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Abstract: Data mining evaluation is very critical in the sense that it determines how well a classifica-
tion model performs and how well it can generate accurate predictions on brand-new, unexplored
data. It is especially important for classification tasks. There are several methods for evaluating
classification models, and the choice of evaluation strategies depends on the particular situation,
the available data, and the desired outcomes. The notion of a T-bipolar soft set (TBSS) is a valuable
parameterization tool and is closer to the concept of bipolarity. Moreover, algebraic structures like
groups, rings, and modules, etc., are basic tools that can be helpful not only in mathematics but also
in other scientific areas due to their symmetric properties. In this article, based on the novelty of
TBSS and the characteristics of rings, we have generalized these two notions to deliver and introduce
the notion of T-bipolar soft rings (TBSRs). Additionally, the concepts of AND product, OR product,
extended union, extended intersection, restricted union, and restricted intersection for two TBSRs is
introduced, and the related results are conferred. To support these proposed notions, we have deliv-
ered examples related to these ideas. For the applicability of the developed approach, an algorithm
is defined based on the delivered approach. An illustrative example regarding the classification of
data mining techniques is developed to show the applications of the introduced work. We can see
that there are four alternatives, and their score values are, respectively, given by −4, 42, 0, and −32.
Based on these results, we can evaluate the best data mining technique. So, the defined algorithm
makes it easy for us to classify the data mining techniques. Further asymmetric data are frequently
employed for selecting the best alternative in decision-making problems because the information
regarding alternatives is not necessarily always symmetric. Therefore, asymmetric information can
be discussed using these proposed concepts.

Keywords: T-bipolar soft set; T-bipolar soft rings; data mining techniques

1. Introduction

Numerous real-world issues in the fields of medicine, engineering, and economics,
etc., contain vague data. The solution to these issues involves mathematical ideas based
on vague and uncertain data. Some of these issues are objective, and others are subjec-
tive. So, some developments have been made to tackle the vague and uncertain data.
These structures include the fuzzy set (FS) [1], the intuitionistic fuzzy set (IFS) [2], the
vague set [3], and the rough set [4]. But all these ideas can be seen to contain inherent
limitations, which is a limitation of parameterization tools. Different fuzzy structures are
combined with ring theory to introduce new structures, like Emniyet and Sahin [5], to
develop the theory of fuzzy normed rings. Moreover, Razaq and Alhamzi [6] used the
Pythagorean fuzzy set (PyFS) and developed the theory on PyF ideals of classical rings.
Also, Razzaque et al. [7] used the more advanced structure of the q-rung orthopair fuzzy
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set (q-ROFS) and discussed a detailed study of mathematical rings in the q-ROF framework.
Furthermore, Alghazzwi et al. [8] introduced a novel structure of q-ROFS in ring theory.
Alolaiyan et al. [9] used the bipolar fuzzy structure and developed a certain structure of
bipolar fuzzy subrings.

The idea of a soft set (SS) [10] is an interesting parameterization tool for dealing with
vague and uncertain data. We can see that SS is free from all the limitations that all the
above theories face in terms of their structure. Ali et al. [11] used the SS idea, proposed
some new operations, and proved different laws in this theory. Maji et al. [12] delivered
the application of SS in decision-making problems. Moreover, these developments have
been used in the medical field, and Yuksel et al. [13] proposed the application of SS for
the diagnosis of prostate cancer risk. Also, SS has applications in ring theory, and many
new developments have been made in this regard. Tunçay and Sezgin [14] introduced the
notion of soft union rings and established their applications in ring theory. Moreover, we
can see that Jana et al. [15] produced the structure of (α,β)-soft intersectional rings and
ideals with their applications. Sezgin et al. [16] introduced the theory of near-rings with
soft union ideals and applications. Moreover, Acar et al. [17] used the structure of SS and
developed the theory of soft rings. Also, Celik et al. [18] proposed a new view on soft rings.

The SS has been combined into different structures, and many new developments
have been introduced, like fuzzy SS (FSS) [19], intuitionistic fuzzy soft set (IFSS) [20], and
picture fuzzy soft set (PFSS) [21]. All these notions use the parameterization tool, and these
ideas have been used in different fields. Celik et al. [22] used the FSS in ring theory. The
application of FSS in medical diagnosis using the notion of fuzzy soft complement is given
in [23]. Zulqarnain et al. [24] used IFS matrices for disease diagnosis. Muthukumar and
Krishnan [25] delivered the notion of similarity measures based on IFSS and established
the utilization of these notions in medical diagnosis. Zhang [26] utilized the notion of IFSS
in algebraic structures and proposed the notion of IFS rings.

To discuss bipolarity, two kinds of attempts have been made, first by Shabir and
Naz [27] and the other by Karaaslan [28], called bipolar soft set (BSS). But both of these
notions have some shortcomings. (1) If we discuss the FS and SS, then we can note that both
are characterized by a single function; both of these notions use the single set as a domain
set, and their codomain set is lattice in either case. (2) Also, note that in the case of IFS and
double-framed SS [29], both of these structures use two functions; both of these ideas use
a single set as a domain set for both functions, and their codomain set is lattice in either
case for both functions. However, we can notice that this is not the case for bipolar-valued
fuzzy sets and BSS. We can note that all the attempts used for BSS in [27,28] do not fill
the space. To fill up this space, the idea of a T-bipolar soft set (TBSS) has been delivered
by Mahmood [30]. The idea of TBSS is a remarkable achievement and an interesting tool
that has gained attention, and many new developments have been made in this regard.
Mahmood et al. [31] established the TOPSIS method based on lattice-ordered TBSSs and
proposed its applications.

The T-bipolar soft set is a parameterization tool that can handle uncertainty and
ambiguous data. Many decision-making situations are based on two-sided aspects, like the
effects and side effects of medicine. So the T-bipolar soft set can handle such situations. A
subfield of abstract algebra called ring theory analyses rings as algebraic structures. Rings
are key tools in many branches of mathematics and their applications because they combine
the attributes of addition and multiplication. Keeping in view the advantages of TBSSs that
we have discussed in the aforementioned discussion and the algebraic structure of rings,
our main goal of this study is to give space to all such kinds of situations that are based on
two-sided aspects. To cover these issues, we have combined the notions of T-bipolar soft
sets with ring theory to develop the notion of T-bipolar soft rings. Moreover, the notion of
a TBSR subset is proposed. Additionally, the concepts of AND product for two TBSRs and
OR product for two TBSRs have been introduced. Moreover, we have delivered the ideas
of an extended union and an extended intersection for two TBSRs. Furthermore, we have
elaborated on the notion of a restricted union and restricted intersection for two TBSRs.
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Moreover, considering the application perspectives of these ideas, our main objective is
to develop an algorithm that further allows us to utilize these notions in decision-making
scenarios. The developed ideas allow us to solve all those situations when data are given in
the form of T-bipolar soft rings and/or to discuss those decision-making situations where
two-sided aspects are given.

The remaining article is arranged as follows: Section 2 discusses the notion of the
SS, BSS, TBSS, and TBS subsets. Section 3 discusses the notion of TBSRs, TBSR subset,
AND product, OR product, extended union, extended intersection, restricted union, and
restricted intersection. We have also elaborated on the examples and theorems to discuss the
authenticity of the developed approach. Section 4 is about the application of the developed
approach using the defied algorithm in the environment of delivered work. Section 5 is
based on the conclusion remarks.

2. Preliminaries

Definition 1 [10]. Let U be a universal set and E be the set of parameters. Now for any Ã ⊆ E, the
soft set is a pair

(
F, Ã

)
where F : Ã→ P(U) is set-valued mapping.

Two kinds of attempts have been made to define the notion of bipolar soft sets. But the idea of a
T-bipolar soft set is much closer to bipolarity. These notions are given as follows:

Definition 2 [27]. Assume that U is the universal set and Ã ⊆ E. Also, ¬Ã =
{
¬zzz, zzz ∈ Ã

}
represent the NOT set of Ã. Then, triplet

(
Fbp, Gbp, Ã

)
is called BSS where Fbp : Ã→ P(U)

and Gbp : ¬Ã→ P(U) and Fbp(zzz)
⋂

Gbp(¬zzz) = φ(null set).

Definition 3 [28]. Assume that Ã represent the set of parameters and Ã1 ⊆ Ã, Ã2 ⊆ Ã such
that Ã1 ∪Ã2 = Ã and Ã1 ∩Ã2 = φ(null set). Then, triplet

(
Fbp, Gbp, Ã

)
is called BSS where

Fbp : Ã1 → P(U) and Gbp : Ã2 → P(U) with Fbp(zzz) ∩Gbp(g(zzz)) = φ where g : Ã1 → Ã2 is
bijective mapping.

Definition 4 [30]. Let U denote the universal set, and E be the set of parameters and
Ã ⊆ E. Also, let X ⊆ U and Y = U− X. then the triplet

(
Ftb, Gtb, Ã

)
is called TBSS over U,

where Ftb : Ã→ P(X) and Gtb : Ã→ P(Y) . So T− BpSftS is given by simply
(
Ftb, Gtb, Ã

)
=

{zzz, Ftb(zzz), Gtb(zzz) : Ftb(zzz) ∈ P(X)andGtb(zzz) ∈ P(Y)}.

Definition 5 [30]. Let
(
Ftb−1, Gtb−1, Ã

)
and (Ftb, Gtb,BBB) be two TBSSs. Then,

(
Ftb−1, Gtb−1, Ã

)
is called the TBS subset of (Ftb−2, Gtb−2,BBB) if

1. Ã ⊆BBB

2. Ftb−1(zzz) ⊆ Ftb−2(zzz) and Gtb−1(zzz) ⊇ Gtb−2(zzz) for all zzz ∈ Ã.

3. T-Bipolar Soft Rings (TBSRs)

This section of the article is devoted to defining the notion of TBSR. We have also
proposed the definition of basic operational rules for TBSRs. We have also introduced the
notion of T-bipolar soft subring. The notions of AND product, OR product, extended union,
extended intersection, restricted union, and restricted intersection have been delivered.
To illustrate all these developed notions, we have established an example to support the
initiated notions.

Definition 6. Let X andG denote the two distinct commutative rings such thatU = X∪ G, then for
any set Ã, a T-bipolar soft set

(
Ftb, Gtb, Ã

)
is called a TBSR if and only if Ftb.(zzz) is a subring of X

and Gtb.(zzz) is a subring of G for all zzz ∈ Ã where Ftb : Ã→ P(X) and Gtb : Ã→ P(G) .
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Example 1. Let X = Z6 and G = Z8 be two rings and U = X ∪ G. Also, assume that
Ã = {z1, z2, z3, z4}.

Now assume that a mapping Ftb. : Ã→ P(X) is defined by

Ftb(z1) =

{−
0
}

, Ftb(z2) =

{−
0,
−
3
}

, Ftb(z3) =

{−
0,
−
2,
−
4
}

andFtb(z4) = Z6.

Then, we can see that
{−

0
}

,
{−

0,
−
3
}

,
{−

0,
−
2,
−
4
}

and Z6 all are the subrings of Z6.

Also, for the mapping Gtb. : Ã→ P(G) defined by

Gtb(z1) =

{−
0,
−
4
}

, Gtb(z2) =

{−
0
}

, Gtb(z3) =

{−
0,
−
2,
−
4,
−
6
}

and Gtb(z4) = Z8.

Then, we can note that for all z ∈ , Ftb(z) is a subring of Z6 and Gtb(z) is a subring of Z8.
Hence,

(
Ftb, Gtb, Ã

)
is a TBSR. Hence, we can write

(
Ftb, Gtb, Ã

)
=

{(
z1,
{−

0
}

,
{−

0,
−
4
})

,
(
z2,
{−

0,
−
3
}

,
{−

0
})

,
(
z3,
{−

0,
−
2,
−
4
}

,
{−

0,
−
2,
−
4,
−
6
})

, (z4, Z6, Z8)

}
Now to make the numerical expression of the above given TBSR, we have the following

definition

Definition 7. Let Ã = {z1, z2, z3, . . . , zm} ⊆ E be the set of m alternatives and assume that X and
G are two distinct rings such that U = X

⋃
G and

(
Ftb, Gtb, Ã

)
is a TBSR where Ftb : Ã→ P(X)

and Gtb : Ã→ P(G) are the set-valued maps. Then, we can represent
(
Ftb, Gtb, Ã

)
as

Pijk =
(
Qj,Sk

)
=


(0, 0) if ρj /∈ Ftb(zi) and σk /∈ Gtb(zi)

(1, 0) if ρj ∈ Ftb(zi) and σk /∈ Gtb(zi)

(0, 1) if ρj /∈ Ftb(zi) and σk ∈ Gtb(zi)

(1, 1) if ρj ∈ Ftb(zi) and σk ∈ Gtb(zi)

P*
ijk = Qj and P�

ijk = Sk

Hence, by using Definition 7, the numerical form of data given in Example 1 is given
in Table 1.

Table 1. Tabular representation of TBSR
(
Ftb, Gtb, Ã

)
=

{(
zzz1,
{−

0
}

,
{−

0,
−
4
})}

,
{(

zzz2, Z6,
{−

0
})}

,{(
zzz3,
{−

0,
−
2,
−
4
}

,
{−

0,
−
2,
−
4,
−
6
})

,
(
zzz4,
{−

0,
−
3
}

, Z8

)}
.

(
Ftb, Gtb,

Ã

) (−
0,
−
0
) (−

0,
−
1
) (−

0,
−
2
) (−

0,
−
3
) (−

0,
−
4
) (−

0,
−
5
) (−

0,
−
6
) (−

0,
−
7
) (−

1,
−
0
) (−

1,
−
1
)

z1 (1, 1) (1, 0) (1, 0) (1, 0) (1, 1) (1, 0) (1, 0) (1, 0) (0, 1) (0, 0)

z2 (1, 1) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 1) (1, 0)

z3 (1, 1) (1, 0) (1, 1) (1, 0) (1, 1) (1, 0) (1, 1) (1, 0) (0, 1) (0, 0)

z4 (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (0, 1) (0, 1)(
Ftb, Gtb,

Ã

) (−
1,
−
2
) (−

1,
−
3
) (−

1,
−
4
) (−

1,
−
5
) (−

1,
−
6
) (−

1,
−
7
) (−

2,
−
0
) (−

2,
−
1
) (−

2,
−
2
) (−

2,
−
3
)

z1 (0, 0) (0, 0) (0, 1) (0, 0) (0, 0) (0, 0) (0, 1) (0, 0) (0, 0) (0, 0)

z2 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 1) (1, 0) (1, 0) (1, 0)

z3 (0, 1) (0, 0) (0, 1) (0, 0) (0, 1) (0, 0) (1, 1) (1, 0) (1, 1) (1, 0)

z4 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
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Table 1. Cont.(
Ftb, Gtb,

Ã

) (−
2,
−
4
) (−

2,
−
5
) (−

2,
−
6
) (−

2,
−
7
) (−

3,
−
0
) (−

3,
−
1
) (−

3,
−
2
) (−

3,
−
3
) (−

3,
−
4
) (−

3,
−
5
)

z1 (0, 1) (0, 0) (0, 0) (0, 0) (0, 1) (0, 0) (0, 0) (0, 0) (0, 1) (0, 0)

z2 (1, 0) (1, 0) (1, 0) (1, 0) (1, 1) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)

z3 (1, 1) (1, 0) (1, 1) (1, 0) (0, 1) (0, 0) (0, 1) (0, 0) (0, 1) (0, 0)

z4 (0, 1) (0, 1) (0, 1) (0, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)(
Ftb, Gtb,

Ã

) (−
3,
−
6
) (−

3,
−
7
) (−

4,
−
0
) (−

4,
−
1
) (−

4,
−
2
) (−

4,
−
3
) (−

4,
−
4
) (−

4,
−
5
) (−

4,
−
6
) (−

4,
−
7
)

z1 (0, 0) (0, 0) (0, 1) (0, 0) (0, 0) (0, 0) (0, 1) (0, 0) (0, 0) (0, 0)

z2 (1, 0) (1, 0) (1, 1) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)

z3 (0, 1) (0, 0) (1, 1) (1, 0) (1, 1) (1, 0) (1, 1) (1, 0) (1, 1) (1, 0)

z4 (1, 1) (1, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)(
Ftb, Gtb,

Ã

) (−
5,
−
0
) (−

5,
−
1
) (−

5,
−
2
) (−

5,
−
3
) (−

5,
−
4
) (−

5,
−
5
) (−

5,
−
6
) (−

5,
−
7
)

z1 (0, 1) (0, 0) (0, 0) (0, 0) (0, 1) (0, 0) (0, 0) (0, 0)

z2 (1, 1) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)

z3 (0, 1) (0, 0) (0, 1) (0, 0) (0, 1) (0, 0) (0, 1) (0, 0)

z4 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

Definition 8. Let
(
Ftb−1, Gtb−1, Ã

)
and (Ftb, Gtb,BBB) be two TBSRs. Then,

(
Ftb−1, Gtb−1, Ã

)
is

called the TBSR subset of (Ftb−2, Gtb−2,BBB) if

3. Ã ⊆BBB

4. Ftb−1(zzz) ⊆ Ftb−2(zzz) and Gtb−1(zzz) ⊇ Gtb−2(zzz) for all zzz ∈ Ã.

Example 2. Let X = Z and G = Z12 be two distinct rings and U = X ∪ G. Also, assume that
Ã = {zzz1, zzz2},BBB = {zzz1, zzz2, zzz3}.

Now define
Ftb−1(zzz1) = 2Z, Ftb−1(zzz2) = 6Z

And
Ftb−2(zzz1) = Z, Ftb−2(zzz2) = 3Z and Ftb−2(zzz3) = 4Z.

Also, define

Gtb−1(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

, Gtb−1(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

and

Gtb−2(zzz1) =

{−
0,
−
4,
−
8
}

, Gtb−2(zzz2) =

{−
0,
−
6
}

and Gtb−2(zzz3) =

{−
0
}

.

Then, we can note that

1. Ã ⊆BBB

2. Ftb−1(zzz) ⊆ Ftb−2(zzz) and Gtb−1(zzz) ⊇ Gtb−2(zzz) for all zzz ∈ Ã.

Hence, both conditions are satisfied.

Remark 1. It is not necessary that if Ã ⊆BBB then
(
Ftb−1, Gtb−1, Ã

)
is called the TBSR subset of

(Ftb−2, Gtb−2,BBB). It holds only if Ftb−1(zzz) ⊆ Ftb−2(zzz) and Gtb−1(zzz) ⊇ Gtb−2(zzz) for all zzz ∈ Ã.
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3.1. AND Product for Two TBSRs

Definition 9. Let us assume that
(
Ftb−1, Gtb−1, Ã

)
and (Ftb−2, Gtb−2,BBB)be two TBSRs. Then,

AND product is denoted and defined by(
Ftb−1, Gtb−1, Ã

) ∧
(Ftb−2, Gtb−2,BBB)

= {((zzz, zzz), Ftb−1(zzz)
⋂

Ftb−2(zzz), Gtb−1(zzz)
⋃

Gtb−2(zzz))where(zzz, zzz)
∈ Ã×BBB

}
.

Theorem 1. The AND product of two TBSRs
(
Ftb−1, Gtb−1, Ã

)
and (Ftb−2, Gtb−2,BBB) is a TBSR ,

if Gtb−1(zzz) is a subring of Gtb−2(zzz) or Gtb−2(zzz) is a subring of Gtb−1(zzz) for all (zzz, zzz) ∈ Ã×BBB.

Proof.

Case 1: Assume that Gtb−1(zzz) is a subring of Gtb−2(zzz) or Gtb−2(zzz) is a subring of Gtb−1(zzz),
then in either case, Gtb−1(zzz) ∪Gtb−2(zzz) is a subring for all (zzz, zzz) ∈ Ã×BBB.
Case 2: Now we can see that Ftb−1(zzz)

⋂
Ftb−2(zzz) for all (zzz, zzz) ∈ Ã×BBB is always a subring

because the intersection of any number of subrings is always a subring. Hence, in either
case, the AND product is a TBSR. �

Example 3. Let X = Z and G = Z12 be two distinct rings and U = X ∪ G. Also, assume that
Ã = {zzz1, zzz2},BBB = {zzz1, zzz2, zzz3}.

Now define
Ftb−1(zzz1) = 2Z, Ftb−1(zzz2) = 6Z

And Ftb−2(zzz1) = Z, Ftb−2(zzz2) = 3Z and Ftb−2(zzz3) = 4Z.

Also, define

Gtb−1(zzz1) =

{−
0
}

, Gtb−1(zzz2) =

{−
0,
−
6
}

and

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

, Gtb−2(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

and Gtb−2(zzz3) = Z12

Now as AND operation is defined as follows:(
Ftb−1, Gtb−1, Ã

) ∧
(Ftb−2, Gtb−2,BBB)

= {((zzz, zzz), Ftb−1(zzz)
⋂

Ftb−2(zzz), Gtb−1(zzz)
⋃

Gtb−2(zzz))where(zzz, zzz)
∈ Ã×BBB

}
.

Now Ã×BBB = {(zzz1, zzz2), (zzz1, zzz2), (zzz1, zzz3), (zzz2, zzz1), (zzz2, zzz2), (zzz2, zzz3)}. Then

Ftb−1(zzz1)
⋂

Ftb−2(zzz1) = 2Z
⋂

Z = 2Z; Ftb−1(zzz1)
⋂

Ftb−2(zzz2) = 2Z
⋂

3Z = 6Z;

Ftb−1(zzz1)
⋂

Ftb−2(zzz3) = 2Z
⋂

4Z = 4Z

Similarly,

Ftb−1(zzz2)
⋂

Ftb−2(zzz1) = 6Z; Ftb−1(zzz2)
⋂

Ftb−2(zzz2) = 6Z;

Ftb−1(zzz2)
⋂

Ftb−2(zzz3) = 12Z

Also,
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Gtb−1(zzz1)
⋃

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

; Gtb−1(zzz1)
⋃

Gtb−2(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

; Gtb−1(zzz1)
⋃

Gtb−2(zzz3) = Z12

Similarly,

Gtb−1(zzz2)
⋃

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

; Gtb−1(zzz2)
⋃

Gtb−2(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

; Gtb−1(zzz2)
⋃

Gtb−2(zzz3) = Z12

So

(
Ftb−1, Gtb−1, Ã

)∧
(Ftb−2, Gtb−2,BBB) =



(
(zzz1, zzz1); 2Z;

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
})

,
(
(zzz1, zzz2); 6Z;

{−
0,
−
3,
−
6,
−
9
})

,

((zzz1, zzz3); 4Z; Z12),
(
(zzz2, zzz1); 6Z;

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
})

,(
(zzz2, zzz2); 6Z;

{−
0,
−
3,
−
6,
−
9
})

, ((zzz2, zzz3); 12Z; Z12)


.

Hence, we can observe that the AND product is a TBSR.

Remark 2. The AND product of two TBSRs is not a TBSR in general.

Example 4. Let X = Z and G = Z12 be two distinct rings and U = X ∪ G. Also, assume that
Ã = {zzz1, zzz2},BBB = {zzz1, zzz2, zzz3}.

Now define

Ftb−1(zzz1) = 2Z, Ftb−1(zzz2) = 6Z

And Ftb−2(zzz1) = Z, Ftb−2(zzz2) = 3Z and Ftb−2(zzz3) = 4Z.

Also, define

Gtb−1(zzz1) =

{−
0,
−
4,
−
8
}

, Gtb−1(zzz2) =

{−
0,
−
3,
−
6
}

and

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

, Gtb−2(zzz2) =

{−
0,
−
6
}

and Gtb−2(zzz3) =

{−
0
}

Now
Ftb−1(zzz1)

⋂
Ftb−2(zzz1) = 2Z; Ftb−1(zzz1)

⋂
Ftb−2(zzz2) = 6Z;

Ftb−1(zzz1)
⋂

Ftb−2(zzz3) = 4Z

Similarly,

Ftb−1(zzz2)
⋂

Ftb−2(zzz1) = 6Z; Ftb−1(zzz2)
⋂

Ftb−2(zzz2) = 6Z;

Ftb−1(zzz2)
⋂

Ftb−2(zzz3) = 12Z

Also,

Gtb−1(zzz1)
⋃

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

; Gtb−1(zzz1)
⋃

Gtb−2(zzz2) =

{−
0,
−
4,
−
6,
−
8
}

;
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Gtb−1(zzz1)
⋃

Gtb−2(zzz3) =

{−
0,
−
4,
−
8
}

And

Gtb−1(zzz2)
⋃

Gtb−2(zzz1) =

{−
0,
−
2,
−
3,
−
4,
−
6,
−
8,
−
9,
−
10
}

; Gtb−1(zzz1)
⋃

Gtb−2(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

;

Gtb−1(zzz1)
⋃

Gtb−2(zzz3) =

{−
0,
−
3,
−
6,
−
9
}

(
Ftb−1, Gtb−1, Ã

)∧
(Ftb−2, Gtb−2,BBB) =



(
(zzz1, zzz1); 2Z;

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
})

,
(
(zzz1, zzz2); 6Z;

{−
0,
−
4,
−
6,
−
8
})

,(
(zzz1, zzz3); 4Z;

{−
0,
−
4,
−
8
})

,
(
(zzz2, zzz1); 6Z;

{−
0,
−
2,
−
3,
−
4,
−
6,
−
8,
−
9,
−
10
})

,(
(zzz2, zzz2); 6Z;

{−
0,
−
3,
−
6,
−
9
})

,
(
(zzz2, zzz3); 12Z;

{−
0,
−
3,
−
6,
−
9
})


.

We can note that Gtb−1(zzz1)
⋃

Gtb−2(zzz2) =

{−
0,
−
4,
−
6,
−
8
}

that is not a subring of Z12.

3.2. OR Product of Two TBSRs

Definition 10. Let us assume that
(
Ftb−1, Gtb−1, Ã

)
and (Ftb−2, Gtb−2,BBB) be two TBSRs. Then,

OR product is denoted and defined by

(
Ftb−1, Gtb−1, Ã

)
∨ (Ftb−2, Gtb−2,BBB) =

{
((zzz, zzz), Ftb−1(zzz) ∪ Ftb−2(zzz), Gtb−1(zzz) ∩Gtb−2(zzz))

∣∣(zzz, zzz) ∈ Ã×BBB
}

.

Theorem 2. The OR product of two TBSRs
(
Ftb−1, Gtb−1, Ã

)
and (Ftb−2, Gtb−2,BBB) is a TBSR,

if Ftb−1(zzz) is a subring of Ftb−2(zzz) or Ftb−2(zzz) is a subring of Ftb−1(zzz) for all (zzz, zzz) ∈ Ã×BBB.

Proof.

Case 1: Assume that Ftb−1(zzz) is a subring of Ftb−2(zzz) or Ftb−2(zzz) is a subring of Ftb−1(zzz),
then in either case, Ftb−1(zzz) ∪ Ftb−2(zzz) is a subring for all (zzz, zzz) ∈ Ã×BBB.
Case 2: Now we can see that Gtb−1(zzz)

⋂
Gtb−2(zzz) for all (zzz, zzz) ∈ Ã×BBB is always a subring

because the intersection of any number of subrings is always a subring. Hence, in either
case the OR product is a TBSR. �

Example 5. Let X = Z and G = Z12 be two distinct rings and U = X ∪ G. Also, assume that
Ã = {zzz1, zzz2},BBB = {zzz1, zzz2, zzz3}.

Now define

Ftb−1(zzz1) = 2Z, Ftb−1(zzz2) = 6Z

And Ftb−2(zzz1) = Z, Ftb−2(zzz2) = 2Z and Ftb−2(zzz3) = 12Z.

Also, define

Gtb−1(zzz1) =

{−
0
}

, Gtb−1(zzz2) =

{−
0,
−
6
}

and

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

, Gtb−2(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

and Gtb−2(zzz3) =

{−
0,
−
4,
−
8
}

Now OR operation is defined as follows
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(
Ftb−1, Gtb−1, Ã

)
∨ (Ftb−2, Gtb−2,BBB) =

{
((zzz, zzz), Ftb−1(zzz) ∪ Ftb−2(zzz), Gtb−1(zzz) ∩Gtb−2(zzz))

∣∣(zzz, zzz) ∈ Ã×BBB
}

Now Ã×BBB = {(zzz1, zzz2), (zzz1, zzz2), (zzz1, zzz3), (zzz2, zzz1), (zzz2, zzz2), (zzz2, zzz3)}. Then

Ftb−1(zzz1) ∪ Ftb−2(zzz1) = Z; Ftb−1(zzz1) ∪ Ftb−2(zzz2) = 2Z;

Ftb−1(zzz1) ∪ Ftb−2(zzz3) = 2Z

Similarly,

Ftb−1(zzz2) ∪ Ftb−2(zzz1) = Z; Ftb−1(zzz2) ∪ Ftb−2(zzz2) = 2Z;

Ftb−1(zzz2) ∪ Ftb−2(zzz3) = 6Z

Also,

Gtb−1(zzz1) ∩Gtb−2(zzz1) =

{−
0
}

; Gtb−1(zzz1) ∩Gtb−2(zzz2) =

{−
0
}

; Gtb−1(zzz1) ∩Gtb−2(zzz3) =

{−
0
}

Similarly,

Gtb−1(zzz2) ∩Gtb−2(zzz1) =

{−
0,
−
6
}

; Gtb−1(zzz2) ∩Gtb−2(zzz2) =

{−
0,
−
6
}

; Gtb−1(zzz2) ∩Gtb−2(zzz3) =

{−
0
}

So

(
Ftb−1, Gtb−1, Ã

)
∪ (Ftb−2, Gtb−2,BBB) =



(
(zzz1, zzz1); Z;

{−
0
})

,
(
(zzz1, zzz2); 2Z;

{−
0
})

,(
(zzz1, zzz3); 2Z;

{−
0
})

,
(
(zzz2, zzz1); Z;

{−
0,
−
6
})

,(
(zzz2, zzz2); 2Z;

{−
0,
−
6
})

,
(
(zzz2, zzz3); 6Z;

{−
0
})


.

Hence, we can observe that the OR product is a TBSR.

Remark 3. The OR product of two TBSRs is not a TBSR in general.

Example 6. Let X = Zand G = Z12 be two distinct rings U = X ∪ G. Also, assume that
Ã = {zzz1, zzz2},BBB = {zzz1, zzz2, zzz3}.

Now define

Ftb−1(zzz1) = 2Z, Ftb−1(zzz2) = 6Z

And Ftb−2(zzz1) = Z, Ftb−2(zzz2) = 3Z and Ftb−2(zzz3) = 12Z.

Also, define

Gtb−1(zzz1) =

{−
0
}

, Gtb−1(zzz2) =

{−
0,
−
6
}

and

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

, Gtb−2(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

and Gtb−2(zzz3) =

{−
0,
−
4,
−
8
}

Now

Ftb−1(zzz1) ∪ Ftb−2(zzz1) = Z; Ftb−1(zzz1) ∪ Ftb−2(zzz2) = {0,±2,±3,±4,±6,±8, . . . .};
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Ftb−1(zzz1) ∪ Ftb−2(zzz3) = 2Z

Similarly,

Ftb−1(zzz2) ∪ Ftb−2(zzz1) = Z; Ftb−1(zzz2) ∪ Ftb−2(zzz2) = 3Z;

Ftb−1(zzz2) ∪ Ftb−2(zzz3) = 6z

Also,

Gtb−1(zzz1) ∩Gtb−2(zzz1) =

{−
0
}

; Gtb−1(zzz1) ∩Gtb−2(zzz2) =

{−
0
}

; Gtb−1(zzz1) ∩Gtb−2(zzz3) =

{−
0
}

Similarly,

Gtb−1(zzz2) ∩Gtb−2(zzz1) =

{−
0,
−
6
}

; Gtb−1(zzz2) ∩Gtb−2(zzz2) =

{−
0,
−
6
}

; Gtb−1(zzz2) ∩Gtb−2(zzz3) =

{−
0
}

So

(
Ftb−1, Gtb−1, Ã

)
∪ (Ftb−2, Gtb−2,BBB) =



(
(zzz1, zzz1); Z;

{−
0
})

,
(
(zzz1, zzz2); {0,±2,±3,±4,±6,±8, . . . .};

{−
0
})

,(
(zzz1, zzz3); 2Z;

{−
0
})

,
(
(zzz2, zzz1); Z;

{−
0,
−
6
})

,(
(zzz2, zzz2); 3Z;

{−
0,
−
6
})

,
(
(zzz2, zzz3); 6Z;

{−
0
})


.

Hence, we can observe that Ftb−1(zzz1) ∪ Ftb−2(zzz2) = {0,±2,±3,±4,±6,±8, . . . .} is not a
subring of Z. Hence, the OR product of two TBSRs need not be a TBSR.

3.3. Extended Union of TBSRs

In this part, we have to discuss the basic definition of an extended union for TBSRs.
Moreover, we have to elaborate on the theorems and some remarks related to this theory.

Definition 11. Let
(
Ftb−1, Gtb−1, Ã

)
and (Ftb−2, Gtb−2,BBB) be two TBSRs. Then, the extended

union of two TBSRs is denoted and defined by

(
Ftb−1, Gtb−1, Ã

)
∪ext. (Ftb−2, Gtb−2,BBB) = (Ftb−3, Gtb−3, €); € = Ã∪BBB and

Ftb−3(zzz) =


Ftb−1(zzz) ; if zzz ∈ Ã−BBB

Ftb−2(zzz) ; if zzz ∈BBB−Ã
Ftb−1(zzz) ∪ Ftb−2(zzz) ; if zzz ∈ Ã∩BBB

Gtb−3(zzz) =


Gtb−1(zzz) ; if zzz ∈ Ã−BBB

Gtb−2(zzz) ; if zzz ∈BBB−Ã
Gtb−1(zzz) ∩Gtb−2(zzz) ; if zzz ∈ Ã∩BBB

Theorem 3. The extended union of two TBSRs is a TBSR if Ftb−1(zzz) is a subring of Ftb−2(zzz) or
Ftb−2(zzz) is a subring of Ftb−1(zzz) for all zzz ∈ Ã∪BBB.

Proof.

Case 1: Assume that Ftb−1(zzz) is a subring of Ftb−2(zzz) or Ftb−2(zzz) is a subring of Ftb−1(zzz) for
all zzz ∈ Ã∪BBB, then in both cases, Ftb−1(zzz) ∪ Ftb−2(zzz) is a subring for all zzz ∈ Ã∪BBB. Now if
zzz ∈ Ã−BBB or zzz ∈BBB−Ã then it is a trivial case.
Case 2: We can easily observe that Gtb−1(zzz)∩Gtb−2(zzz) is a subring because the intersection
of any number of subrings is always a subring. Hence, in either case, the extended union of
two TBSRs is a TBSR. �
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Example 7. Let X = Z and G = Z12 be two distinct rings and U = X ∪ G. Also, assume that
Ã = {zzz1, zzz2},BBB = {zzz1, zzz2, zzz3}.

Now define

Ftb−1(zzz1) = 2Z, Ftb−1(zzz2) = 6Z

And Ftb−2(zzz1) = Z, Ftb−2(zzz2) = 2Z and Ftb−2(zzz3) = 12Z.

Also, define

Gtb−1(zzz1) =

{−
0
}

, Gtb−1(zzz2) =

{−
0,
−
6
}

and

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

, Gtb−2(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

and Gtb−2(zzz3) =

{−
0,
−
4,
−
8
}

Now as(
Ftb−1, Gtb−1, Ã

)
∪ezzzt. (Ftb−2, Gtb−2,BBB) = (Ftb−3, Gtb−3, €); € = Ã∪BBB and

Ftb−3(zzz) =


Ftb−1(zzz) ; if zzz ∈ Ã−BBB

Ftb−2(zzz) ; if zzz ∈BBB−Ã
Ftb−1(zzz) ∪ Ftb−2(zzz) ; if zzz ∈ Ã∩BBB

Gtb−3(zzz) =


Gtb−1(zzz) ; if zzz ∈ Ã−BBB

Gtb−2(zzz) ; if zzz ∈BBB−Ã
Gtb−1(zzz) ∩Gtb−2(zzz) ; if zzz ∈ Ã∩BBB

So from the above observation, we can see that zzz1, zzz2 ∈ Ã∩BBB and zzz3 ∈BBB−Ã
Hence,

Ftb−3(zzz1) = Ftb−1(zzz1) ∪ Ftb−2(zzz1) = Z; Ftb−3(zzz2) = Ftb−1(zzz2) ∪ Ftb−2(zzz2) = 2Z; Ftb−3(zzz3) = 12Z

And

Gtb−3(zzz1) = Gtb−1(zzz1) ∩Gtb−2(zzz1) =

{−
0
}

; Gtb−3(zzz2) = Gtb−1(zzz2) ∩Gtb−2(zzz2) =

{−
0,
−
6
}

; Gtb−3(zzz3) =

{−
0,
−
4,
−
8
}

Hence, TBSR (Ftb−3, Gtb−3, €) is given by

(Ftb−3, Gtb−3, €) =
{(

zzz1, Z,
{−

0
})

,
(
zzz2, 2Z,

{−
0,
−
6
})

,
(
zzz3, 12Z,

{−
0,
−
4,
−
8
})}

Remark 4. The extended union of two TBSRs need not be a TBSR in general.

Example 8. Let X = Z and G = Z12 be two distinct rings and U = X ∪ G. Also, assume that
Ã = {zzz1, zzz2},BBB = {zzz1, zzz2, zzz3}.

Now define
Ftb−1(zzz1) = 4Z, Ftb−1(zzz2) = 2Z

And Ftb−2(zzz1) = Z, Ftb−2(zzz2) = 3Z and Ftb−2(zzz3) = 4Z.

Also, define

Gtb−1(zzz1) =

{−
0
}

, Gtb−1(zzz2) =

{−
0,
−
6
}

and

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

, Gtb−2(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

and Gtb−2(zzz3) =

{−
0,
−
4,
−
8
}
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Now

Ftb−3(zzz1) = Ftb−1(zzz1) ∪ Ftb−2(zzz1) = Z; Ftb−3(zzz2) = Ftb−1(zzz2) ∪ Ftb−2(zzz2) = {0,±2,±3,±4,±9, . . .};
Ftb−3(zzz3) = Ftb−2(zzz3) = 4Z

Also,

Gtb−1(zzz1) ∩Gtb−2(zzz1) =

{−
0
}

; Gtb−1(zzz2) ∩Gtb−2(zzz2) =

{−
0,
−
6
}

; Gtb−1(zzz3) ∩Gtb−2(zzz3) =

{−
0,
−
4,
−
8
}

= (Ftb−3, Gtb−3, €) =
(
Ftb−1, Gtb−1, Ã

)
∪ext. (Ftb−2, Gtb−2,BBB)

=

{(
zzz1; Z;

{−
0
})

,
(
zzz2; {0,±2,±3,±4,±6, . . . .};

{−
0,
−
6
})

,
(
zzz3; 4Z;

{−
0,
−
4,
−
8
})}

.

Hence, we can observe that Ftb−1(zzz1) ∪ Ftb−2(zzz2) = {0,±2,±3,±4,±6, . . . .} is not a
subring of Z. Hence, the extended union need not be TBSR.

3.4. The Extended Intersection of TBSRs

In this part, we have to discuss the basic definition of an extended intersection for
TBSRs. Moreover, we have to elaborate on the theorems and some remarks related to
this theory.

Definition 12. Let
(
Ftb−1, Gtb−1, Ã

)
and (Ftb−2, Gtb−2,BBB)be two TBSRs. Then, the extended

intersection of two TBSRs is denoted and defined by(
Ftb−1, Gtb−1, Ã

)
∩ext. (Ftb−2, Gtb−2,BBB) = (Ftb−3, Gtb−3, €); € = Ã∪BBB and

Ftb−3(zzz) =


Ftb−1(zzz) ; if zzz ∈ Ã−BBB

Ftb−2(zzz) ; if zzz ∈BBB−Ã
Ftb−1(zzz) ∩ Ftb−2(zzz) ; if zzz ∈ Ã∩BBB

Gtb−3(zzz) =


Gtb−1(zzz) ; if zzz ∈ Ã−BBB

Gtb−2(zzz) ; if zzz ∈BBB−Ã
Gtb−1(zzz) ∪Gtb−2(zzz) ; if zzz ∈ Ã∩BBB

Theorem 4. The extended intersection of two TBSRs is a TBSR if Gtb−1(zzz) is a subring of
Gtb−2(zzz) or Gtb−2(zzz) is a subring of Gtb−1(zzz) for all zzz ∈ Ã∪BBB.

Proof.

Case 1: Assume that Gtb−1(zzz) is a subring of Gtb−2(zzz) or Gtb−2(zzz) is a subring of Gtb−1(zzz)
for all zzz ∈ Ã ∪BBB, then in both cases, Gtb−1(zzz) ∪Gtb−2(zzz) is a subring for all zzz ∈ Ã ∪BBB.
Now if zzz ∈ Ã−BBB or zzz ∈BBB−Ã then it is a trivial case.
Case 2: We can easily observe that Ftb−1(zzz)∩Ftb−2(zzz) is a subring because the intersection of
any number of subrings is always a subring. Hence, in either case, the extended intersection
of two TBSRs is a TBSR. �

Example 9. Let X = Z and G = Z12 be two distinct rings and U = X ∪ G. Also, assume that
Ã = {zzz1, zzz2},BBB = {zzz1, zzz2, zzz3}.

Now define

Ftb−1(zzz1) = 2Z, Ftb−1(zzz2) = 6Z

And Ftb−2(zzz1) = Z, Ftb−2(zzz2) = 3Z and Ftb−2(zzz3) = 4Z.

Also, define

Gtb−1(zzz1) =

{−
0
}

, Gtb−1(zzz2) =

{−
0,
−
6
}

and
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Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

, Gtb−2(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

and Gtb−2(zzz3) = Z12

Now as(
Ftb−1, Gtb−1, Ã

)
∩ext. (Ftb−2, Gtb−2,BBB) = (Ftb−3, Gtb−3, €); € = Ã∪BBB and

Ftb−3(zzz) =


Ftb−1(zzz) ; if zzz ∈ Ã−BBB

Ftb−2(zzz) ; if zzz ∈BBB−Ã
Ftb−1(zzz) ∩ Ftb−2(zzz) ; if zzz ∈ Ã∩BBB

Gtb−3(zzz) =


Gtb−1(zzz) ; if zzz ∈ Ã−BBB

Gtb−2(zzz) ; if zzz ∈BBB−Ã
Gtb−1(zzz) ∪Gtb−2(zzz) ; if zzz ∈ Ã∩BBB

So from the above observation, we can see that zzz1, zzz2 ∈ Ã∩BBB and zzz3 ∈BBB−Ã
Hence,

Ftb−3(zzz1) = Ftb−1(zzz1) ∩ Ftb−2(zzz1) = 2Z; Ftb−3(zzz2) = Ftb−1(zzz2) ∩ Ftb−2(zzz2) = 6Z; Ftb−3(zzz3) = 4Z

And

Gtb−3(zzz1) = Gtb−1(zzz1) ∪Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

; Gtb−3(zzz2) = Gtb−1(zzz2) ∪Gtb−2(zzz2)

=

{−
0,
−
3,
−
6,
−
9
}

; Gtb−3(zzz3) = Z12

Hence, TBSR (Ftb−3, Gtb−3, €) is given by

(Ftb−3, Gtb−3, €) =
{(

zzz1, 2Z,
{−

0,
−
2,
−
4,
−
6,
−
8,
−
10
})

,
(
zzz2, 6Z,

{−
0,
−
3,
−
6,
−
9
})

, (zzz3, 4Z, Z12)

}

Remark 5. The extended intersection of two TBSRs need not be a TBSR in general.

Example 10. Let X = Z and G = Z12 be two distinct rings and U = X ∪ G. Also, assume that
Ã = {zzz1, zzz2},BBB = {zzz1, zzz2, zzz3}.

Now define

Ftb−1(zzz1) = 2Z, Ftb−1(zzz2) = 6Z

And Ftb−2(zzz1) = Z, Ftb−2(zzz2) = 3Z and Ftb−2(zzz3) = 4Z.

Also, define

Gtb−1(zzz1) =

{−
0,
−
4,
−
8
}

, Gtb−1(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

and

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

, Gtb−2(zzz2) =

{−
0,
−
4,
−
8
}

and Gtb−2(zzz3) =

{−
0,
−
6
}

Now

Ftb−3(zzz1) = Ftb−1(zzz1) ∩ Ftb−2(zzz1) = 2Z; Ftb−3(zzz2) = Ftb−1(zzz2) ∩ Ftb−2(zzz2) = 6Z;
Ftb−3(zzz3) = Ftb−2(zzz3) = 4Z

.

Also,
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Gtb−3(zzz1) = Gtb−1(zzz1) ∪Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

; Gtb−3(zzz2) = Gtb−1(zzz2) ∪Gtb−2(zzz2)

=

{−
0,
−
3,
−
4,
−
6,
−
8,
−
9
}

; Gtb−3(zzz3) = Gtb−1(zzz3) ∪Gtb−2(zzz3) =

{−
0,
−
6
}

= (Ftb−3, Gtb−3, €) =
(
Ftb−1, Gtb−1, Ã

)
∩ext. (Ftb−2, Gtb−2,BBB)

=

{(
zzz1; 2Z;

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
})

,
(
zzz2; 6Z;

{−
0,
−
3,
−
4,
−
6,
−
8,
−
9
})

,
(
zzz3; 4Z;

{−
0,
−
6
})}

.

Hence, we can observe that Gtb−1(zzz1) ∪Gtb−2(zzz2) =

{−
0,
−
3,
−
4,
−
6,
−
8,
−
9
}

is not a subring of

Z12. Hence, extended intersections need not be TBSR.

3.5. Restricted Union of TBSRs

In this part, we have to discuss the basic definition of a restricted union for TBSRs.
Moreover, we have to elaborate on the theorems and some remarks related to this theory.

Definition 13. Let
(
Ftb−1, Gtb−1, Ã

)
and (Ftb−2, Gtb−2,BBB) be two TBSRs. Then, restricted

union of two TBSRs is denoted and defined by

(
Ftb−1, Gtb−1, Ã

)
∪res. (Ftb−2, Gtb−2,BBB) =

{
zzz, Ftb−1(zzz) ∪ Ftb−2(zzz), Gtb−1(zzz) ∩Gtb−2(zzz) for all zzz ∈ Ã∩BBB

}
Theorem 5. The restricted union of two TBSRs is a TBSR if Ftb−1(zzz) is a subring of Ftb−2(zzz) or
Ftb−2(zzz) is a subring of Ftb−1(zzz) for all zzz ∈ Ã∩BBB.

Proof.

Case 1: Assume that Ftb−1(zzz) is a subring of Ftb−2(zzz) or Ftb−2(zzz) is a subring of Ftb−1(zzz) for
all zzz ∈ Ã∩BBB, then in both cases, Ftb−1(zzz) ∪ Ftb−2(zzz) is a subring for all zzz ∈ Ã∩BBB.
Case 2: We can easily observe that Gtb−1(zzz)∩Gtb−2(zzz) is a subring because the intersection
of any number of subrings is always a subring. Hence, in either case, the restricted union
of two TBSRs is a TBSR. �

Example 11. Let X = Z and G = Z12 be two distinct rings and U = X ∪ G. Also, assume that
Ã = {zzz1, zzz2},BBB = {zzz1, zzz2, zzz3}.

Now define

Ftb−1(zzz1) = 2Z, Ftb−1(zzz2) = 6Z

And Ftb−2(zzz1) = Z, Ftb−2(zzz2) = 3Z and Ftb−2(zzz3) = 4Z.

Also, define

Gtb−1(zzz1) =

{−
0,
−
4,
−
8
}

, Gtb−1(zzz2) =

{−
0,
−
6
}

and

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

, Gtb−2(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

and Gtb−2(zzz3) =

{−
0
}

Now as(
Ftb−1, Gtb−1, Ã

)
∪res. (Ftb−2, Gtb−2,BBB)
=
{
zzz, Ftb−1(zzz) ∪ Ftb−2(zzz), Gtb−1(zzz) ∩Gtb−2(zzz) for all zzz ∈ Ã∩BBB

}
So from the above observation, we can see that zzz1, zzz2 ∈ Ã∩BBB
Hence,

Ftb−1(zzz1) ∪ Ftb−2(zzz1) = Z; Ftb−1(zzz2) ∪ Ftb−2(zzz2) = 3Z
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And

Gtb−1(zzz1) ∩Gtb−2(zzz1) =

{−
0,
−
4,
−
8
}

; Gtb−1(zzz2) ∩Gtb−2(zzz2) =

{−
0,
−
6
}

Hence, for all zzz1, zzz2 ∈ Ã∩BBB , the restricted union is given by

(
Ftb−1, Gtb−1, Ã

)
∪res. (Ftb−2, Gtb−2,BBB) =

{(
zzz1, Z,

{−
0,
−
4,
−
8
})

,
(
zzz2, 3Z,

{−
0,
−
6
})}

Remark 6. The restricted union of two TBSRs need not be a TBSR in general.

Example 12. Let X = Z and G = Z12 be two distinct rings U = X ∪ G. Also, assume that
Ã = {zzz1, zzz2},BBB = {zzz1, zzz2, zzz3}.

Now define

Ftb−1(zzz1) = 2Z, Ftb−1(zzz2) = 3Z

And Ftb−2(zzz1) = Z, Ftb−2(zzz2) = 2Z and Ftb−2(zzz3) = 6Z.

Also, define

Gtb−1(zzz1) =

{−
0,
−
4,
−
8
}

, Gtb−1(zzz2) =

{−
0,
−
6
}

and

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

, Gtb−2(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

and Gtb−2(zzz3) =

{−
0,
−
4,
−
8
}

Now

Ftb−1(zzz1) ∪ Ftb−2(zzz1) = Z; Ftb−1(zzz2) ∪ Ftb−2(zzz2) = {0,±2,±3,±4,±6,±9, . . .};

Also,

Gtb−1(zzz1) ∩Gtb−2(zzz1) =

{−
0,
−
4,
−
8
}

; Gtb−1(zzz2) ∩Gtb−2(zzz2) =

{−
0,
−
6
}

(
Ftb−1, Gtb−1, Ã

)
∪res. (Ftb−2, Gtb−2,BBB) =

{(
zzz1; Z;

{−
0,
−
4,
−
8
})

,
(
zzz2; {0,±2,±3,±4,±6, . . . .},

{−
0,
−
6
})}

.

Hence, we can observe that Ftb−1(zzz1) ∪ Ftb−2(zzz2) = {0,±2,±3,±4,±6, . . . .} is not a
subring of Z. Hence, restricted unions need not be TBSR.

3.6. The Restricted Intersection of TBSRs

In this part, we have to discuss the basic definition of a restricted intersection for
TBSRs. Moreover, we have to elaborate on the theorems and some remarks related to this
theory.

Definition 14. Let
(
Ftb−1, Gtb−1, Ã

)
and (Ftb−2, Gtb−2,BBB) be two TBSRs. Then, restricted

intersection of two TBSRs is denoted and defined by

(
Ftb−1, Gtb−1, Ã

)
∩res. (Ftb−2, Gtb−2,BBB) =

{
(zzz, Ftb−1(zzz) ∩ Ftb−2(zzz), Gtb−1(zzz) ∪Gtb−2(zzz)) for all zzz ∈ Ã∩BBB

}
Theorem 6. The restricted intersection of two TBSRs is a TBSR if Gtb−1(zzz) is a subring of
Gtb−2(zzz) or Gtb−2(zzz) is a subring of Gtb−1(zzz) for all zzz ∈ Ã∪BBB.

Proof. Same as above. �
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Example 13. Let X = Z and G = Z12 be two distinct rings and U = X ∪ G. Also, assume that
Ã = {zzz1, zzz2},BBB = {zzz1, zzz2, zzz3}.

Now define

Ftb−1(zzz1) = 2Z, Ftb−1(zzz2) = 6Z

And Ftb−2(zzz1) = Z, Ftb−2(zzz2) = 3Z and Ftb−2(zzz3) = 4Z.

Also, define

Gtb−1(zzz1) =

{−
0,
−
4,
−
8
}

, Gtb−1(zzz2) =

{−
0,
−
6
}

and

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

, Gtb−2(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

and Gtb−2(zzz3) = Z12

Now as(
Ftb−1, Gtb−1, Ã

)
∩res. (Ftb−2, Gtb−2,BBB)
=
{
(zzz, Ftb−1(zzz) ∩ Ftb−2(zzz), Gtb−1(zzz) ∪Gtb−2(zzz)) for all zzz ∈ Ã∩BBB

}
So from the above observation, we can see that zzz1, zzz2 ∈ Ã∩BBB. So

Ftb−1(zzz1) ∩ Ftb−2(zzz1) = 2Z; Ftb−3(zzz2) = Ftb−1(zzz2) ∩ Ftb−2(zzz2) = 6Z

And

Gtb−1(zzz1) ∪Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

; Gtb−1(zzz2) ∪Gtb−2(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

Hence,

(
Ftb−1, Gtb−1, Ã

)
∩res. (Ftb−2, Gtb−2,BBB) =

{(
zzz1, 2Z,

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
})

,
(
zzz2, 6Z,

{−
0,
−
3,
−
6,
−
9
})}

Remark 7. The restricted intersection of two TBSRs need not be a TBSR in general.

Example 14. Let X = Z and G = Z12 be two distinct rings and U = X ∪ G. Also, assume that
Ã = {zzz1, zzz2},BBB = {zzz1, zzz2, zzz3}.

Now define

Ftb−1(zzz1) = 2Z, Ftb−1(zzz2) = 6Z

And Ftb−2(zzz1) = Z, Ftb−2(zzz2) = 3Z and Ftb−2(zzz3) = 4Z.

Also, define

Gtb−1(zzz1) =

{−
0,
−
4,
−
8
}

, Gtb−1(zzz2) =

{−
0,
−
3,
−
6,
−
9
}

and

Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

, Gtb−2(zzz2) =

{−
0,
−
4,
−
8
}

and Gtb−2(zzz3) =

{−
0,
−
6
}

Now

Ftb−1(zzz1) ∩ Ftb−2(zzz1) = 2Z; Ftb−3(zzz2) = Ftb−1(zzz2) ∩ Ftb−2(zzz2) = 6Z

Also,
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Gtb−1(zzz1) ∪Gtb−2(zzz1) =

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
}

; Gtb−1(zzz2) ∪Gtb−2(zzz2) =

{−
0,
−
3,
−
4,
−
6,
−
8,
−
9
}

(
Ftb−1, Gtb−1, Ã

)
∩res. (Ftb−2, Gtb−2,BBB) =

{(
zzz1; 2z;

{−
0,
−
2,
−
4,
−
6,
−
8,
−
10
})

,
(
zzz2; 6z;

{−
0,
−
3,
−
4,
−
6,
−
8,
−
9
})}

.

Hence, we can observe that Gtb−1(zzz1) ∪Gtb−2(zzz2) =

{−
0,
−
3,
−
4,
−
6,
−
8,
−
9
}

is not a subring of

Z12. Hence, restricted intersections need not be TBSR.

4. Decision-Making Approach Based on the Developed Theory

For the selection of optimal results, we have to define such kind of mathematical forms
that can help us choose the best result from the set of given alternatives. For this, first of all,
we will discuss the score function.

Definition 15. Let Ã =
{
z1, z2, z3, . . . , zq

}
for 1 ≤ i ≤ q, X = {ρ1, ρ2, ρ3, . . . , ρm} for

1 ≤ j ≤ m, G = {σ1,σ2,σ3, . . . ,σn} for 1 ≤ k ≤ n and
(
Ftb−1, Gtb−1, Ã

)
be TBSRs. aThen,

score function is given by
Scori = Oi −Gi

where Oi = ∑j,k P
*
ijk and Gi = ∑j,k P

�
ijk.

Definition 16. Let Ã =
{
z1, z2, z3, . . . , zq

}
for 1 ≤ i ≤ q, X = {zzz1, zzz2, zzz3, . . . , m} for 1 ≤ j ≤ m,

G = {G1, G2, G3, . . . , Gn} for 1 ≤ k ≤ n and
(
Ftb−1, Gtb−1, Ã

)
be TBSRs. Then, zi(1 ≤ i ≤ q) is

called optimal if and only if Scori > Scori
◦ for

(
i 6= i

◦
)

.

4.1. Algorithm 1

Let Ã =
{
z1, z2, z3, . . . , zq

}
for 1 ≤ i ≤ q X = {ρ1, ρ2, ρ3, . . . , ρm} for 1 ≤ j ≤ m

G = {σ1,σ2,σ3, . . . ,σn} for 1 ≤ k ≤ n and
(
Ftb−1, Gtb−1, Ã

)
be TBSRs. The overall al-

gorithm for choosing the optimal result is given by
Step 1: Collect the data in tabular form for TBSRs.
Step 2: Find out the score values Scor1, Scor2, Scor3, . . . , Scorq.
Step 3: Find out the maximum score value as maxiScori = Scorw
Step 4: Scorw is the optimal value.

4.2. Numerical Example

An organization uses data mining as a method to find patterns in data. Both business
intelligence and data science require it. An organization can utilize a variety of data mining
approaches to transform raw information into actionable data. Different kinds of data
mining techniques can help an organization transfer raw material into actionable data.
These techniques are given as follows:

1. Data cleaning and preparation

Data preparation and cleansing are important processes in the data mining process.
They entail converting unprocessed data into an analytically friendly format. Accurate and
relevant data mining outcomes depend on high-quality data. Here, some essential methods
and procedures for data preparation and cleaning in data mining are presented: (1) data
collection; (2) data integration; (3) data cleaning; (4) data reduction; (5) data sampling, etc.

2. Machine learning and artificial learning

Data mining relies heavily on machine learning and artificial intelligence (AI) to extract
useful patterns and insights from massive databases. In conclusion, machine learning and
artificial intelligence are essential to the data mining approach because they offer the
tools and methods required to identify patterns, forecast outcomes, and derive insightful
information from sizable and complicated datasets. These technologies are still developing
and are essential for data-driven decision-making in many different fields.



Symmetry 2023, 15, 1870 18 of 21

3. Data warehousing

In the area of handling information and data analysis, data warehousing and data
mining are two ideas that are closely connected, although they have diverse uses within the
data lifecycle. Data warehousing provides an organized and controlled collection of data
as the basis for data mining, which then pulls useful knowledge and patterns from these
data to help rational decision-making. They work well together to maximize the value of
data assets in organizations.

4. Statistical technique

Data mining, which is the act of identifying patterns, correlations, and meaningful
data derived from massive datasets, heavily relies on statistical approaches. These methods
assist data analysts in deriving insightful findings from data and taking sensible actions.
Here, some essential statistical methods used in data mining are presented: (1) descrip-
tive statistics; (2) inferential statistics; (3) regression analysis; (4) sampling techniques;
(5) Bayesian statistics, etc.

Assume that an organization “W” wants to select the best data mining technique from
the set {z1, z2, z3, z4} where

z1 = Data cleaning and preparation.
z2 = Machine learning and artificial intelligence.
z3 = Data warehousing.
z4 = Statistical technique.

Assume that the expert provides his assessment in the form of TBSR is

(
Ftb, Gtb, Ã

)
=

{(
z1,
{−

0
}

,
{−

0,
−
4
})

,
(
z2,
{−

0,
−
3
}

,
{−

0
})

,
(
z3,
{−

0,
−
2,
−
4
}

,
{−

0,
−
2,
−
4,
−
6
})

, (z4, Z6, Z8)

}
(1)

as given in Example 1, and the numerical form of this expression is given in Table 1.
Now we can use the above algorithm 1 for the optimal result.

Step 1: The tabular form of the above data given in Equation (1) is summarized in Table 1.
Step 2: Now we find out the score values, and their result are given in Table 2.
Step 3: Find out the maximum score value as maxiScori = Scorw = 42.
Step 4:z2 = Machine learning and artificial intelligence is the optimal value.

Table 2. Score values.(
Ftb, Gtb,

Ã

)
OOOi GGGi Scori=OOOi−GGGi

zzz1 8 12 −4
zzz2 48 6 42
zzz3 24 24 0
zzz4 16 48 −32

5. Discussion of Results

This section of the article is related to the novelty and significance of the results.
Moreover, we have compared our work with existing notions to elaborate on the purpose
of the delivered notions. The overall discussion is given as follows:

1. From the analysis of Table 1, we can notice that the data given in Table 1 are based
on TBSRs. The notion of TBSR is a combination of TBSS and ring structure. We can
notice that the idea of TBSS is closer to bipolarity than that of the existing notions
introduced by Shabir and Naz [27] and Karaaslan [28]. Moreover, we can observe that
TBSSs have the ability to discuss the two-sided aspects of a certain situation. So based
on TBSS and ring theory, we have defined the notion of TBSR, and due to this reason,
the delivered approach is superior.

2. We can notice that TBSR is based on two-sided aspects of a certain situation, like the
effects and side effects of medicine. This means that when a decision-maker wants
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to handle such kind of information, then we can say that TBSR is the only structure
that can discuss it compared to soft rings [17,18], which can handle only one aspect.
As the data given in Table 1 are based on TBSRs, we can observe from Table 3 that no
results were found corresponding to soft rings [17,18] because these notions fail to
handle such kinds of situations. The overall results are given in Tables 3 and 4.

3. When we analyze the structural properties of TBSRs and soft rings, we can see that
TBSR is a more advanced structure than soft rings, and it provides more space for
decision-makers. Decision-makers can take their data in the more advanced form of
TBSRs. This means that we can say that there are fewer chances of a loss of data when
we consider the TBSRs as compared to the notion of soft rings. Moreover characteristic
analysis of these existing notions with delivered theory is given in Table 4.

Table 3. The overall comparison analysis of the developed approach.

Methods Score Values Ranking Results

Acar et al. [17] method Cannot handle data No result

Celik et al. [18] method Cannot handle data No result

Proposed work

Scorz1 = −4,
Scorz2 = 42,
Scorz3 = 0

Scorz4 = −32

Scorz2 > Scorz3 > Scorz1 > Scorz4

Table 4. Characteristic analysis.

Methods Consideration of Soft
Structure

Consideration of T-Bipolar
Soft Structure

Acar et al. [17] method Yes No

Celik et al. [18] method Yes No

Proposed work Yes Yes

6. Conclusions

T-BSS can consider two-sided aspects as well as parameterization tools that rank
this structure as more advanced than that of the soft set. When the data are given in
T-BSRs, it means that the data contain two-sided aspects of any situation. This means
that the data cannot be handled by the structure of a soft ring. We can observe that the
data given in Table 1 are based on T-BSRs and cannot be handled by soft rings because
two-sided aspects have been used in the structure of T-BSRs. To handle such a situation
in this article, we utilized the TBSS notion to the algebraic structure of rings to find out
the notion of TBSR. We have proposed the definition of AND product and OR product
for two TBSRs. We have delivered the notion of the extended intersection for two TBSRs.
Additionally, we have discussed the notion of an extended union of two TBSRs. The
notions of restricted union and restricted intersection have been elaborated in this article.
Moreover, we have proved that some theorems relate to these ideas. The main effect
of this developed theory is that whenever someone faces a decision-making situation
where two-sided aspects are given, then the notion of T-BSR can be utilized to solve such
decision-making problems. For this purpose, a decision-making algorithm is established to
discuss the applications of these developed notions for the classification of data mining
techniques. We can observe from Table 3 that the developed algorithm works, and we can
utilize this algorithm to classify the data mining technique. The overall results are given
by Scorz1 = −4, Scorz2 = 42, Scorz3 = 0, and Scorz4 = −32, and their ranking is given as
Scorz2 > Scorz3 > Scorz1 > Scorz4. So we can see that z2 is the best alternative. This means
that the notion of T-BSR can be utilized in decision-making scenarios as an application part
of developed ideas.
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In the future, we can extend these developed notions to the rough set theory [32,33],
the theory of modules, and the ideals theory. Moreover, some more algebraic structures
can be explored under the environment of delivered notions.
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