module
Figure 5. Comparison of the structure between the original convolutional module and the deep
residual module.

3.3. Segmentation Network

The brain tumor image segmentation network based on the TAB uses deep residual
modules to replace the encoder and decoder layers in the original image segmentation
network structure. This can solve problems such as vanishing gradient while deepening
network training. By introducing a TAB into the segmentation network, the network can
better learn important feature information, suppress redundant feature information, and
enhance brain tumor segmentation performance in MRI images. The structure of the TAB
network in this study is shown in Figure 2; it consists of encoding path, decoding path,
bridging path, and skip connections, where the inputs are the four modalities of MRI brain
tumor images. The encoding layer is composed of convolutional layers, deep residual
modules, and max pooling layers. Mathematically, it can be expressed as

E(x) = P ◦ R ◦ C(x) (10)

These components encompass convolution operations, ReLU activation functions,
and batch normalization (BN) regularization. Within the deep residual modules, residual
connections bridge both the shallow and deep semantic features of the feature map. As the
feature map undergoes downsampling, its size diminishes. Concurrently, the number of
channels in the feature map escalates as its size contracts. Similar to the encoding layer,
the decoding layer is composed of deep residual modules and incorporates upsampling
processes, i.e., with U(x), we have

D(x) = R ◦U(x) (11)

Feature maps from the encoding layer undergo upsampling, allowing the resultant
feature map to match the size of the original image. The bridging path, B(x), serves as
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an intermediary layer connecting the encoding and decoding layers. By leveraging skip
connections, the encoding layer’s shallow features find their counterparts in the deep
features of the decoding layer, ensuring harmonious integration of the feature map. It is
worth noting, however, that the primary feature data sourced from the encoding layer are
not always pristine. Often, they are interspersed with noise and superfluous details. Such
imperfections, if not addressed, have the potential to undermine the accuracy of brain tu-
mor image segmentation, emphasizing the need for meticulous processing and refinement.
In this study, we introduce a TAB prior to merging the features from the encoding layer
with their corresponding features in the decoding layer. This strategic placement of the
TAB serves multiple purposes: it amplifies the essential feature information, diminishes the
response from non-pertinent areas, and curtails the influence of extraneous information.
By doing so, we created a more streamlined and focused feature set. As a result of these
refinements, the accuracy of brain tumor image segmentation is significantly enhanced,
paving the way for more reliable and precise diagnostic tools. Building upon the foun-
dation of the established AM, as referenced in sources [42], we introduce the TAB. This
innovative approach deftly creates a symbiotic interdependence among all pixel channels,
a relationship vividly depicted in Figure 6. It is noteworthy that the TAB is not a monolithic
structure; instead, it is a composite configuration consisting of three coexisting modules.
This threefold design emphasizes its capacity for versatility and adaptability in addressing
intricate imaging endeavors. The tensors generated by the three parallel attention modules
are aggregated together by taking the average. Given an input tensor x ∈ RC×H×W , the
tensor undergoes a series of transformations across three parallel attention modules. In the
first module, the interaction between the H and C dimensions is established. Initially, the
H- and C-axes of x are interchanged. Subsequently, the tensor’s C dimension is condensed
to two dimensions using maxpooling and meanpooling. This step ensures the retention of
a rich representation of the inherent feature information while simultaneously reducing
the network’s depth, thereby minimizing computational demands. A 1× 1 convolution is
then applied, followed by normalization. The resulting tensor is processed with a sigmoid
activation function, yielding H × C interaction attention weights. To maintain consistency
with the input, the output’s H- and C-axes are reverted to their original configuration. The
second attention module operates analogously, focusing on the interaction between the
W and C dimensions. The WW- and C-axes of x are initially swapped, followed by the
aforementioned maxpooling and meanpooling operations to reduce the C dimension. A
subsequent 1× 1 convolution and normalization lead to the generation of W×C interaction
attention weights with a sigmoid activation function. Again, to ensure consistency, the
output’s W- and C-axes are reverted. The third attention module establishes an interaction
between W and H. Here, x is directly subjected to maxpooling and meanpooling operations,
reducing the C dimension. A 1× 1 convolution and normalization yield W × H interaction
attention weights post-sigmoid activation. Therefore, for a given input tensor x ∈ RC×H×W ,
each TAB module Ti(x) performs attention-based transformations:

Ti(x) = Sigmoid(Norm(Conv1×1(Pooling(Swapi(x))))) (12)

where Swapi(x) is the permutation of dimensions H, C, and W, depending on module i.
The final output of the TAB network is the average of the outputs from all three modules:

T(x) =
1
3

3

∑
i=1

Ti(x) (13)

Conclusively, the tensors produced by these three distinct attention modules are
integrated to achieve the target result. This aggregation is achieved by computing their
average, ensuring a comprehensive representation that encapsulates the interactions across
all dimensions.
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Figure 6. Graphical representation of threefold attention block.

4. Experimental Results
4.1. Datasets

In our study, we employed the BraTS2018 [43] and BraTS2019 [44] datasets to eval-
uate brain tumor image segmentation performance. Both datasets originate from the
esteemed MICCAI Brain Tumor Segmentation Challenge, a recognized platform in the
domain of medical imaging. The BraTS2018 dataset encompasses 285 patient cases. Of
these, 210 samples are derived from high-grade glioma patients, while the remaining 75
are from those with low-grade gliomas. On the other hand, the BraTS2019 dataset builds
upon its 2018 counterpart. In addition to the original BraTS2018 training dataset, it in-
corporates 49 high-grade glioma patients and a single low-grade glioma patient, thereby
expanding its breadth.

Each patient’s dataset is characterized by four distinct MRI modalities. Additionally,
the actual segmentation image, often referred to as the ground truth, is provided. The
segmentation task for brain tumors necessitates a tripartite division: the whole tumor (WT),
the enhanced tumor (ET), and the tumor core (TC). The labeling scheme is systematic, with
four categories in place: healthy regions bear the label 0; necrotic and non-enhancing tumor
regions are designated as 1; peritumoral edema regions are labeled as 2; lastly, enhancing
tumor regions are marked as 4.

4.2. Loss Function

This study introduces a hybrid loss function that combines cross-entropy loss with
Dice similarity coefficient loss. The mathematical expression for the cross-entropy loss is
given by

LossCE = −
N

∑
i=1

L

∑
j=1

[(
gij log pij

)
+

(
1− gij

)
log

(
1− pij

)]
(14)

where N represents the set of pixels within the segmentation map, while L designates the
set of pixels that are labeled with the segmentation marker. Moving on, gij signifies the
actual classification of the ith pixel in the segmentation map in conjunction with the jth

pixel in the labeled segmentation. On the other hand, pij indicates the forecasted value for
the ith pixel in the segmentation map and its counterpart, the jth pixel, in the annotated
segmentation label. As we delve into the network training phase, it is worth noting that
the cross-entropy loss function plays a pivotal role in optimization. This optimization is
crucial, because it addresses and rectifies the vanishing gradient issue, ensuring that the
network operates with stability. Nevertheless, when dealing with images that exhibit class
imbalance issues, there is a notable challenge. Specifically, the loss function tends to lean
favorably towards samples that encompass a larger number of categories. Such a bias can
redirect the network’s optimization trajectory, potentially compromising its efficacy. To
address such scenarios, another metric can be utilized. Here, the Dice similarity coefficient
loss function, which is defined as follows, comes into play:
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LossDice = 1−
2
(

∑N
i=1 ∑L

j=1 gij pij

)
+ ε

∑N
i=1 ∑L

j=1 gij + ∑N
i=1 ∑L

j=1 pij + ε
(15)

Firstly, we must determine N, which is the set of pixels within the segmentation map,
and L, the set of pixels associated with the segmentation label. It is important to note the
presence of a smoothing factor, ε, in the equation. This factor ensures that the denominator
in the loss function never reaches zero. For the purpose of our experiment, we assign ε
a negligible value. With the incorporation of the Dice similarity loss function, there is a
strategic advantage: it steers the network parameters’ learning process, allowing prediction
outcomes to more closely mirror actual values. Building on this, we then arrive at the
culmination, which is the formulation of the hybrid loss function, described as follows:

LOSS f = LossCE + LossDice (16)

4.3. Parameter Setting and Training

For our experiment, we utilized a specific hardware and software configuration to
ensure optimal performance and accuracy. In terms of hardware, our setup comprised
an Intelr Xeonr Gold 6128 CPU operating at 2.30 GHz, complemented by a memory
capacity of 256 GB. Additionally, we used the NVIDIA 1080Ti GPU. On the front end, our
environment was anchored on the Windows Server 2012 R2 operating system. We executed
our scripts using Python 3.8 and PyTorch, which facilitated our neural network operations.

During the training phase, the dataset predominantly consisted of pre-processed
images of brain tumors, accompanied by their authentic segmentation labels. To ensure a
robust validation mechanism, 25% of this dataset was reserved as a validation set, leaving
the remaining 75% for continuous model training. As we proceeded the training, certain
hyperparameters were carefully chosen to optimize the model’s learning. Specifically, the
initial learning rate was set to 0.003, combined with a momentum of 0.9. Furthermore,
each iteration processed a batch size of 18 images, aiming to complete 10,000 iterations in
total. To further enhance the optimization process, the Adam optimizer was employed,
characterized by a decay coefficient of 0.0001. Recognizing the importance of not overfitting
the model, the Early Stopping methodology was integrated. This serves as a mechanism to
halt training once the model ceases to show significant improvement, thereby determining
the optimal iteration count. For a visual representation of the model’s performance, Figure 7
provides a graphical depiction of the loss function, number of epochs, and batch size trend
for both the training and validation sets. From this, a noteworthy observation emerges:
as the iteration count increases, there is a discernible decline in the network’s loss value.
This trend highlights the model’s learning efficacy. Remarkably, by the time we approach
the 340th iteration, the loss begins to showcase signs of stabilization, indicating a point
of convergence. This convergence is pivotal, suggesting that the model has sufficiently
learned from the dataset and is less likely to benefit from further iterations.

(a) Loss function (b) Batch size (c) Epochs
Figure 7. Example of changes in loss function, batch size, and epochs.

4.4. Performance Evaluation Metrics

In real-world clinical settings, the tumor structure is typically segmented into three
distinct regions for performance evaluation in image segmentation. These regions comprise
whole tumor (WT), enhanced tumor (ET), and tumor core (TC).
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For a comprehensive assessment of the proposed image segmentation network, we
employed several performance metrics. These included Dice similarity coefficient, Precision,
Recall, and Hausdorff distance (HD). The corresponding formulas for these metrics are
delineated below:

Dice =
2TP

FP + 2TP + FN
× 100% (17)

Precision =
TP

TP + FP
× 100% (18)

Recall =
TP

TP + FN
× 100% (19)

In the above formulas, TP is the number of samples correctly detected as positive
samples; FP is the number of negative samples incorrectly detected as positive samples; and
FN is the number of positive samples incorrectly detected as negative samples. The Dice
coefficient is used to measure the similarity between the predicted segmentation results and
the actual segmentation results. Precision is the proportion of the total number of pixels
correctly predicted as brain tumor segmentation to the total number of pixels predicted as
brain tumor. Recall is the proportion of the total number of pixels correctly predicted as
brain tumor to the total number of pixels that are actually brain tumor.

Furthermore, HD is used to represent the maximum mismatch degree between two
sample sets. A smaller HD value indicates better segmentation results. Hausdorff 95 (HD95)
represents the calculated HD value multiplied by 95%, aiming to eliminate the impact of
outliers on the calculation results.

HD(S, L) = max
(

max
s∈S

min
l∈L
‖s− l‖, max

l∈L
min
s∈S
‖l − s‖

)
(20)

where S and L represent the actual segmentation prediction results and the real segmenta-
tion labels, respectively.

4.5. Quantitative Analysis

To validate the enhanced performance and effectiveness of our model, we conducted
a series of quantitative experiments. Table 1 shows the brain tumor image segmentation
experimental results of the four networks and the network proposed in this study in terms
of the Dice and Hausdorff coefficients. It can be seen that in terms of both coefficients, the
segmentation network of this study is superior to the experimental results of the other
three networks in the WT, TC, and ET areas. The experimental results show that in the
WT, TC, and ET areas, the Dice values reached 88.25%, 90.66%, and 85.89%, respectively.
Likewise, a closer examination of the quantitative analysis in Table 1 revealed that our
segmentation network achieved HD coefficient values of 2.121, 1.369, and 2.301 for the WT,
TC, and ET regions, respectively. While our model’s segmentation outcomes for the overall
tumor, necrotic tumor, and enhanced tumor regions outperform those of the SwinBTS [37]
and DR-Unet104 [19] networks, it is imperative to highlight that the performance in the
enhanced tumor region remains consistent and does not show marked improvement when
juxtaposed with the metrics from UNet3D [45] and DANet [16].

Furthermore, Table 2 provides a comprehensive evaluation of various learning-based
approaches for segmentation, focusing on the BRATS2019 and BRATS2020 datasets. In
total, 14 different learning-based models are considered. The table utilizes two performance
metrics, i.e., Dice and HD, to quantify segmentation accuracy. It is noteworthy that the
proposed model achieved higher scores in Dice and lower scores in HD across both datasets.
Specifically, the proposed model reached Dice scores of 84.23, 92.30, and 88.45 for the ET,
WT, and TC compartments, respectively, on the BRATS2019 dataset. When compared
with BRATS2020, the Dice scores are 80.38, 93.78, and 89.01. These results indicate an
improvement in segmentation accuracy over other methods listed, especially in the WT
and TC compartments, which often present challenges due to their complex structure.
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Among the existing models, 3D-AR [46] and Edge U-Net [47] are the closest competitors.
For instance, in the BRATS2019 dataset, 3D-AR [46] achieved Dice scores of 81.73, 90.68,
and 86.02 for the ET, WT, and TC compartments, respectively. Likewise, Edge U-Net [47]
scored 81.70, 89.84, and 86.40 in the same categories. While these models performed ad-
mirably, they still lagged behind the proposed model in terms of both Dice and HD metrics.
Interestingly, some models, like HDC-Net [48] and DMF-Net [49], showed comparable
performance in certain compartments but exhibited inconsistencies across different metrics
and datasets. For example, HDC-Net achieved a Dice score of 80.90 in the ET compartment
on BRATS2019 but fell behind in the TC compartment, with a score of 84.70. This variability
suggests that while these models have their strengths, they might not be as robust across
different testing conditions as the proposed model. In terms of HD, the proposed model
also led the pack, with scores of 2.35, 4.22, and 4.51 on BRATS2019 and 2.33, 4.20, and 5.37
on BRATS2020. Lower HD scores indicate that the proposed model’s segmentation output
more closely resembles the ground truth, especially when compared with other models,
like MSMA-Net [50], which recorded higher Hausdorff distance values, namely, 5.06, 13.6,
and 8.62, on the BRATS2019 dataset.

Table 1. Quantitative assessment of both the proposed and preceding models, utilizing the Dice and
HD metrics on the BRATS2018 dataset.

Method
Dice HD

Publication Year WT TC ET WT TC ET

U-Net [51] 2017 83.75 85.03 76.98 2.661 1.749 2.830
RRU-Net [52] 2019 84.32 86.17 78.72 2.321 1.517 2.724
DANet [16] 2019 84.28 85.32 79.15 2.551 1.770 2.740
3DSSBT [53] 2020 87.15 81.55 77.91 2.584 1.775 2.768
Transbts [54] 2021 84.89 86.64 78.97 2.891 1.945 2.971
DR-Unet104 [19] 2021 86.77 79.88 75.11 2.774 1.882 2.869
UNet3D [45] 2022 84.57 72.79 70.67 2.590 1.605 2.687
SwinBTS [37] 2022 83.19 72.88 71.99 2.212 1.411 2.431
HMNet [55] 2023 85.89 74.86 72.44 2.894 1.842 2.785
Ours 2023 88.25 90.66 85.89 2.121 1.369 2.301

In summary, Table 2 substantiates that the proposed model excels in segmentation
tasks, offering superior performance across both Dice and HD metrics when tested on
the BRATS2019 and BRATS2020 datasets. Its robustness and accuracy make it a strong
candidate for reliable brain tumor segmentation, outperforming other state-of-the-art
methods in the field.

Figure 8a provides a comparative visual analysis of the brain tumor image segmenta-
tion outcomes for nine existing networks, specifically with regard to the Precision metric.
As evidenced by the data, our proposed segmentation network yielded Precision coeffi-
cients of 89.09%, 90.95%, and 80.42% in the WT, TC, and ET regions, respectively. These
percentages underscore the algorithm’s exceptional performance, as they surpass the corre-
sponding Precision metrics demonstrated by the other networks under comparison. The
significance of these high Precision rates cannot be overstated. Precision is a vital metric in
medical imaging, particularly in brain tumor segmentation, as it quantifies the exactness
of the segmented region, minimizing the risk of falsely identifying non-tumor regions as
pathological. Achieving high Precision rates is crucial, as any error in tumor identification
can have substantial implications for subsequent treatment planning and overall patient
prognosis. The superiority of the proposed network in the WT, TC, and ET areas is particu-
larly noteworthy. These regions are often the most challenging for algorithms to segment
accurately due to their variable intensities and complex anatomical structures. The WT
region, for instance, encompasses both the tumor core and the surrounding edematous
tissue, making it a difficult area for precise segmentation. Likewise, the TC and ET regions
are areas where the tumor is most active and where the structural irregularities are at a
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maximum, posing considerable challenges for segmentation. The Precision coefficients
in these regions attest to the robustness and adaptability of our segmentation network,
demonstrating its capacity to handle the complexities inherent in brain tumor MRI scans.
Thus, the high Precision coefficients achieved in the complex WT, TC, and ET areas not
only demonstrate the efficacy of our proposed model but also point toward its potential for
reliably facilitating better patient care and treatment outcomes.

Table 2. Evaluating the proposed and previous models using Dice and Hausdorff metrics on the
BRATS2019 and BRATS2020 datasets.

Method Dataset
Dice HD

Publication Year ET WT TC ET WT TC

3D-AR [46]

BRATS2019

2019 81.73 90.68 86.02 3.82 4.52 6.85
DMF-Net [49] 2019 80.12 90.62 84.54 3.06 4.66 6.44
MSMA-Net [50] 2021 75.80 89.00 81.10 5.06 13.6 8.62
HDC-Net [48] 2021 80.90 89.70 84.70 2.43 4.62 6.12
DLHT [56] 2022 80.12 90.8 83.8 2.59 4.55 8.14
Edge U-Net [47] 2023 81.70 89.84 86.40 2.86 4.69 5.67
Ours - 84.23 92.30 88.45 2.35 4.22 4.51

LCRL [34]

BRATS2020

2021 72.70 87.10 71.80 6.30 6.70 9.30
DMF-Net [49] 2019 77.33 89.75 81.67 2.84 6.19 6.59
SResU-Net [57] 2021 75.40 91.00 83.50 3.84 4.57 5.58
Kiu-net [58] 2021 73.21 87.60 73.92 6.32 8.94 9.89
HDC-Net [48] 2021 77.35 89.30 81.83 4.19 6.74 7.98
AEA U-net [59] 2021 77.30 90.20 81.50 4.65 6.15 7.54
3D U-Net [18] 2022 75.90 88.50 85.10 4.81 7.09 8.41
dResU-Net [60] 2023 77.90 89.78 89.50 2.97 3.35 6.11
Ours - 80.38 93.78 89.01 2.33 4.20 5.37

(a) Precision (b) Recall

Figure 8. Quantitative scores of our approach against prior methods by utilizing the Precision and
Recall metrics using the BRATS2018 dataset.

Moreover, we conducted a performance evaluation of the proposed model and bench-
marked it against preceding models. The visual results are shown in Figure 8b, which
provides a comprehensive representation of the quantitative outcomes related to brain
tumor image segmentation. Specifically, these outcomes are evaluated using the Recall
metric across nine distinct learning-based models, in addition to the model introduced
in the current research. Delving into the details, the segmentation network developed
within this study showcases performance metrics of 88.70%, 92.34%, and 85.24% for the WT,
TC, and ET regions, respectively. It is noteworthy to mention that when these results are
contrasted with the Recall metrics from eight other networks, our model exhibits marginally
superior performance.

Furthermore, to rigorously assess the efficacy of our proposed model, we conducted a
comprehensive performance evaluation that benchmarked it against a range of preceding
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models. These comparative results are visually encapsulated in Figure 8b, serving as an
illustrative overview of the quantitative metrics. The evaluation criteria for these outcomes
are particularly focused on the Recall metric, a pivotal performance indicator in the realm
of image segmentation. This analysis incorporated a set of nine distinct learning-based
models, thereby allowing for a robust comparative framework. Examining the results
in Figure 8b reveals that our model exhibits remarkable performance characteristics. It
achieved Recall rates of 88.70% in the WT area, 92.34% in the TC area, and 85.24% in the
ET region. These figures gain added significance when juxtaposed with the Recall scores
generated by prior models. Notably, our model’s performance displays a marginal yet
statistically meaningful superiority when contrasted against the Recall metrics of these
competing learning-based networks. The nuanced advantage our model holds in the Recall
metric may appear subtle, but it is clinically relevant, as higher Recall rates can significantly
impact the quality of diagnostic interpretations and subsequent therapeutic interventions.

4.6. Qualitative Analysis

To conclusively demonstrate the high performance and effectiveness of our proposed
model, we initially conducted a series of validation experiments. Notably, these experi-
ments were performed with and without making comparisons with previous models. The
images used for this purpose, displayed in Figure 9, were sourced from the BRATS2018
dataset. After applying our enhancement algorithm to these original images, we then
proceeded to segment the brain tumors using our model. According to the visual results, it
is evident that our proposed model yielded outcomes that closely align with the ground-
truth data. However, the segmentation outcome in the final row closely approximates
the ground-truth result. Overall, these findings further corroborate the robustness and
accuracy of our model.

Figure 9. Segmentation results for brain tumors using our proposed model. (a) FLAIR, (b) T1,
(c) T1ce, (d) T2, (e) our obtained results, and (f) ground truth. The colors in the segmentation images
signify different conditions: green represents edema; yellow indicates an enhancing tumor; and red
denotes both necrosis and non-enhancing regions.
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Furthermore, we conducted another experiment to validate our proposed model’s
performance and compare it with previous approaches. The segmentation outcomes are
illustrated in Figure 10, which highlights the advantages of the method proposed in this
paper. Notably, our approach yielded smoother segmentation along the edges of the tumor.
A detailed examination of the images in rows 1 and 2 further revealed that existing methods
such as HMNet [55] and TransConver [44] struggled with over-segmentation in the core
tumor regions when compared with ground-truth images. Specifically, as shown in row 3,
both HMNet [55] and TransConver [44] erroneously categorized pixels located above the
core tumor area as belonging to the tumor itself. This is a significant point of differentiation:
our proposed method more accurately segments the core tumor area, aligning more closely
with the ground-truth image. Overall, these findings bolster the case for the effectiveness
and precision of our segmentation method.

Figure 10. Comparison of segmentation results attained by proposed model and previous models.
(a,f) Input image, (b,g) HMNet [55], (c,h) TransConver [44], (d,i) ours, and (e,j) ground truth.

In our current study, aside from the preliminary evaluations that we conducted across
various MRI modalities, we devoted particular attention to the FLAIR MRI modality. The
selection of this modality is grounded on its prevalent use in brain tumor imaging and char-
acterization. We leveraged the BRATS2019 dataset, a comprehensive and well-annotated
dataset that has been recognized as a valuable resource for neuroimaging research, for
a more granular and specialized analysis of segmentation performance. The outcomes,
meticulously collated, are delineated in Figure 11, a graphical elucidation constructed to
facilitate a thorough examination of our empirical observations. When benchmarking
against existing state-of-the-art algorithms like 3D-AR [46], DLHT [56], dResU-Net [60],
and 3D U-Net [18], a key observation is the conspicuous reduction in false-positive voxels
achieved by our proposed methodology. False-positive voxels refer to the misidentification
of healthy tissue as pathological, which can potentially lead to overtreatment and is thus
a metric of critical significance. This reduction in false-positive rates is not just minor or
incidental; it is particularly noteworthy in segments of the MRI scans that are traditionally
recognized as challenging for accurate segmentation. These challenging areas include but
are not limited to the enhanced and core regions of the brain, where tumor activity and
anatomical complexity intermingle. The accomplishment of more precise segmentation in
these complex and nuanced areas serves as a testament to the robustness of our algorithm.

Furthermore, the remarkable performance gains in these intricate segments of MRI
scans are indicative of our algorithm’s capacity to adapt and function effectively even in
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the most convoluted scenarios. This signifies not only the algorithm’s precision but also
its broad applicability and reliability across varying levels of difficulty and complexity in
MRI images.

Figure 11. Comparison of segmentation results. (a) FLAIR, (b) T1ce, (c) T1, (d) T2, (e) 3D-AR [46],
(f) DLHT [56], (g) dResU-Net [60], (h) 3D U-Net [18], (i) ours, and (j) ground truth.

4.7. Limitations and Future Work

However, it is important to recognize the limitations inherent in our study. Specifically,
the constraint imposed by utilizing a 2D network structure for segmenting inherently 3D
MRI images presents a significant limitation. This dimensionality reduction potentially
results in the omission of critical image information, which could impair the overall seg-
mentation accuracy. Additionally, the proposed method using entire brain slices faces a
data imbalance issue. Given the relatively small number of pixels for enhancing tumors,
this imbalance could potentially deteriorate the segmentation performance of the trained
network. Although we have implemented an appropriate slicing technique, the network
still requires a refined method to accurately detect tumors in 3D images.

Looking ahead, future research should prioritize the exploration and development of
3D-based brain tumor image segmentation networks. Adopting a 3D-focused approach is
anticipated to further improve segmentation accuracy by preserving the intricate relation-
ships within the volumetric data. This would enable a more comprehensive understanding
of tumor structures. Furthermore, we will carry out qualitative case studies to verify the
model’s effectiveness. While our study marks a significant advancement in brain tumor
segmentation, there remains substantial room for further progression in this dynamic field.

5. Conclusions

This study is motivated by the need to rectify persistent challenges in the domain
of brain tumor image segmentation, particularly those related to the inadequate integra-
tion of local and global feature information, which compromises segmentation accuracy.
Our research presents a distinct and critical advancement in the field by addressing these
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challenges head-on, reaffirming our commitment to enhancing MRI segmentation. Our
approach commences with a crucial pre-processing phase aimed at enhancing the visual
quality of MRI scans. Far from being a peripheral step, this initial process serves as a
bedrock that crucially informs and influences the subsequent stages of our model’s opera-
tions. Highlighting our commitment to innovation, our model deviates from traditional
paradigms by adopting a novel architectural approach. This involves the replacement
of standard convolutional modules with deep residual modules in both the encoder and
decoder layers of the segmentation network. This tactical modification is instrumental in
mitigating the notorious problem of vanishing gradients, thereby bolstering the efficacy
of the backpropagation process and enhancing the model’s learning capability. In a sub-
sequent advancement, we integrate a TAB into our network. This unique component is
engineered to synergistically blend local and global feature information. Our emphasis
on creating a harmonious fusion of these features is what sets our approach apart from
others, making a significant impact on the broader challenges of MRI image segmentation.
The consequence of this is twofold: it not only amplifies the network’s feature learning
capabilities but also sharpens its proficiency in discerning vital image attributes, thereby sig-
nificantly elevating the precision of brain tumor segmentation in MRI images. Experimental
validation supports the efficacy of our model, revealing that it outstrips its contemporary
counterparts on several fronts, notably in terms of performance and segmentation accuracy.
However, it is important to recognize the limitations inherent in our study, specifically
the constraint imposed by utilizing a 2D network structure for segmenting inherently 3D
medical images. This dimensionality reduction potentially results in the omission of critical
image information, which could impair the overall segmentation accuracy.

Going forward, it becomes apparent that future research should prioritize the explo-
ration and development of 3D-based brain tumor image segmentation networks. This
reinforces the notion that while our contributions mark significant progress in the field,
the journey of innovation in MRI image segmentation is ongoing. Such a focus would
likely serve to further improve the segmentation accuracy by faithfully preserving the
complex relationships within the volumetric data, thereby affording a more comprehensive
and nuanced understanding of tumor structures. Therefore, while our study represents a
meaningful stride toward improving brain tumor segmentation, it also sets the stage for
further advancements in this continually evolving field.
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