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Abstract: The generalized extreme value (GEV) distributions have wide applications for describing a
variety of random events, such as those that occur during specific survival, financial, or reliability
investigations. Also, the q-analogues of GEV distributions, called (q-GEVs), are characterized by their
ability to provide more flexibility for modeling, which is due to the influence of the q parameter. In
this study, we estimated the parameters of generalized and q-generalized extreme value distributions
under linear normalization, called GEVL and q-GEVL, respectively. These parameters were estimated
using the maximum likelihood estimator method and are based on the generalized type-II hybrid
censored sample (G-Type-II HCS). The confidence intervals for these parameters were evaluated.
Also, Shannon entropy was estimated for GEVL and q-GEVL distributions. The accuracy of these
parameters and the performance of estimators were demonstrated through a real-life example and a
simulation study.

Keywords: mathematical model; statistical model; GEVL; q-GEVP; MLE; confidence interval; entropy

1. Introduction

Asymmetrical models, such as Gumbel, logistic, Weibull, and generalized extreme
value (GEV) distributions, have been widely used to describe a variety of random events,
such as those that may arise during specific survival, financial, or reliability investigations.
The Gumbel probability distribution is used to analyze and model the behavior of random
phenomena in many fields, such as engineering, business, biology, management, sports,
and economics [1]. We can find many examples of the Gumbel probability distribution,
also known as the double exponential probability distribution, in [2–7].

In order to boost the flexibility of modeling, Provost et al. [8] created q-analogues of
the generalized extreme value (q-GEVs) and Gumbel distributions.

A hybrid censoring technique, which combines Type I and Type II censoring schemes,
has been proposed for adjustable efficiency levels or termination times [9]. In order to clarify
the concept of the censored sample (G-Type-II HCS), we propose the following experiment.

Consider a life-testing experiment that begins with ν identical units undergoing a
lifetime test. Let x1, x2, . . . , xν be the results of lifetimes from distributions with CDF (F(x))
and PDF ( f (x)). Let a ∈ 1, 2, . . . , ν be an integer an integer and suppose T1 < T2 ∈ (0, ∞)
are time points. We have three cases as follows:

1. If the ath failure occurs before the time point T1, the experiment will be terminated at
this time.
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2. If the ath failure occurs between the time points T1 and T2, then the experiment will be
terminated at the time of the failure, xa.

3. If the ath failure occurs after the time point T2, the experiment will be terminated at
time point T2.

This type of censoring, while aiming for a minimum number of failures, a, guarantees
that the experiment will be completed by time T2. Therefore, T2, known as the absolute
maximum time of the experiment, is not exceeded [10].

The maximum time for the experiment is fixed using the G-Type-II HCS is T2, and this
is an advantage from an experimental point of view. One of the following cases are observed
using G-Type-II hybrid censoring sample:

Case I: {x1:ν < x2:ν < . . . < xa:ν < . . . < xν1 ≤ T1}, where xa:ν < T1,
Case II: {x1:ν < x2:ν < . . . < T1 < . . . < xa:ν ≤ T2}, where T1 < xa:ν < T2,
Case III: {x1;ν < x2:ν < . . . < T1:ν < . . . < xν2 ≤ T2}, where xa:ν > T2.

Note that ν1 and ν2 are the number of observed failures up to time points T1 and T2,
respectively. Then, for the G-Type-II HCS, the likelihood functions for the three different
cases described above are as follows:

Case I
ν!

(ν− ν1)!

ν1

∏
i=1

f (xi:ν)[S(T1)]
ν−ν1 ; ν1 = a, a + 1, . . . , or ν,

Case II
ν!

(ν− a)!

a

∏
i=1

f (xi:r)[S(xa)]
ν−a,

Case III

ν!
(ν− ν2)!

n2

∏
i=1

f (xi:ν)[S(T2)]
ν−ν2 ; ν2 = 0, 1, 2, . . . , or(a− 1),

where S(x) is the survival function.
Entropy was initially developed by Clausius et al. [11] in the context of information

theory. He created a new route for the advancement of thermodynamics by using the idea
of entropy to represent the second rule of thermodynamics quantitatively. This notion
was continued by Shannon [12], and ever since then it has been used in a variety of
domains, including economics and image and signal processing. On entropy estimation
for various distributions, several papers have been provided. The entropy of the Weibull
distribution with progressive censoring was studied by Naif and Malyk [13]. The entropy
of the Rayleigh distribution based on the doubly generalized G-Type-II HCS was evaluated
by Cho et al. [14]. Cho et al. [15] estimated the entropy of Weibull distribution using a
generalized progressively censored sample. Ahmad [16] constructed estimators for entropy
function of the Fréchet distribution based on the extended type I hybrid censored samples.
The estimators for entropy function of the Lomax distribution with extended type I hybrid
censored samples were developed by Mahmoud et al. [17].

In this study, we constructed maximum likelihood estimation to evaluate the parame-
ters of the family of GEVL and q-GEVL distributions using the G-Type-II HCS scheme, to
ensure applicability to Shannon entropy. Also, the confidence intervals for the parameters
of GEVL and q-GEVL distributions were determined. Section 2 presents the GEVL and
q-GEVL distributions and their respective entropy functions. The purpose of this section
is to identify these distributions and to provide a detailed description of their entropy
functions. In Section 3, we obtain the maximum likelihood estimation for the parameters
of GEVL based on the G-Type-II HCS scheme. Also, the simulation of this procedure and
calculation of the Shannon entropy are described. In Section 4, we evaluate the maxi-
mum likelihood estimation for the parameters of q-GEVL based on the G-Type-II HCS
scheme. Also, the simulation of this procedure and calculation of the Shannon entropy are
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described. In Section 5, the confidence intervals for the parameters of GEVL and q-GEVL
are determined. After that, the Conclusion Section (Section 6) is presented.

2. The Family of GEVL and q-GEVL Distributions

The limit of the cumulative density function (CDF) Lφ is described by the extremal
types theorem as having one type of three types [18]. The three types, which are to-
gether grouped in the family below, are frequently referred to as the Gumbel, Fréchet,
and Weibull types:

Lφ(x; α, β, φ) =

{
exp {−(1 + φ( x−α

β ))
−1
φ }, φ 6= 0,

exp {− exp(− x−α
β )}, φ→ 0,

(1)

and the probability density function (PDF) lφ can be given by:

lφ(x; α, β, φ) =

{
1
β exp {−(1 + φ( x−α

β ))
−1
φ } × (1 + φ( x−α

β ))
−1
φ −1, φ 6= 0,

1
β exp {− exp(−( x−α

β ))} × exp(−( x−α
β )), φ→ 0,

(2)

where α is a location parameter, β is a positive scale parameter, φ is the shape parameter,
and the values of x are defined by:

x ∈


(α− β

φ , ∞), φ > 0,
(−∞, ∞), φ→ 0,
(−∞, α− β

φ ), φ < 0.

The distribution in Equation (1) is known as a generalized extreme value (GEV)
distribution under linear normalization. We denote it by GEVL(x; α, β, φ). The Gumbel
probability distribution in Equations (1) and (2) as φ→ 0 is used to analyze and model the
behavior of random phenomena in many fields. Bashir et al. [19] examined and contrasted
three estimation methods used to approximate the parameter values for simulated observa-
tions taken from the GEVL distribution. Figure 1 refers to the cumulative distribution and
density function of GEVL distribution for φ→ 0.

Figure 1. The cumulative distribution and density function of GEVL distribution for φ→ 0.
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Provost et al. [8] proposed the q-GEVL distribution and q-Gumbel distribution (ob-
tained by letting φ → 0 in the q-GEVL model), and the corresponding distributions are
provided by:

Ł(x; α, β, φ, q) =

 [1 + q(φ( x−α
β ) + 1)−

1
φ ]
− 1

q , φ 6= 0, q 6= 0

(1 + qe−(
x−α

β )
)
− 1

q , φ→ 0, q 6= 0
(3)

and

ł(x; α, β, φ, q) =

 1
β (1 + φ( x−α

β ))
−1
φ −1 × [1 + q(φ( x−α

β ) + 1)−
1
φ ]
− 1

q−1, φ 6= 0, q 6= 0

(1 + qe−(
x−α

β )
)
− 1

q−1 1
β e−(

x−α
β ), φ→ 0, q 6= 0,

(4)

where the values of x can be determined by:

x ∈
{

(−∞, ∞) φ→ 0, q > 0,

(
α
β +ln(−q)

β , ∞) φ→ 0, q < 0.

Figure 2 refers to the cumulative distribution and density function of q-GEVL distri-
bution for φ→ 0.

Figure 2. The cumulative distribution and density function of q-GEVL distribution for φ→ 0.

The differential entropy is a measure of uncertainty and is defined as follows:
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Let X be an absolutely continuous random variable with probability density function
(PDF) f (x). It is written as:

H(X) = −
∫

S
f (x) log f (x)dx (5)

The expectancy of a random variable (− log f (X)) is a statistic that has recently gained
the interest of investigators.

The Shannon entropy of GEVL family is well known as:

H(X) = log β + (φ + 1)γ + 1 (6)

The Shannon entropy of each type in Equation (6) is evaluated by Ravi and Saeb [20].
On the other hand, Eliwa, et al. [21], evaluated the Shannon entropy of q− GEVL

family as follows:

H(X) = log β + (φ + 1)γ + (1 + q)[1−
∞

∑
n=2

(−1)n+1qn−1Γ(n− 1)], (7)

where γ is the Euler–Macheronic constant.

3. Maximum Likelihood Estimation for the Family of GEVL Based on G-Type-II HCS
3.1. Estimation of GEVL Parameters through G-Type-II HCS

In order to estimate the parameters of the family of generalized extreme distribu-
tion under linear normalization, whose cumulative function and density function as in
Equations (1) and (2) is based on the G-Type-II HCS, we suppose that ν1 and ν2 denote
the number of failures that occur by time points T1 and T2, respectively. Then, based
on the three forms of the G-Type-II HCS, the likelihood function will take one of the
following forms:

Case I

LI(α, β, φ) =
ν!

(ν− ν1)!

ν1

∏
i=1

1
β

e−[1+φ
xi−α

β ]
− 1

φ

[1 + φ
xi − α

β
]
− 1

φ−1
[1− e−[1+φ

T1−α
β ]

− 1
φ

]ν−ν1 ,

Case II

LI I(α, β, φ) =
ν!

(ν− a)!

a

∏
i=1

1
β

e−[1+φ
xi−α

β ]
− 1

φ

[1 + φ
xi − α

β
]
− 1

φ−1
[1− e−[1+φ xr−α

β ]
− 1

φ

]ν−a,

Case III

LI I I(α, β, φ) =
ν!

(ν− ν2)!

ν2

∏
i=1

1
β

e−[1+φ
xi−α

β ]
− 1

φ

[1 + φ
xi − α

β
]
− 1

φ−1
[1− e−[1+φ

T2−α
β ]

− 1
φ

]ν−ν2 .

The log likelihood functions are:
Case I

`I(α, β, φ) = E1 − ν1 log β−
ν1

∑
i=1

[1 + φ
xi − α

β
]
− 1

φ − (
1
φ
+ 1)

ν1

∑
i=1

log [1 + φ
xi − α

β
]

+(ν− ν1) log [1− e−[1+φ
T1−α

β ]
− 1

φ

]],

Case II

`I I(α, β, φ) = E2 − a log β−
a

∑
i=1

[1 + φ
xi − α

β
]
− 1

φ − (
1
φ
+ 1)

r

∑
i=1

log [1 + φ
xi − α

β
]
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+(ν− a) log [1− e−[1+φ xa−α
β ]

− 1
φ

]],

Case III

`I I I(α, β, φ) = E3 − ν2 log β−
ν2

∑
i=1

[1 + φ
xi − α

β
]
− 1

φ − (
1
φ
+ 1)

ν2

∑
i=1

log [1 + φ
xi − α

β
]

+(ν− ν2) log [1− e−[1+φ
T2−α

β ]
− 1

φ

]],

where E1, E2, and E3 are normalizing constants that do not depend on the parameters. We
can rewrite cases I, II, and III as a single formula as follows:

`(α, β, φ) = E− d log β−
d

∑
i=1

[1 + φ
xi − α

β
]
− 1

φ − (
1
φ
+ 1)

d

∑
i=1

log [1 + φ
xi − α

β
]

−(ν− d) log [1− e−[1+φ s−α
β ]
− 1

φ

]],

where E = E1, d = ν1 and s = T1 for case I; E = E2, d = a and s = xa for case II; and
E = E3, d = ν2 and s = T2 for case III.

The corresponding log likelihood equations are:

∂`

∂α
= − 1

β

d

∑
i=1

A−(
1
φ +1)

+
d

∑
i=1

φ + 1
β

A1−1 +
(n− d)A1−(

1
φ +1)eA1

− 1
φ

β[1− eA1
− 1

φ
]

= 0

∂`

∂β
=
−d
β

+
φ + 1

β2

d

∑
i=1

(xi − α)

A
− 1

β2

d

∑
i=1

(xi − α)Y−(
1
φ +1)

φ

− (n− d)(s− α)A1−(
1
φ +1)e−A1

− 1
φ

β2(1− eA1
− 1

φ
)

= 0

∂`

∂φ
=

d

∑
i=1

A−
1
φ log(A)

φ2 +
1

βφ

d

∑
i=1

(xi − α)

A−(
1
φ )

+
1

φ2

d

∑
i=1

log A− 1
β

d

∑
i=1

( 1
φ + 1)(xi − α)

A

− (ν− d)A1−
1
φ e−A1

− 1
φ log (A1)

φ2(1− A1−
1
φ )

+
(s− α)A1−(

1
φ +1)

βφ
= 0, (8)

where
A = [1 + φ

xi − α

β
],

A1 = [1 +
φ(s− α)

β
].

The systems specified by Equation (8) yields the maximum likelihood estimates for
the parameters of the family of GEVL which follow the G-Type-II HCS. Since this equation
cannot be solved analytically, the Newton–Raphson technique will be applied.

3.2. Simulation Study

A simulation study was used to demonstrate the performance of the estimators pro-
duced in the preceding section. We used the family of GEVL based on the G-Type-II HCS
with α = 6, β = 1 and φ = 0.5 to simulate a small random sample of size ν = 20:
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4, 5.1555, 5.3180, 5.4521, 5.5765, 5.6986, 5.8227, 5.9520, 6.0894, 6.2382, 6.4022,

6.5867, 6.7983, 7.0472, 7.3488, 7.7288, 8.2339, 8.9611, 10.1616, 12.8308

We applied these data to the G-Type-II HCS by solving the nonlinear systems that
are specified in Equation (8) and using the Newton–Raphson technique, and MATLAB
(Version 2021) was used for estimation. Then, we used Equation (6) to calculate entropy.
The maximum likelihood estimations (MLEs) of the parameters and entropy of the GEVL
with the G-Type-II HCS were yielded by the proposed values of T1, T2, and a in each case
as shown in Table 1.

Table 1. MLEs for α, β, φ and estimated entropy of GEVL with the G-Type-II HCS.

T1 T2 a α̂ β̂ φ̂ Ĥ

Case I 6 7 3 6.1 1.1699 −0.442 1.479
Case II 6 8 9 5.946 0.694 −0.8091 0.7449
Case III 7 9 18 5.2156 0.9455 0.3014 1.6951

4. Maximum Likelihood Estimation for the Family of q-GEVL Based on
G-Type-II HCS
4.1. Estimation of q-GEVL Parameters through G-Type-II HCS

In order to estimate the parameters of the family of q-GEVL, whose cumulative func-
tion and density function as in Equations (3) and (4) is based on the G-Type-II HCS, we
used ν1 and ν2 denoted the number of failures that occurred by time points T1 and T2,
respectively. Then, based on the three forms of the G-Type-II HCS, the likelihood function
will take one of the following forms:

Case I

LI(α, β, φ, q) =
ν!

(ν− ν1)!

ν1

∏
i=1

1
β
(1 + φ(

xi − α

β
))
−1
φ −1 × [1 + q(φ(

xi − α

β
) + 1)−

1
φ ]
− 1

q−1

[1− {1 + q(φ(
T1 − α

β
) + 1)−

1
φ }−

1
q ]ν−ν1 ,

Case II

LI I(α, β, φ, q) =
ν!

(ν− a)!

a

∏
i=1

1
β
(1 + φ(

xi − α

β
))
−1
φ −1 × [1 + q(φ(

xi − α

β
) + 1)−

1
φ ]
− 1

q−1

[1− {1 + q(φ(
xa − α

β
) + 1)−

1
φ }−

1
q ]ν−a,

Case III

LI I I(α, β, φ, q) =
ν!

(ν− ν2)!

ν2

∏
i=1

1
β
(1 + φ(

xi − α

β
))
−1
φ −1 × [1 + q(φ(

xi − α

β
) + 1)−

1
φ ]
− 1

q−1

[1− {1 + q(φ(
T2 − α

β
) + 1)−

1
φ }−

1
q ]ν−ν2 .

The log likelihood functions are:

Case I

`I(α, β, φ, q) = E1 − ν1 log β− (1 +
1
φ
)

ν1

∑
i=1

log(1 + φ(
xi − α

β
)
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−(1
q
+ 1)

ν1

∑
i=1

log [1 + q(1 + φ
xi − α

β
)− 1

φ
]

+(ν− ν1) log [1− [1 + q(1 + φ
T1 − α

β
)− 1

φ
]− 1

q
],

Case II

`I I(α, β, φ, q) = E2 − a log β− (1 +
1
φ
)

a

∑
i=1

log(1 + φ(
xi − α

β
)

−(1
q
+ 1)

a

∑
i=1

log [1 + q(1 + φ
xi − α

β
)− 1

φ
]

+(ν− a) log [1− [1 + q(1 + φ
xa − α

β
)−

1
φ
]− 1

q
],

Case III

`I I I(α, β, φ, q) = E3 − ν2 log β− (1 +
1
φ
)

ν2

∑
i=1

log(1 + φ(
xi − α

β
)

−(1
q
+ 1)

ν2

∑
i=1

log [1 + q(1 + φ
xi − α

β
)− 1

φ
]

+(ν− ν2) log [1− [1 + q(1 + φ
T2 − α

β
)−

1
φ
]− 1

q
],

where E1, E2, and E3 are normalizing constants that do not depend on the parameters. We
can rewrite the cases I, II, and III as a single formula as follows:

`(α, β, φ, q) = E− d log β− (1 +
1
φ
)

d

∑
i=1

log(1 + φ(
xi − α

β
)

−(1
q
+ 1)

d

∑
i=1

log [1 + q(1 + φ
xi − α

β
)− 1

φ
]

+(ν− d) log [1− [1 + q(1 + φ
s− α

β
)− 1

φ
]− 1

q
],

where E = E1, d = ν1 and s = T1 for case I; E = E2, d = a and s = xa for case II; and
E = E3, d = ν2 and s = T2 for case III.

The corresponding log likelihood equations are:

∂`

∂α
=

d

∑
i=1

φ + 1
βA

− 1 + q
β

d

∑
i=1

A−(
1
φ +1)

1 + qA−
1
φ

+
(ν− d)A1−(

1
φ +1)

(1 + qA1−
1
φ )
−( 1

q +1)

β[1− (1 + qA1−
1
φ )
− 1

q ]
= 0

∂`

∂β
=
−d
β

+
φ + 1

β2

d

∑
i=1

(xi − α)

A
− 1 + q

β2

d

∑
i=1

(xi − α)A−(
1
φ +1)

1 + qA−
1
φ

− (ν− d)(s− α)A1−(
1
φ +1)

[1 + qA1−
1
φ ]
−( 1

q +1)

β2(1− (1 + qA1)−
1
φ )
− 1

q )
= 0

∂`

∂φ
=

d

∑
i=1

log(A)

φ2 −
d

∑
i=1

( 1
φ )(xi − α)

βA

−
d

∑
0

(1 + q)

(1 + qA−
1
φ )

[
A−

1
φ log A
φ2 − (xi − α)A−(

1
φ +1)

φβ
]
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+
(ν− d)[1 + qA1−

1
φ ]
−( 1

q +1)

[1− [1 + qA1]−
1
φ ]
− 1

q ]
[
A1−

1
φ log (A1)

φ2 − (s− α)A1−(
1
φ +1)

φβ
] = 0

∂`

∂q
=

d

∑
i=1

log (A)

φ2 −
d

∑
i=1

( 1
φ + 1)(xi − α)

βA
−

d

∑
i=1

(q + 1)

[1 + qA−
1
φ ]
[
A−

1
φ log (A)

φ2 − (xi − α)A−(
1
φ +1)

φβ
]

+ (ν−d)(1+qA1
− 1

φ )
−( 1

q +1)

(1−(1+qA1
− 1

φ )
− 1

q )
[

A1
− 1

φ log (A1)
φ2 − (s−α)A1

−( 1
φ +1)

φβ ], (9)

where
A = [1 + φ

xi − α

β
],

A1 = [1 +
φ(s− α)

β
].

Systems that are specified by Equation (9) yield the maximum likelihood estimations
for the parameters of the family of q-generalized extreme value distribution under linear
normalization based on the G-Type-II HCS. Since this equation cannot be solved analytically,
the Newton–Raphson technique will be applied.

4.2. Simulation Study

A simulation study was used to demonstrate the performance of the estimators pro-
duced in the preceding section. We used the family of q-GEVL distribution based on the
G-Type-II HCS with α = 5, β = 1, φ = 0.5 and q = 0.5 to simulate a small random sample
of size ν = 20 based on the G-Type-II HCS:

0.5, 3, 3.7590, 3.9617, 4.1244, 4.2720, 4.4142, 4.5563, 4.7021, 4.8551, 5.0188, 5.1974,

5.3959, 5.6216, 5.8847, 6.2007, 6.5956, 7.1163, 7.8607, 9.0806, 11.7742

We applied these data to the G-Type-II HCS by solving the nonlinear systems that
are specified in Equation (9) and using the Newton–Raphson technique, and MATLAB
(Version 2021) was used for estimation. Then, we used Equation (6) to calculate entropy.
The maximum likelihood estimates (MLEs) of the parameters and entropy of the q-GEVL
are yielded by proposed values of T1, T2 and a in each case as shown in Table 2.

Table 2. MLEs for α, β, φ, q and estimated entropy of the q-GEVL with the G-Type-II HCS.

T1 T2 a α̂ β̂ φ̂ q̂ Ĥ

Case I 6 8 4 5.169 0.858 −0.0415 1.048 2.269
Case II 5 7 13 5.106 0.648 −0.1299 1.1601 1.95
Case III 5 8 20 5.1686 1.0794 0.0282 0.9075 2.494

5. Confidence Intervals for the Parameters of the Proposed Procedure

To estimate the approximation confidence intervals for the parameters of the GEVL
and q-GEVL distributions based on the G-Type-II HCS, we need the observed information
matrices of degrees 3 × 3 and 4 × 4. These matrices are denoted by I(Θ1) and I(Θ2),
respectively, where Θ1 = (α, β, φ) and Θ2 = (α, β, φ, q). Then, the 3× 3 total observed
information matrix associated with the GEVL distribution is given by I(Θ1), whereas their
parameters are replaced by their MLEs where

I(Θ1) =

 Iαα Iαβ Iαφ

Iβα Iββ Iβφ

Iφα Iφβ Iφφ


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with

Iαα =
∂2`

∂α2 = −3(φ + 1)
β2

d

∑
i=1

A
−1
φ +

d

∑
i=1

2φ(φ + 1)
A2β2 − (n− d)

β2(1− e−A f rac−1φ
)
[
e−2A1

−1
φ A1−2(1+ 1

φ )

(1− e−A1
−1
φ
)

−A1−2(1+ 1
φ ) − (φ + 1)A1−(2+

1
φ )]

Iββ =
∂2`

∂β2 =
4d
β2 −

d

∑
i=1

(xi − α)

β3 [6A−(1+
1
φ ) +

2(φ + 1)(xi − α)

A2β
− A−(1+

1
φ )(φ + 1)(xi − α)

β

−4(φ + 1)
A

]− (ν− d)(s− α)e−A1
− 1

φ A1−(1+
1
φ )

β3(1− e−A1
− 1

φ
)

[2 +
(s− α)A1−(1+

1
φ )

β
+

(s− α)e−A1
− 1

φ A1−(1+
1
φ )

β(1− e−A1
− 1

φ
)

− (φ + 1)(s− α)

β
]

Iφφ =
∂2`

∂φ2 =
d

∑
i=1

[
6A

−1
φ

φ3 − 4 log (A)

φ3 − 6(xi − α)A−(1+
1
φ )

βφ2 +
4(xi − α)

Aβφ2 +
2(xi − α)2(φ + 1)

βφA2

+
3(xi − α)A−(2+

1
φ )(φα− φxi + φ2α + xiφ

2 + Aβ log (A))

β2φ3

−3 log (A)A−(1+
1
φ )(φα− φxi + Aβ log (A))

βφ4 ]

− (ν− d)e−A1
− 1

φ

φ4β2(1− e−A1
− 1

φ
)

[A−2(1+ 1
φ )(φα− φs + A1β log2 A1)(1 +

e−
1
φ

(1− e−A1
− 1

φ
)

)

−A−(2+
1
φ )(φ2(α2 + φα2s2 + φs2 − 2φαs− 2αφs) + A1β(A1β log2 (A1)− 2αφ2 + 2sφ2

−2A1β2 log (A1)− 2φα log (A1)− 2sβ log (A1)))]

and so on.

The 4× 4 total observed information matrix associated with the q-distribution (φ � 0)
is given by I(Θ2), where in the parameters are replaced by their MLEs where

I(Θ2) =


Iαα Iαβ Iαφ Iαq
Iβα Iββ Iβφ Iβq
Iφα Iφβ Iφφ Iφq
Iqα Iqβ Iqφ Iqq


with

Iαα =
∂2`∗

∂α2 =
d

∑
i=1

3φ(φ + 1)
A2β2 +

d

∑
i=1

2(1 + q)A−(
1
φ )

β2(1 + qA−
1
φ )

[
qA−(

1
φ )

(1 + qA−
1
φ )
− (1 + φ)A−1]

− (nν− d)A1−(
1
φ )(1 + qA−

1
φ )
−( 1

q )

β2(1− (1 + qA−
1
φ )
− 1

q )
[
A1−(

1
φ )(1 + qA−

1
φ )
−( 1

q )

(1− (1 + qA−
1
φ )
− 1

q )

−(φ + 1)A1−1 − (q + 1)A1−(
1
φ +1)

(1 + qA1−
1
φ )−1]
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Iββ =
∂2`∗

∂β2 =
4d
β2 +

d

∑
i=1

(xi − α)

β3 [
3φ(φ + 1)(xi − α)

A2β
− 6(φ + 1)

Aβ3 +
2qA−2( 1

φ )(1 + q)(xi − α)

β(1 + qA−
1
φ )2

+
4A−(

1
φ +2)

(1 + q)(xi − α)

β(1 + qA−
1
φ )

]− (n− d)(s− α)A1−(
1
φ +1)

(1 + qA−
1
φ )
−( 1

q +1)

β3(1− (1 + qA1−
1
φ )
− 1

q )

[2− (s− α)(1 + qA−
1
φ )
−( 1

q +1)A1−(
1
φ +1)

β(1− (1 + qA1−
1
φ )
− 1

q )
− (s− α)(φ + 1)A1−1

β

− (q + 1)(s− α)A1−(
1
φ +1)

(1 + qA−
1
φ )−1

β
]

Iφφ =
∂2`∗

∂φ2 = 2(q + 1)
d

∑
i=1

[
Fx1

A2β2φ4(q + A
1
φ )

+
q(φα− φxi + Aβ log(A))2

A2β2φ4(q + A( 1
φ ))

2
]

+
(ν− d)A−(2+

1
φ )

β2φ4(1− (1 + qA1−
1
φ )
− 1

q )(1 + qA1−
1
φ )
−(1+ 1

q )

[Fs1−
(φα− φs + A1β log(A1))2

(1− (1 + qA1−
1
φ )
− 1

q )(1 + qA1−
1
φ )
−(1+ 1

q )
− (q + 1)A1−

1
φ (φα−φs+A1β log(A1))2

(1 + qA1−
1
φ )−1

]

where
Fx1 = φ2α2 + φ3α2 + φ2x2

i + φ3x2
i − 2φ2αxi − 2φ3αxi

+A2β2 log (A)2 − Aβφ2α + 2Aβφ2xi − 2A2β2φ log (A) + 2βφα log (A)− 2Aβφxi log (A),

Fs1 = φ2α2 + φ3α2 + φ2s2 + φ3s2 − 2φ2αsφ3αxi

+A12β2 log (A1)2 − A1βφ2α + 2A1βφ2s

−2A12β2φ log (A1) + 2βφα log (A1)− 2Aβφs log (A),

and so on.
Under standard regularity conditions, (Θ1 − Θ̂1) asymptotically follows the multi-

variate normal distribution N3(o,−I(Θ̂1)
−1), and the asymptotic distribution of (Θ2 − Θ̂2)

is N4(o,−I(Θ̂2)
−1). These distributions can be utilized to construct the approximation

confidence intervals for the model parameters.
Thus, denoting for example the total observed information matrix evaluated at Θ̂i,

that is −I(Θ̂i), i = 1, 2 by − Î, one would have the following approximate 100(1− α)%
confidence intervals for the parameters of the q-GEVP distributions:

α̂± z α
2

√
(− Î−1)αα, β̂± z α

2

√
(− Î−1)ββ,

φ̂± z α
2

√
(− Î−1)φφ, q̂± z α

2

√
(− Î−1)qq,

where z α
2

denotes the 100(1− α
2 )

th percentile of the standard normal distribution.

Real-Life Example

The following genuine dataset, which was provided by Cooray and Ananda [22],
shows the stress–rupture life of Kevlar 49/epoxy strands when they are continuously
compressed at a 90 percent stress level until they all rupture:
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0.01, 0.08, 0.09, 0.09, 0.10, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 1.00, 0.06,

1.34, 0.10, 1.45, 1.50, 1.51, 0.63, 0.72, 0.99, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 4.20, 4.69, 7.89, 0.07, 0.07,

0.36, 0.38, 0.40, 0.65, 0.67, 0.68, 0.79, 0.80, 0.80, 0.83, 0.72, 0.42, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24,

1.01, 1.02, 1.03, 0.72, 0.73, 0.79, 0.85, 0.90, 0.92, 0.95, 1.05, 0.11, 0.24, 0.29, 0.34, 0.35, 1.10, 1.10, 1.11,

1.15, 1.18, 1.20, 1.29, 1.31, 0.11, 0.01, 0.02, 1.40, 1.43, 1.33.

The basic statistics for the dataset are illustrated in Table 3.

Table 3. Basic statistics.

Mean Median Variance Standard Deviation Minimum Maximum Range Quantiles

0.613753 0.68 1.16632 1.079963 0.01 7.89 7.88 (0.155, 0.68, 1.105)

Using the K-S, Akaike information criterion (AIC), corrected AIC (AICC) and Bayesian
information criterion (BIC) methods for testing the goodness of fit of the data quality (for
more information, see [23] and [24]), we note from Table 4 that the presence of the new
parameters (q) has created an inconvenience during the application.

Table 4 refers to the result of these methods (the goodness-of-fit tests) and the MLEs
for the given data.

Table 4. The goodness-of-fit methods and MEL estimators of the given data.

Goodness of Fit Parameters

Distributions K-S∗ AIC AICC BIC α̂ β̂ φ̂ q̂

GEVL 0.1162 175.097 175.585 184.961 0.5194 0.4648 0.27648 -
q-GEVL 0.11202 533.345 534.433 543.808 0.5221 0.4650 0.2516 3.1 × 10−6

* Critical value at 0.01 = 0.1894

We applied these data to the G-Type-II HCS by solving the nonlinear systems that
are specified in Equation (9) and using the Newton–Raphson technique, and MATLAB
(Version 2021) was used for estimation. Then, we used Equation (6) to evaluate the entropy.
The maximum likelihood estimations (MLEs) of the parameters of GEVL and q-GEVL are
yielded by proposed values of T1, T2, and a in each case as shown in Table 5:

Table 5. MLEs for α, β, φ, and q of the GEVL and q-GEVL with the G-Type-II HCS.

GEVL q-GEVL

T1 T2 a α̂ β̂ φ̂ α̂ β̂ φ̂ q̂

Case I 0.14 0.2 21 0.0416 0.0108 −0.0516 0.1116 0.0789 −0.157 −0.3034
Case II 0.19 0.7 38 0.5044 0.0101 0.0096 0.2756 0.2868 −0.066 −0.2474
Case III 0.8 3 85 1.1063 0.0101 0.0009 0.8644 0.0424 0.0404 0.0389

Also, the confidence intervals for the parameters are determined for the GEVL distri-
bution in Table 6.
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Table 6. The confidence intervals (CIs) for the parameters for the GEVL distribution.

T1 T2 a CI(α̂) CI(β̂) CI(φ̂)

Case I 0.14 0.2 21 [−0.2147, 0.2979] [−0.07, 0.0915] [−1.3825, 1.2793]
Case II 0.19 0.7 38 [−0.1838, 1.1926] [−0.0095, 0.0297] [−0.009, 0.001]
Case III 0.8 3 85 [−0.2615, 2.4741] [−0.0095, 0.0297] [−0.0001, 0.001]

6. Conclusions

In this study, we estimated the parameters of GEVL and q-GEVL distributions based
on the generalized type-II hybrid censored sample (G-Type-II HCS). We estimated these
parameters using the maximum likelihood method. The obtained results have been used
for estimation Shannon entropy for these distributions. Also, the confidence intervals
for these parameters were computed. The simulation system served as an illustration
for the investigation. Additionally, it was used to model a real-life example, and, after
verifying that the data fit with the suggested distributions, an estimation of the parameters
was carried out. For an example of GEVL distribution, confidence interval computation
was performed.
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