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Abstract: Bernoulli and Euler numbers and polynomials are well known and find applications in
various areas of mathematics, such as number theory, combinatorial mathematics, series expansions,
and the theory of special functions. Using fractional exponential functions, we extend the classical
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reveals a symmetry in relation to the classical numbers and polynomials. We demonstrate some
examples of these generalized mathematical entities, which we derive using the computer algebra
system Mathematica®©.
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1. Introduction

The study of fractional derivatives and their applications has been a topic of interest
for many scholars. Their importance has only increased as they are used in various scientific
fields. In the book written by S. Samko, A.A. Kilbas, and O. Marichev [1], the authors examine
and compare different definition types of fractional differentiation. They also showcase the
applications of fractional calculus in ordinary and partial differential equations. Other resources
that one can refer to are the book by A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo [2], the works
by Gorenflo and Mainardi [3], and the article by Mainardi et al. [4].

Recently, an elementary approach based on Euler’s classical definition has been con-
sidered in [5,6]. The interested reader could find a similar technique in the articles by
M. Ortigueira et al. [7-9], articles that were recently sent to us by the author, after the
publication of our paper on symmetry [6]. These works are interesting since they clarify
old and new definitions of the fractional derivative and find applications in the framework
of the Laplace transform.

Our method falls under Caputo’s [10] and utilizes power series with a fractional expo-
nent. Using this method, it is possible to extend classical polynomials and the associated
special numbers to the case of fractional indices. As known from theory, Euler and Bernoulli
numbers appear in the Taylor series expansions of trigonometric and hyperbolic functions.
They also occur in combinatorics as well as in the computation of special functions, such as
the Riemann zeta function.

Fractional Bernoulli numbers and polynomials have recently been considered by E.
Woldeyohannes [11], starting from the following generating functions:
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1. For the fractional numbers B, ;, where « is a fractional number,

x2ae x2 o) k

X
= Z Ba,kﬁ ’

ay(a,x2) =
2. For the fractional polynomials B, x(z),

21x eXz— x2 k

ZBle k' 7

ay(a, x2)

where (a,x) = fox e~ft*~1 dt denotes the lower incomplete gamma function.

Our purpose in this paper is to introduce fractional Bernoulli numbers and polyno-
mials by using a completely different approach. In fact, in a recent article [6], we have
introduced a fractional version of the exponential function by posing

o tsz e

Bxpt) =14+ r ) T ey T T T @

and we use this function, expanded in fractional powers, in the generating function of the
fractional form of the Bernoulli numbers and polynomials [12]. Note that the fractional
exponential function above is a true exponential with respect to the operator D} since it
satisfies the following eigenvalue properties:

D{Exp, (xt) = x" Exp,(xt),

and

DYExp, (xt) = t* Exp, (xt).

We have previously demonstrated potential applications of this function in various
frameworks, such as fractional extensions of population dynamics problems, fractional
Laplace transforms [13], and fractional Hermite polynomials [14].

It is important to note that the pseudo-exponential functions introduced in [15],
which are generalized forms of exponential functions, are connected to the Mittag-Leffler
function [16] and do not satisfy the eigenvalue property of the classical exponential, as
explained in [13].

The fractional exponential function in (1) can be used to establish a special symmetry
in number theory. For any value of a between 0 and 1, it is possible to generate a set
of fractional index Bernoulli or Euler numbers and polynomials that correspond to the
classical mathematical entities. These new sets of numbers are real numbers that depend
on fractional indices. They are obtained by replacing the ordinary exponential function
with the fractional exponential function in the generating function that defines the set of
numbers or polynomials. This approach appears to be more natural than the one considered
in [11].

It is worth noting that it is crucial to construct special functions that satisfy the eigen-
value property mentioned above with respect to suitable differential operators. This allows
for the generalization of families of special numbers or polynomials using the same method
employed in this article.

We have previously studied another type of function known as Laguerre-type ex-
ponentials. These functions have associated Laguerre-type special functions that create
symmetry in the space of analytic functions. The operator DxD = D + x D? introduces a
linear differential isomorphism that acts on the space of analytic functions of the variable x,
creating a parallel structure within this space. This allows us to easily derive differentiation
properties. Iterations of the Laguerre derivative can also create parallelism, leading to an
endless cycle of construction within the space of analytic functions. This cyclic construction
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repeats the same structure at a higher level of differentiation order, showcasing the great
cycles that can occur within mathematical theories. If one is interested in learning more,
they can refer to the articles mentioned [17,18].

In Section 2, we review the generating function of Appell-type polynomials. In
Section 3 and its relevant subsections, we introduce fractional indices Bernoulli numbers
and fractional Bernoulli polynomials for a parameter a with a value between 0 and 1.
We pay particular attention to the case where & = 1/2. We use the computer algebra
system Mathematica®© to derive several tables that show the convergence of these fractional
entities to their corresponding classical ones as « approaches 1. In Section 4, we provide
the same results and tables for fractional indices Euler numbers and fractional Euler
polynomials. Our aim is to demonstrate, in a future article, the properties of classical
numbers and polynomials that also apply to their fractional versions. While we could
also study other forms of numbers and polynomials, such as Genocchi numbers and
polynomials or Apostol-type polynomials, we limit ourselves to the Bernoulli and Euler
cases to avoid overwhelming our readers.

Remark 1. Note that what we call fractional Bernoulli and Euler polynomials are actually functions,
not polynomials in the strict sense, but since they are combinations of monomials with fractional
powers, it seems motre appropriate for us to retain the name polynomials as shorthand for fractional
power polynomials.

2. Recalling the Fractional Appell-Type Polynomials

In this section, we consider first the fractional Appell polynomials depending on a
fractional parameter &, with 0 < & < 1, since the Bernoulli and Euler ones are a particular
case of this more general class.

Using the Euler definition of fractional derivative

_d*™ T(m+1)

D*x™ . =
x dx*  T(m+1—a)

tE, (m > a]),

it is possible to define the fractional case of Appell polynomials. These are functions ex-
pressed by the combination of monomials with fractional powers, defined by the generating
function that is obtained by substituting the fractional exponential of order & in place of the
ordinary exponential in the corresponding classical generating function.

Definition 1. The fractional Appell-type polynomials of order w are defined by the following
generating function:

Ga(x,1) = A(t) Exp, (xt) = iORm“‘) T 1)

ti’llx

In [13], the lowering operator for fractional Appell polynomials has been introduced
in the particular case when & = 1/2, but the same result can be obtained for any fractional
o, with0 < a < 1.

The following sections consider specific examples of this important family of polynomials,
starting with the Bernoulli and Euler cases, based on their associated number sets.

3. Fractional Index Bernoulli Numbers and Polynomials
We introduce the following definitions:
1. For the fractional index numbers B, ;, where & is a fractional number,

% ) ko

X
kgo le,k m ’ (2)

x p—
Exp,(x)—1

2. For the fractional index polynomials B, x(z),
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3.1. Fractional Index Bernoulli Numbers
Introducing the definition (2) and posing, for convenience,
5]‘;0 =1- 5’(,0 s
where 8y is the Kronocher delta, so that 5} , = 0, ifk = 0, and 6 , = 1, ifk # 0, we find

C no
Oo X" & X"

X = nX::O T(na+1) IgBa,km
& — Shy mszxn k
' _gg T(ka +1)T((n—k)a+1)" )

Equation (4) results in a triangular system of algebraic equations. Therefore, we can
state the following theorem:

Theorem 1. The Bernoulli numbers with fractional indices B, j can be sequentially computed by
solving the triangular system

Byo=T(a+1),

' Bzx,n—k B (5)
k:zlf(kaﬂ)r((n_k)“l) =0, Vn=1.

3.2. The Fractional Index Bernoulli Numbers for o = 1/2

In order to fix the attention and give numerical examples, we consider the case when
a=1/2.
Equation (4) writes

/2 _ i Z": X" By jan-k
=g Tk/2+1)T((n - 60/2+1)
thatis,
L1/2 — x'2By 50 i X B1/2,0-1)/2 N
r(3/2)  ZTk/2+1)T((2-k)/2+1)
i 3/2 B1/2,(3—k)/2 i xz B1/2,(4—k)/2 .

T(k/2+ 1) IT((3—k)/2+1)

['(k/24+1)T((4—k)/2+1)
The system above gives

Bi/20 =T(3/2) = \/7t/2 ~ 0.8862269 - - -

1
B1/2,1/2 = —[F(3/2)]3 = gT[ T~ —0.6960413 - - -

Bi/21 = [T(3/2)]2 — 3T'(3/2) =~ 0.1052233 - - -

A more extended table is reported in Figure 1.
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1
B: ,=— A (-8 +3 )
222 24

1
B: ,=— (10-3 ) /2
27 64

1
Bi ,=— AT (128 +45 (=4 + 1) )

720
1
B: ;=-—— n°/2 (72+57 (-14+3 7))
2 512
AT (1024 + 637 (108 + 57 (-16+371)))
516" 20160
713/2 (3112 - 21 71 (452 + 45 (-6 + 1) 7))
i 36864
AT (-8192 + 1571 (6544 + 3155 (40 + 71 (20 +377))))
Pl 302400
73/2 (1184 + 1571 (-11600 + 63 71 (256 + 571 (=22 +37))))
Bl 491520
: AT (327680 +99 71 (11616 +5 7 (-18560 + 21 71 (956 + 45 (-8 +71) 7)) ) )
l1e”

7983360

Figure 1. Sequence of the Bernoulli numbers By /; x for 0 < k < 10.

The Bernoulli numbers B, ; with fractional indices « = 0.2,0.4,0.6,0.8 for 0 < k <10
are reported in Figure 2.

Bg.2,0~0.918169
Bo.2,1=-0.872398
Bg.2,2=0.0352627
Bg.2,3=0.0268926
Bo.2,4=0.0201639
Bg.2,5=0.0147468
Bo.2,6=0.0104059
Bg.2,7=0.00696354
Bo.2,3=0.00427873

Bo.2,0=0.00223522

Bo.4,0=0.887264
Bo.a,1~-0.749945
Bo.4,2=0.0844724
Bo.4,3~0.0480319
Bo.4,4=0.0234344
Bo.4,5~0.00779396
Bo.4,6~-0.00104652
Bo.4,7~-0.00488173
Bo.4,5~-0.00528854

Bg.4,9=-0.00366652

Bo.s,0~0.893515
Bo.c,1=-0.647444
Bo.s,2~0.12275
Bo.s,3=0.0470123
Bo.6,4=0.00594995
Bo.s,5~-0.0102636
Bo.s,6~-0.0106244
Bo.s,7=-0.00353454
Bo.s,5~0.00387328

Bg.6,9=0.0068294

Bo.s,0=0.931384
Bo.g,1=-0.56515
Bo.s,2=0.149156
Bo.g,3=0.0291081
Bo.g,4=-0.0173865
Bo.g,5=-0.0168328
Bo.s,6=0.00170173
Bo.g,7=0.0131729
Bo.g,5~0.00606236

Bg.g,0=-0.0113127

Bo.2,10~0.000733819 Bo.4,10=- 0.00122286 Bo.s,10=-0.0162863

Bg.s,10=0.00393336

Figure 2. Sequence of the Bernoulli numbers B, ; with fractional indices « = 0.2,0.4,0.6,0.8 for
0<k<10.
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The convergence of the Bernoulli numbers B,  to the classical By is shown in the table
contained in Figure 3.

Box k=0 k=1 k=2 k=3 k=4

a=0.2 0.918169... —-0.872398... 0.035263...  0.026893...  0.020164...

a=0.4 0.887264... —0.749945... 0.084472...  0.048032...  0.023434...

a=0.6 0.893515...  —0.647444... 0.122750.. 0.047012...  0.005950...

a=0.8 0.931384... -0.565150... 0.149156...  0.029108... —0.017387...

a=1.0 1.000000...  —0.500000...  0.166667...  0.000000... —0.033333...

Figure 3. Convergence of the fractional index Bernoulli numbers B, y to the classical ones By.

3.3. Fractional Index Fractional Bernoulli Polynomials

Starting from (3), we find

oy (nt+l)a yna 0 xke 0 xka
ngbl"(nvﬁ-l) 7k2 I'(ka +1) kZ;‘) [(ka+1)"
x(n+1)a Hna ) (k+1)a ) ke

= Tha+1) = T((k+at1) E)B"‘f"(z) T(ka+1)’

0 B © 7 (n+1)v<B (Z)
L F(na+1) L ; ((k+1)a+1)F(( —ka+1)’

so that, upon comparing coefficients of the same order, we obtain a triangular system.
Therefore, we can state the following theorem:

Theorem 2. The fractional index fractional Bernoulli polynomials By ,(z) can be sequentially
constructed by solving the triangular system

Byo(z) =T(a+1),

z By n—k(z) T(na+1) . (6)
EO Tkt Da+)T(n—Katn 2+ m=L
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The first few fractional index fractional Bernoulli polynomials are reported hereafter:

Buo(z) =T(ax+1),

3
Bua(z) = T(x+1)z* — Fh,

Baa(z) = T+ 1) (Fiary — Hpistll 4 (20 —1)2¢),

_ T(a+1)°TBat1) | 2T(at1)?
Bys(z) =T(a+1) (_ ar(za+1)§ + l"(Zaa+1)

+Da+ )T (Ga +1) (= ke — ) + (25 =1)2),

_ 30(a+1)3T(4a+1) | T(at+1)*T(4a+1) 2 ( T(da+1) 2 T(4a+1)(z*—1)z*
Bua(z) = T(a+ 1)(_ e Ee T  Taemt L@+ 1) (r(3;+1)2 t ey T Teep )

2204 0D
+ (2 = 1)z + T(a + 1) (40 +1) <_ r(5;+1) - rE2a++1)r(3a)+1) >) :

In the particular case when « = 1/2, we find the first ten fractional Bernoulli polyno-
mials as reported in Figure 4.

P
1
Bill(l)?g \E(ﬂ—4 \E)
1
B ,(2)=— 7 (-8+37-12 2 +122)
2 24
1
Bi ,(z)=— 1 (—3n2+2n(5+6 z—6z)+32 (-1+2) \/Z)
2 64

B:A(z):% NS (8 (16+75 ﬁ) +15 (3n2+12n(-1-ﬁ+z) +8z(-4-4 z +3z)))

1
Bi (z)=—— 1 (—45ﬂ3+256 (-1+2) Az (-2+32) -
2 1536

30 72 (—776 Z+62)—247r(9+5 (6 z —527413/2+3zz)))

1
Bi . (2)= \/2(732 (32+567 ﬁ)+21 (377(108+57r(—16+37r))+60 (14-3m) 7z +
2 20160
4 (128 +45 (-4 +7) 71) z+160 (10 -3 71) z°/2+ 120 (-8 + 3 1) 22 - 768 z°/% + 480 z3))
1
B:,(2)= \/;(—945714—18907r3 (7372 z+2z)+
ey 36 864
2048 (-1+2) Nz (2+3z (-4+32)) - 842 (113+3o (8 z—7z—4z3/2+322)) -
871(7389+126 (71+\/?) Nz (27+9 z —312—623"Z+1022)))
1
B

L (2)=
2?7 302400

A (32 (—256+5835 \/?) +15 (n (~6544 + 31571 (40 + 71 (20 +371))) - 84 77 (452 + 45 (-6 + 71) 1)
Nz +4 (1024 + 637 (108 +57 (-16+37))) z -
672 (72+57m (-14+3 7)) 2%/ + 168 (128 +45 (-4 + 1) 71) Z% -
5376 (-10+ 3 7) z5/2+ 3360 (-8 +3 ) 23 - 18432 27/ + 10080 z“))

1

Bio(2)

= e (Jr (-1184 - 157 (~11600 + 63 77 (256 + 577 (-22+37)))) +
491520

4 (-8192 + 157 (-6544 + 31571 (40 + 71 (-20+37)))) z -

60 71 (-3112+ 21 77 (452 +45 (-6 + 1) 7)) z+ 160 (-1024 + 63 1 (108 + 57 (-16+3 1) )) z3/% -
7560 71 (72 + 57 (-14+3 7)) 22 + 5376 (128 +45 (-4 + ) n) z°/2 -

50400 71 (-10 +3 1) 2> +92160 (-8 +3 ) z'/2 - 151200 1 z* + 245760 z°/2

Bi’w(z):
1
Y (327680—156288 z +33 (3n (11616 + 57 (~18560 + 21 77 (956 + 45 (~8 + 71) 7)) ) -
7983360

60 71 (-11600 + 63 71 (256 + 571 (-22+37))) Az +

4 (-8192 + 157 (-6544 + 31571 (40 + 71 (-20+37)))) z -

160 (-3112 + 217 (452 +45 (-6+ ) 7)) 23/ + 120 (-1024 + 63 71 (108 + 57 (16 +3 71)))
2216128 (72 +57 (-14+3 7)) z°/2 + 3360 (128 +45 (-4 + 1) 71) 2° -

92160 (-10 +37) 27/ + 50400 (-8 + 3 1) 24—24576029’Z+12096015))

Figure 4. Sequence of the fractional Bernoulli polynomials By /; x(z) for 0 < k < 10.
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Remark 2. Note that if & = 1, the fractional exponential Exp , (t) reduces to the ordinary expo-
nential function exp(t), and the fractional Bernoulli numbers and polynomials yield the ordinary
classical ones.

4. Fractional Index Euler Numbers and Polynomials

We introduce the following definitions:
1. For the fractional index Euler numbers E, f,

2Exp, (x) & xke
e R D) - Sty 7
Exp, (2x) + 1 k;, KT (ka +1) @

2. For the fractional index Euler polynomials E, ;(z),
2Exp,(xz) & xke

Exp,(2x) +1 EOE“"‘(Z) T(ka+1)°

®)

4.1. Fractional Index Euler Numbers

We start from the fractional index Euler numbers exponential function (7) so that

kzx

ZEXPIX( ) [EXpIX 2x +1 Z akm

Zka ko 0 1x ‘ xklx

x X E X ad
zgr(mﬂ):,;)r(;fﬂﬁz T(ka +1) & T(ka + 1)

00 0 sz,n X o n zksz 7kxmx
Zgrwﬂﬁzr(mﬂ)*Z; Tla + D T((n—0a+1) ° ©)

Then, by equating coefficients of the same order, we obtain

2 _ Etx,n + i 2k Etx,nfk
T(na+1) T(na+1) S T(ka+1)T((n—kja+1)’

which results in a triangular system of algebraic equations. Therefore, we can state the
following theorem:

Theorem 3. The Euler numbers with fractional indices E,  can be sequentially computed by
solving the triangular system

ED{,O - ]-/

E +i 2T(na+1)Eypr (10)
o Tka +1)T((n—k)a+1)

We find, in particular,
Eno=1,
Eyp=1-2%1,
(22072 — 22" I)T (20 + 1)

Eqp =1-—2%"1 ,
2 B

and so on.
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4.2. The Fractional Index Euler Numbers for o = 1/2

In this particular case where &« = 1/2, the above system writes

n 2M2T(n/2+1)Ey 0«
Eijon +k§) T2+ DI((n-k/2+1) o

The first few entries are

Eipp0=1

1
Ei/21/2=1— —= 02928932 - -

V2

2-2\2
Ei/p1 = T\f ~ —0.2636965 - - -

A more extended sequence is reported in Figure 5.

E;’3:7 4t

E]4:_1+8(3—3 2 +7)

2’ 372
—l20(—2+ﬁ)+n(40—60 2+(724+23\/5)n)

E: .-

8 16 72
-720(-1+ﬁ)-24e(-2+ﬁ)n+2(-ssneﬁ);ﬂ

Fle” 1573
75040(—2+\/5)7840(76+5ﬁ)ﬂ+l4(7188+87ﬁ)n2+3<60+61\/§)ﬂ3

oA 96 1°

Ei =5+ 16(72520(71+\/§)+7r(7840 (73+2 ﬁ)+n(7567+756\/—7239ﬂ+8 2n]))

105 n*
Figure 5. Sequence of the Euler numbers E; /5 x for 0 < k < 8.

The Euler numbers E, ; with fractional indices for « = 0.2,0.4,0.6,0.8, and with
0 < k <10, are shown in Figure 6.

Eo.2,0=1. Eo.4,0=1. Eo.5,0=1. Eo.5,0=1.
Eo.2,1=0.425651 Eo.4,1=0.340246 Eo.6,1=0.242142 Eo.5,1=0.129449
Eo.2,2=0.0829476 Eo.4,2=-0.136132 Eo.6,2=-0.401953 Eo.5,2=-0.701437
Eo.2,3=-0.118119 Eo.4,3=-0.423871 Eo.6,3=-0.696015 Eo.5,3=-0.71114
Eo.2,4=-0.2245 Eo.4,4=-0.483012 Eo.6,4=-0.294405 Eo.5,4=1.21527
Eo.2,5=-0.263524 Eo.4,5~-0.286765 Eo.s,5~0.933442 Eo.5,5=4.00307
Eo.2,6=-0.253112 Eo.4,6=0.134728 Eo.6,6=2.22243 Eo.5,6=-1.50146
Eg.2,7=-0.206653 Eo.4,7=0.649876 Eo.6,7=1.17426 Eo.5,7=-29.076
Eo.2,8=-0.13547 Eo.4,3=0.998161 Eo.6,8=-5.41574 Eo.5,3=-31.1613
Eo.2,0=-0.0500682 Eo.4,0=0.818037 Eo.6,0=-15.6257 Eo.5,0=247.67
Eo.2,10=0.0392973 Eo.4,10=-0.215465 Eo.s,10=-9.22135 Eo.5,10=827.237

Figure 6. Sequence of the Euler numbers E,  with fractional indices & = 0.2,0.4,0.6,0.8 for 0 < k < 10.
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The convergence of the Euler numbers E, \ to the classical Ey is shown in the table
contained in Figure 7.

Eox k=0 k=1 k=2 k=3 k=4

a=0.2 1.000000...  0.425651...  0.082948.. —0.118119... -0.224500...

a=0.4 1.000000...  0.340246... —0.136132... -0.423871... -0.483012...

a=0.6 1.000000...  0.242142... -0.401953... -0.696015... —0.294405...

a=0.8 1.000000...  0.129449... -0.701437.. -0.711140.. 1.215270...

a=1.0 1.000000...  0.000000...  —1.000000...  0.000000...  5.000000...

Figure 7. Convergence of the fractional index Euler numbers E, y to the classical ones Ej.

4.3. Fractional Index Fractional Euler Polynomials

Using the generating function in (8), we find

i P 00 Elx,k(z) xka i 2kuc ko 00 sz,k(z) xkzx
mx+1) — ['(ka+1) ¢ T(ka+1) = T(ka+1) "’

o nann Ean © 7 2(11 k)a naE ()
2 L e zr<ni+1 8 L B Dt T

n=0 n=0

Then, by equating coefficients of the same order, we find

22" Egu(2) N n 2=k E i (2)
T(na+1) T(na+1) S T((n—ka+1)T(ka+1)"

(11)

which results in a triangular system of algebraic equations. Therefore, we can state the
following theorem:

Theorem 4. The fractional index fractional Euler polynomials E, ,(z) can be sequentially con-
structed by solving the triangular system

EIX,O(Z):]-/
1 £ +i 2(n— k)“F(na+1)E (2) | (12)
2 wnl = T((n—ka+1)T (kzx+1) B
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The first few fractional index fractional Euler polynomials are reported hereafter:

Earo(z) = 1,

Ea,l (Z) =z¢ 201 ’

— 2027 (20 41) (28 —22%
Ena(z) = —2271 4 72 4 ZTGCE2)
2 (40 & (A 0
2”‘*31"(394+1)(wfﬂ(l’foZ”‘))
En3(z) = =251 423 + et

T(at1)? ’

2a+2(4m7222a) 4% (2% _0z%) a1 (Zz”‘ (zaﬂ +sz),3 4&)
T(2a+1)2 T(a+1)* T(a+1)2T(2a+1)

mga:—ﬁ“hmﬁ+ﬂ4nm+n<

8(8% —z (4% 420
+ 4(1"(a+14)(1"(34x+17))) )

In the particular case when & = 1/2, we find the first ten fractional Euler polynomials,
which are reported in Figure 8.

E;yo(z):l
1
Er (2)=-— +Vz
’ V2
24 (-1+2)-242 \z
E: ,(2) s ————————————
2? T
3
1 ’E*-’”E 3vz 3z,
R - Y
Y V2 x 2 242
882 vz 4(1-242 ¥z -32+242 222
Ey (Z)s————— +(-2+2) 2z~
2’ 2 3
E;’S(z):16ﬂ2(—120(f—2\/;)+
77(18\/571—40\/;+29\/5(—3+7T)z—40(—2+7T)23/2715\/E7Tzz+167125/2))
Ej’s(Z):2+
3(-720(-1+ﬁx/;)m(lze-l%mmsﬁn Z 60 (-6+7) z+80~/2 (-3+m) 22~
15w
45 (~247) Z2 - 48 2nz5"2+15n2z3))
E: _(z)=

?13 (-5040 (V2 -2 Yz )+ (1848 V2 - 147z (196 + 40+ 45 V2 \Z -482) 2] - 840
T

(2 2-2+4z+3 2z-4z3/2)+3nZ

(—100\/E+140\/;+126\/EZ+7E)\/522—11225’2—35ﬁz3+3227/2)))
384(—l+\5 ﬁ)
3

z’s(z):—f +8z+ (-4+2z) 2z -

64(—3+2\E «E) (1+z) 16 (52744«/5 Nz -10z-1522+8+/2 zm)

3 572

8 (—208+30@ N2 Az +6862-252 12 232+ 105 22 - 112 \[2 25/2 - 105 23 + 48 /2 zm)

105 7
1
E: o (2)=- (120960 («/ _24z) +20160 1 (4 N2 -6z +342 z—423/2) +
2’ 256 n*

336 1 (7170 2 4312/ +60 /2 z-402%% 1+ 45 /2 22 - 48 z“) ot (2576 2+
3600 /2 z - 3360 2%/% - 2268 V2 22 - 840 \/2 23 + 1152 27/2 + 315 /2 z* - 256 2%/2

83 (—128\F+\E(—1248—2772\/5«/;+2744z+33622+315 225/2—28823)))

+

E: (2)-

2
3840 (-1*\/5\/2) N
SRS SR S A

s 315 7*
160 \/2 (5040 + 71 (3570 + 7 (-64 + 161 7))) vz +
960 (630 + 7 (315+ 13 71 (-21+277))) z - 960 \/2 (420 + 71 (140 + 7 (- 154 +257))) z¥/% +
420 71 (360 + 71 (60 + 71 (-98 +157))) 2° + 4032 \/2 71 (-20 + 3 7°) 2°/2 - 4200 (-6 + 1) 12 2% +

(—16 (~63000 + 71 (36540 + 71 (6430 + 71 (-4006 + 315 7)) )) -

3840 /2 (-3 +7) 122721575 (2 +7) 7% z* - 1280 N2 7° 2%/2 4 315 1 z5)

Figure 8. Sequence of the fractional Euler polynomials E; /5 x(z) for 0 < k < 10.
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Remark 3. Note that if « = 1, the fractional exponential Exp,,(t) reduces to the ordinary ex-
ponential function exp(t), and the fractional Euler numbers and polynomials yield the ordinary
classical ones.

5. Conclusions

We have demonstrated the use of the fractional exponential, which was recently
investigated in [13], to create fractional-index-based versions of the traditional Bernoulli
and Euler numbers, as well as fractional Bernoulli and Euler polynomials.

With the assistance of the computer algebra system Mathematica, we have derived
several tables featuring these new special numbers and fractional polynomials for certain
values of the parameter « between 0 and 1. We have highlighted the case where « equals
1/2. The relevant tables demonstrate how these entities converge to the classical numbers
as & approaches 1. We have limited ourselves to simpler cases for the sake of brevity, but
many further extensions are possible.

In forthcoming articles, we will show properties of the classical numbers and polyno-
mials that still remain valid for the fractional counterparts introduced in this research study.
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