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Abstract: One of the most recent advancements in graph theory is the use of a multidisciplinary
approach to the investigation of specific structural dependent features, such as physico-chemical
properties, biological activity and the entropy measure of a graph representing objects like a network
or a chemical compound. The ability of entropy measures to determine both the certainty and
uncertainty about objects makes them one of the most investigated topics in science along with its
multidisciplinary nature. As a result, many formulae, based on vertices, edges and symmetry, for
determining the entropy of graphs have been developed and investigated in the field of graph theory.
These measures assist in understanding the characteristics of graphs, such as the complexity of the
networks or graphs, which may be determined using entropy measures. In this paper, we derive
formulae of entropy measures of an extensively studied family of the interconnection networks and
classify them in terms of complexity. This is accomplished by utilizing all three tools, including
analytical formulae, graphical methods and numerical tables.

Keywords: entropy measures; complexity; interconnection networks; Benes networks; topological
indices; information functionals
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1. Introduction

A multidisciplinary approach applied for investigating certain features of a graph
corresponding to given network [1–5], a chemical compound [6,7] or an algebraic object [8]
by using graph-theoretic tools is among the recent trends in graph theory. The information
included in a graph’s structure that influences its properties is a primary domain of investi-
gation of this research direction. These properties can be any of the graph energy, physical
characteristics, chemical reactivity and the biological activities of molecules, entropy and
complexity of an interconnection networks. While a graph’s topology is basically a non-
numerical mathematical object, many of its properties are expressed numerically in most
cases. The information in the studied graph must first be transformed into a numerical
value in order to link topology to such descriptors, known as a topological index. The
topological index plays a leading role in establishing such connections without employing
a wet lab, and contributes as graph invariant, which assists in describing the structural
features of a graph. There are numerous uses for graph theoretical methods in modern
science and technology [9,10]. Recent work on substantial applications, associated research
topics, and some parallel, major theoretical findings are referred to in [6,11–15].

Topological indices were first used to analyze chemical compounds in 1947 [16]. It
was shown that the number, type and structural arrangement of the atoms in a molecule
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effectively determine the boiling point of organic compounds as well as their other physical
characteristics. Variations in physical properties are only caused by changes in structural
interrelationships within a group of isomers, where both the number and type of atoms are
fixed. The work appeared to be a breakthrough, and was cited approximately 6000 times by
researchers from 1947 onwards. In [17], the theoretical characterization of molecular branch-
ing is studied, using another vastly studied topological index known as the Randic index,
in which linear and branched alkanes with eight or fewer carbon atoms are considered, and
correlations between the derived branching index and properties which critically depend
on molecular size, shape and symmetry are established. Since then, many topological
indices have been introduced and studied, of which a few useful ones are the Wiener index,
Randić index, Zagreb indices, ABC index, GA index, Merrifield–Simmons index, etc. We
refer to [6,11] for noteworthy discussions on various kinds of topological indices as well as
the decision-making process (based on their applications) of useful ones from the class of
all topological indices.

Measures of graph entropy are extensively utilized in information theory, biology,
chemistry and sociology, among various other fields. The entropy of a probability distri-
bution can be thought of as both a measure of information and a measure of uncertainty,
and it is a quantity used in information theory to determine the complexity of a graph.
Mathematical and medicinal chemistry, including drug design, have previously made
extensive use of information-theoretic network complexity measures. Numerous such
measures have been developed so far. The topology of networks has been widely de-
scribed in terms of their complexity measurements using a number of graph entropies.
Recently, the idea of complexity function has been extended to fuzzy graphs (networks)
with boundaries depending on the minimum and maximum load, having applications in
busiest network selection. Another topological parameter, called the Wiener index, on a
bipolar fuzzy network system with properties and applications has also been introduced.
For studies and applications through the Wiener index and complexity functions, we re-
fer [18,19] to the readers. Coming back to entropy, Shannon’s renowned article [20], “The
entropy of a probability distribution is known as a measure of the unpredictability of
information content or a measure of the uncertainty of a system”, is where the notion of
entropy was first established. Moreover, entropy was formulated in order to assess the
structural data of graphs, networks and chemical molecules. On the basis of classifications
of vertex orbits, Rashevsky [21] established the idea of graph entropy. In recent years, a
variety of disciplines, including chemistry, biology, ecology and sociology, have extensively
used graph entropies [22–29]. There are intrinsic and extrinsic measurements for graph
entropy, connecting probability distributions to various graph components (vertices, edges,
etc.). Such graph entropy measures have a number of formulae [30]. In graph theory and
network studies, the degree powers are significant invariants that have been extensively
studied and are utilized as information functionals to study networks [31,32]. Dehmer
introduced a generic framework for introducing entropies of the graph, which are based
on information functionals. It represents structural information and assists in estimating
the graph (network) complexity and other properties [33,34]. Another entropy measure
mechanism based on the functionals on the edge set was introduced by Chen et al. [35],
where V, E and Φ(uivj) represent the vertex set, the edge set and the edge weight of an edge
uivj, respectively. It was further utilized in [24] to define entropies using a particular edge
weight that connects the entropy measures with certain well-known topological indices,
thus obtaining dual information, in terms of topological indices and the entropies, about
the graph.

Moreover, an η-dimensional Benes network B(η) is constructed by attaching back-
to-back butterflies BF(η) with 2η + 1 levels with 2η vertices in each level. The vertices
from level 0 to level η form an η-dimensional butterfly. These butterflies share the middle
level of the Benes network. The vertex (nodes) set V of BF(η) consists of elements [w, j], in
which j is the level of a node (0 ≤ j ≤ η) and w is an η-bit binary number that represents
the row of the node. There is an edge between any two nodes [w, j] and [w′, j′] if and only
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if j′ = j + 1 and either (1) w = w′ or (2) w, w′ differ in exactly the jth bit. The edges in the
network are undirected. B(3) is shown in Figure 1. The vertex and edge cardinalities of
B(η) are |V(B(η))| = (2η + 1)2η and |E(B(η))| = η2η+2, respectively. Hussain et al. [36]
recently introduced two new families of graphs: horizontal cylindrical (HCB(η)) and
vertical cylindrical (VCB(η)), obtained by horizontal and vertical identification of the Benes
network. In these networks, |V(HCB(η))| = (2η + 1)(2η − 1), |V(VCB(η))| = η2η+1,
|E(HCB(η))| = 2η(2η+1 − 1) and |E(VCB(η))| = η2η+2. The graphs of HCB(3) and
VCB(3) are shown in Figure 2 and Figure 3, respectively. We refer the readers to [36,37] for
a detailed explanation of B(η), HCB(η) and VCB(η). In addition, there is new research on
the structural characteristics of these networks employing topological indices and entropy
measures from the perspectives of both mathematics and computer science; see [28,38,39].

Figure 1. Graph corresponding to B(3).

Figure 2. Graph corresponding to HCB(3).

Figure 3. Graph corresponding to VCB(3).

2. Motivation, Proposed Problem and Organization

The network analysis theory has made contributions in many areas, such as thermal
transport [40], cetane number prediction [41], AI for supply chains [42], and anticipating
and building public policy through social networks [43]. Measuring entropy is among
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the most researched scientific topics because of its capacity to reveal both an object’s
certainty and uncertainty. In light of the significance of ICNs, we therefore propose to use
entropy measurements to extract structure-based information. Thus, between the general
introduction of the subject and the technical findings of the manuscript, we explicitly
state the objectives of this manuscript along with its organization. A recent study on
the interconnection networks mentioned before, with a strong foundation in topological
indices, entropy measures and complexity analysis, appeared in [28]. The topic was not
completely resolved, though, and in [28], possible problems were identified, including
using other topological indices to define new information functionals and examining
entropy measures obtained from these new functionals to understand the complexity of
these interconnection networks. In this paper, we investigate the aforementioned problem
from [28], while simultaneously considering the advantage of the substantial impact of the
topological indices (TIs) from [44–47]. It is achieved by computing their entropy measures,
whereas the entropy measures are based on information functionals. These information
functionals are defined through well-established and vastly studied notions of topological
indices. The paper is structured into three more sections. The necessary materials and the
designed methodology are explained in the next section. In Section 4, we determine the
analytical formulae for the entropy measures obtained via new information functionals. In
Section 5, we present the complexity analysis through our results by using numeric data
and graphical tools. At the end, we discuss the advantages and limitations of the proposed
model, along with a possible future work direction.

3. Materials and Methods

The focus of this section is to review some fundamental notions to study the com-
plexity of the networks via degree-based entropy measures. Let G be a graph with V(G)
and E(G) as the vertex set and the edge set, respectively. For any v ∈ V(G), the notations
dv and Sv represent the degree of v and the sum of the degrees of all adjacent vertices to
v, i.e., (Sv = ∑

xv∈E(B(η))
dx). In Table 1, some degree-dependent TIs are listed, which are

further used to compute the entropy measures including the first, second and third re-
defined Zagreb entropy (ENTReZG1(G), ENTReZG2(G), ENTReZG3(G)), the fourth atom-bond
connectivity entropy (ENTABC4(G)), the fifth geometric arithmetic entropy (ENTGA5(G))
and the Sanskruti entropy (ENTS(G)) given in Table 2.

Table 1. Degree-dependent TIs.

Degree Dependent TIs Formulae

The first redefined Zagreb index [44] ReZG1(G) = ∑
uivj∈E(G)

dui + dvj

dui × dvj

The second redefined Zagreb index [44] ReZG2(G) = ∑
uivj∈E(G)

dui × dvj

dui + dvj

The third redefined Zagreb index [44] ReZG3(G) = ∑
uivj∈E(G)

(dui × dvj )(dui + dvj )

The fourth version of the atom-bond connectivity index [45] ABC4(G) = ∑
uivj∈E(G)

√
Sui + Svj − 2

Sui × Svj

The fifth version of the geometric arithmetic index [46] GA5(G) = ∑
uivj∈E(G)

2
√

Sui × Svj

Sui + Svj

The Sanskruti index [47] S(G) = ∑
uivj∈E(G)

{ Sui × Svj

Sui + Svj − 2

}3
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The definition of the entropy of an edge-weighted graph G = (V, E, Φ(uivj)) was
introduced by Chen et al. [35], where V, E and Φ(uivj) represent the vertex set, the edge
set and the edge weight of an edge uivj, respectively. This is defined as:

ENTΦ(G) = − ∑
uivj∈E(G)

Φ(uivj)

∑
uivj∈E(G)

Φ(uivj)
log
{ Φ(uivj)

∑
uivj∈E(G)

Φ(uivj)

}
(1)

Other entropies using particular edge weight Φ in Equation (1) that were discovered
and mathematically formulated in [24] are given in Table 2.

Table 2. Degree-dependent entropies.

Name Defining Φ(uivj) for Any uivi ∈ E(G) Notation and Formulation

The first redefined Zagreb entropy
dui + dvj

dui × dvj

ENTReZG1(G) = log(ReZG1(G))−
1

ReZG1(G)
log
{

∏
uivj∈E(G)

[
Φ(uivj)

][Φ(uivj)
]}

The second redefined Zagreb entropy
dui × dvj

dui + dvj

ENTReZG2(G) = log(ReZG2(G))−
1

ReZG2(G)
log
{

∏
uivj∈E(G)

[
Φ(uivj)

][Φ(uivj)
]}

The third redefined Zagreb entropy (dui × dvj )(dui + dvj )

ENTReZG3(G) = log(ReZG3(G))−
1

ReZG3(G)
log
{

∏
uivj∈E(G)

[
Φ(uivj)

][Φ(uivj)]
}

The fourth atom-bond connectivity entropy

√
Sui + Svj − 2

Sui × Svj

ENTABC4(G) = log(ABC4(G))−
1

ABC4(G)
log
{

∏
uivj∈E(G)

[
Φ(uivj)

][Φ(uivj)
]}

The fifth geometric arithmetic entropy
2
√

Sui × Svj

Sui + Svj

ENTGA5(G) = log(GA5(G))−
1

GA5(G)
log
{

∏
uivj∈E(G)

[
Φ(uivj)

][Φ(uivj)
]}

The Sanskruti entropy
[ Sui × Svj

Sui + Svj − 2

]3 ENTS(G) = log(S(G))−
1

S(G)
log
{

∏
uivj∈E(G)

[
Φ(uivj)

][Φ(uivj)
]}

In this article, we analyze the complexity of B(η), HCB(η) and VCB(η) via several
degree-dependent entropy measures given in Table 2. In first step, we derive analytic
formulae for TIs, which are further utilized in computing respective entropy measures by
using an edge partition scheme. In the second step, we give a numerical and graphical
comparison of these networks for clearer comprehension of their structural information.
The concluding remarks are given at the end.

4. Main Results

The current section is devoted to main findings of the manuscript and is divided into
three subsections, each one for B(η), VCB(η) and HCB(η).

4.1. Entropy Measures Obtained via Degree-Based Topological Indices for Benes Network

In B(η), among 2η(2η + 1) vertices 2η(2η − 1) and 2η+1 vertices are of degree 4 and
degree 2, respectively. The cardinality of the edge set is η2η+2. The partitions of E(B(η) are
given in Tables 3 and 4. The notation E(dui − dvj) represents the set of all edges uivj with
(dui , dvj).
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Table 3. Edge partition of B(η) based on the degree of end vertices.

(dui , dvj) for uivj ∈ E(B(η)) Frequency

(2, 4) 2η+2

(4, 4) 2η+2(η − 1)

For next entropy measures, we now develop an edge partition of B(η) based on Sv of
end vertices in the following table. Recall that Sv = ∑

xv∈E(B(η))
dx.

Table 4. Edge partition of B(η) based on Sv of end vertices.

(Sui , Svj) for uivj ∈ E(B(η)) Frequency

(8, 12) 2η+2

(12, 16) 2η+2

(16, 16) 2η+2(η − 2)

Theorem 1. For B(η) with η ≥ 3, we have

(a) ENTReZG1(B(η)) = log(2η(2η + 1))− 1
2η(2η+1) log

{
22η+2(η − 1)3

3
4

}
.

(b) ENTReZG2(B(η)) = log(2η+3(η − 1
3 ))−

1
2η+3(η− 1

3 )
log
{

22η+6(η − 1)( 4
3 )

4
3

}
.

(c) ENTReZG3(B(η)) = log(2η+6(8η− 5))− 1
2η+6(8η−5)

log
{

22η+4(η− 1)(48)48× (128)128
}

.

(d) ENTABC4(B(η)) = log
(
2η
(√

3 +
√

13
6 + (η − 2)

√
30
4
))
−

1

2η
(√

3+
√

13
6 +(η−2)

√
30
4

) log
{

23η+6(η − 2)
(√3

4
)√3

4 ×
(√13

4
√

6

)√13
4
√

6 ×
(√30

16
)√30

16

}
.

(e) ENTGA5(B(η)) = log
(
2η+2( 2

√
6

5 + 4
√

3
7 + (η− 2))

)
− 1

2η+2( 2
√

6
5 + 4

√
3

7 +(η−2))
log
{

2η+6(η−

2)
( 2
√

6
5
) 2
√

6
5 ×

( 4
√

3
7
) 4
√

3
7

}
.

( f ) ENTS(B(η)) = log
(
2η+2(( 16

3 )3 + ( 96
13 )

3 + (η − 2)( 128
15 )3))−

1
2η+2(( 16

3 )3+( 96
13 )

3+(η−2)( 128
15 )3)

log
{

23η+6(η − 2)
( 16

3
)3( 16

3 )3
×
( 96

13
)3( 96

13 )
3
×
( 128

15
)3( 128

15 )3
}

.

Proof. (a) By using Table 3, we compute the first redefined Zagreb index as

ReZG1(B(η)) = ∑
E(2−4)

dui + dvj

dui × dvj

+ ∑
E(4−4)

dui + dvj

dui × dvj

= 2η+2
(

2 + 4
2× 4

)
+ 2η+2(η− 1)

(
4 + 4
4× 4

)
= 2η(2η + 1).
By using the above calculated index and Table 3, we obtain the first redefined Zagreb
entropy as

ENTReZG1(B(η)) = log(ReZG1(B(η)))− 1
ReZG1(B(η)) log

{
∏

uivj∈E(B(η))

[dui + dvj

dui × dvj

][ dui +dvj
dui×dvj

]}
.

= log(2η(2η + 1))− 1
2η(2η+1) log

{
∏

E(2−4)

[dui + dvj

dui × dvj

][ dui +dvj
dui×dvj

]
× ∏

E(4−4)

[dui + dvj

dui × dvj

][ dui +dvj
dui×dvj

]}
.

= log(2η(2η + 1))− 1
2η(2η+1) log

{
2η+2

(
2 + 4
2× 4

)( 2+4
2×4

)
× 2η+2(η − 1)

(
4 + 4
4× 4

)( 4+4
4×4

)}
.

= log(2η(2η + 1))− 1
2η(2η+1) log

{
22η+2(η − 1)3

3
4

}
.
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(b) We use the similar method as in part (a). By using the edge partition of B(η) given
in Table 3 in the formula of ENTReZG2 from Table 2 and simplifying the expression, we
obtain the required formula.

(c) Follows from the edge partition of B(η) in Table 3 and the formula of ENTReZG3

in Table 2.
(d) By using Table 4, we obtain the fourth atom-bond connectivity index as

= ∑
E(8−12)

√
Sui + Svj − 2

Sui × Svj

+ ∑
E(12−16)

√
Sui + Svj − 2

Sui

+ ∑
E(16−16)

√
Sui + Svj − 2

Sui

= 2η+2
(√

8 + 12− 2
8× 12

)
+ 2η+2

(√
12 + 16− 2

12× 16

)
+ 2η+2(η − 2)

(√
16 + 16− 2

16× 16

)
= 2η

(√
3 +

√
13
6 + (η − 2)

√
30
4
)
.

By using the above-calculated index and Table 4, we obtain the fourth atom-bond connec-
tivity entropy as
ENTABC4(B(η)) = log(ABC4(B(η)))−

1
ABC4(B(η)) × log

{
∏

uivj∈E(B(η))

[√Sui + Svj − 2

Sui × Svj

][√ Sui +Svj−2

Sui×Svj

]}
.

= log
(

2η+2(√ 3
16 +

√
5
6 + (η − 2)

√
30

16
))
− 1

2η+2
(√

3
16+

√
5
6+(η−2)

√
30

16

)
log
{

∏
E(8−12)

[√Sui + Svj − 2

Sui × Svj

][√ Sui +Svj−2

Sui×Svj

]
× ∏

E(12−16)

[√Sui + Svj − 2

Sui × Svj

][√ Sui +Svj−2

Sui×Svj

]

× ∏
E(16−16)

[√Sui + Svj − 2

Sui × Svj

][√ Sui +Svj−2

Sui×Svj

]}
.

= log
(

2η
(√

3 +
√

13
6 + (η − 2)

√
30
4
))
− 1

2η
(√

3+
√

13
6 +(η−2)

√
30
4

)
log
{

2η+2
(√

8 + 12− 2
8× 12

)(√ 8+12−2
8×12

)
×

2η+2
(√

12 + 16− 2
12× 16

)(√ 12+16−2
12×16

)
× 2η+2(η − 2)

(√
16 + 16− 2

16× 16

)(√ 16+16−2
16×16

)}
.

= log
(

2η
(√

3 +
√

13
6 + (η − 2)

√
30
4
))
− 1

2η
(√

3+
√

13
6 +(η−2)

√
30
4

) log
{

23η+6(η − 2)
(√3

4
)√3

4 ×

(√13
4
√

6

)√13
4
√

6 ×
(√30

16
)√30

16

}
.

(e) Follows from the edge partition of B(η) in Table 4 and the formula of ENTGA5

in Table 2.
( f ) Follows from the edge partition of B(η) in Table 4 and the formula of ENTS

in Table 2.

4.2. Entropy Measures Obtained via Degree-Based Topological Indices for HCB(η)

In an η-dimensional horizontal cylindrical representation of a Benes network HCB(η),
we have | V(HCB(η)) |= (2η − 1)(2η + 1) and | E(HCB(η)) |= 2η(2η+1 − 1). The edge
partition based on the degree of end vertices is developed in the table given next. We
use this partition to obtain the precise representations of the entropies by computing the
corresponding TIs for each one.

Next, we develop an edge partition table of HCB(η) and compute further entropy mea-
sures for η ≥ 4. This partition is based on Sv of end vertices. Recall that Sv = ∑

xv∈E(B(η))
dx.
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Theorem 2. For HCB(η) with (η ≥ 3 in (a, b, c) and (η ≥ 4 in (d, e, f ), we have

(a) ENTReZG1(B(η)) = log((2η − 1)(2η + 1))− 1
(2η−1)(2η+1) log

{
(2η − 3)2(η − 1)3 ×

212 ×
( 7

12
) 7

12 ×
( 2

3
) 2

3 ×
( 3

4
) 3

4 ×
( 5

12
) 5

12 ×
( 1

3
) 1

3

}
.

(b) ENTReZG2(HCB(η)) = log(2η+3(η− 1
3 ) +

6η
5 −

12
35 )−

1
(2η+3(η− 1

3 )+
6η
5 −

12
35 )

log
{
(2η −

3)2(η − 1)3 × 217 × 33 × ( 12
7 )

12
7 × ( 3

2 )
3
2 × ( 4

3 )
4
3 × ( 12

5 )
12
5

}
.

(c) ENTReZG3(HCB(η)) = log(4(8n − 5)(2η+4 + 39)) − 1
4(8n−5)(2η+4+39)

log
{
(2η −

3)2(η− 1)3× (2)13× (162)162× (84)84× (96)96× (48)48× (240)240× (432)432× (128)128
}

.

(d) ENTABC4(HCB(η)) = log(ABC4(HCB(η)))−
1

ABC4(HCB(η))
log
{

8(2η−1 − 3)
(√3

4
)√3

4 × 8
(√35

14
)√35

14 × 4
(√ 21

130
)√ 21

130

× 4
(√ 29

210
)√ 29

210 × 32(3η − 4)
(√15

10
)√15

10 × 8
(√42

118
)√42

118 × 4
(√ 25

182
)√ 25

182

× 8
( 3
√

39
52
) 3
√

39
52 × 4

(√210
42
)√210

42 × 2
(√22

14
)√22

14 × 4
(√5

7
)√5

7 × (2η+2(η − 1)− 32(3η−4)− 32η +
40)(√5

7
)√5

7 × 8(2η − 5)
( 1

3
) 1

3 × 4(η − 3)
(√34

18
)√34

18 × 4
(√10

10
)√10

10

× 4
(√ 37

378
)√ 37

378 × 4(2η− 5)
(√154

42
)√154

42 × 4
(√ 23

280
)√ 23

280 × 2
(√141

42
)√141

42 × 2(η− 2)
( 3
√

6
28
) 3
√

6
28

}
.

(e) ENTGA5(HCB(η)) = log(GA5(HCB(η)))−
1

GA5(HCB(η)) log
{

8(2η−1 − 3)
( 2
√

6
5
) 2
√

6
5 × 8

( 2
√

28
11
) 2
√

28
11

× 4
( 2
√

130
23

) 2
√

130
23 × 4

( 2
√

210
31

) 2
√

210
31

× 32(3η − 4)
( 2
√

40
13
) 2
√

40
13 × 8

( 2
√

6
5
) 2
√

6
5 4×

( 2
√

182
27

) 2
√

182
27 × 8

( 2
√

208
29

) 2
√

208
29 × 4

( 2
√

63
16
) 2
√

63
16

× 2
( 2
√

6
5
) 2
√

6
5 × 4

( 2
√

63
16
) 2
√

63
16 × (2η+2(η − 1)− 32(3η−4)− 32η + 40)(1)

× 8(2η − 5)
( 2
√

72
17
) 2
√

72
17 × 4(η − 3)(1)× 4

( 2
√

90
19
) 2
√

90
19 × 4

( 2
√

35
12
) 2
√

35
12

× 4(2η − 5)
( 2
√

126
23

) 2
√

126
23 × 4

( 2
√

35
12

) 2
√

35
12

× 2
( 2
√

12
7
) 2
√

12
7 × 2(η − 2)(1)

}
.

( f ) ENTS(HCB(η)) = log(S(HCB(η))−
1

S(HCB(η) log
{

8(2η−1 − 3)
( 16

3
)3
(

16
3

)3

× 8
( 28

5
)3
(

28
6

)3

× 4
( 130

21
)3
(

130
21

)3

× 4
( 210

29
)3
(

210
29

)3

×

32(3η − 4)
( 20

3
)3
(

20
3

)3

× 8
( 54

7
)3
(

54
7

)3

×

4
( 182

25
)3
(

182
25

)3

× 8
( 208

27
)3
(

208
27

)3

×

4
( 42

5
)3
(

42
5

)3

× 2
( 98

11
)3
(

98
11

)3

×

4
( 49

5
)3
(

49
5

)3

× (2η+2(η − 1)− 32(3η−4)− 32η + 40)
(128

15
)3
(

128
15

)3

×

8(2η − 5)(9)3(9)3 × 4(η − 3)
( 162

17
)3
(

162
17

)3

× 4(10)3(10)3 × 4
( 378

37
)3
(

378
37

)3

×

4(2η − 5)
( 26

11
)3
(

26
11

)3

× 4
( 280

23
)3
(

280
23

)3

× 2
( 288

47
)3
(

288
47

)3

×

2(η − 2)
( 392

27
)3
(

392
27

)3}
.
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Proof. (a) Using Table 5, we compute the first redefined Zagreb index as

ReZG1(HCB(η)) = ∑
E(3−6)

dui + dvj

dui × dvj

+ ∑
E(3−4)

dui + dvj

dui × dvj

+ ∑
E(2−6)

dui + dvj

dui × dvj

+ ∑
E(2−4)

dui + dvj

dui × dvj

+

∑
E(4−6)

dui + dvj

dui × dvj

+ ∑
E(6−6)

dui + dvj

dui × dvj

+ ∑
E(4−4)

dui + dvj

dui × dvj

.

= 2
(

3 + 6
3× 6

)
+ 4
(

3 + 4
3× 4

)
+ 4
(

2 + 6
2× 6

)
+ (2η+2 − 12)

(
2 + 4
2× 4

)
+ 8(η − 1)

(
4 + 6
4× 6

)
+ 2(η − 1)

(
6 + 6
6× 6

)
+ 4(η − 1)(2η − 3)

(
4 + 4
4× 4

)
.

= (2η − 1)(2η + 1).
Using the above-calculated index and Table 5, we obtain the first redefined Zagreb en-
tropy as

ENTReZG1(B(η)) = log(ReZG1(B(η)))− 1
ReZG1B(η) log

{
∏

uivj∈E(B(η))

[dui + dvj

dui × dvj

][ dui +dvj
dui×dvj

]}
.

= log((2η − 1)(2η + 1))− 1
(2η−1)(2η+1) log

{
∏

E(3−6)

[dui + dvj

dui × dvj

][ dui +dvj
dui×dvj

]
×

∏
E(3−4)

[dui + dvj

dui × dvj

][ dui +dvj
dui×dvj

]
× ∏

E(2−6)

[dui + dvj

dui × dvj

][ dui +dvj
dui×dvj

]
× ∏

E(2−4)

[dui + dvj

dui × dvj

][ dui +dvj
dui×dvj

]
×

∏
E(4−6)

[dui + dvj

dui × dvj

][ dui +dvj
dui×dvj

]
× ∏

E(6−6)

[dui + dvj

dui × dvj

][ dui +dvj
dui×dvj

]
× ∏

E(4−4)

[dui + dvj

dui × dvj

][ dui +dvj
dui×dvj

]}
.

= log((2η − 1)(2η + 1))− 1
(2η−1)(2η+1) log

{
2
(

3 + 6
3× 6

)( 3+6
3×6

)
× 4
(

3 + 4
3× 4

)( 3+4
3×4

)
×

4
(

2 + 6
2× 6

)( 2+6
2×6

)
× (2η+2 − 12)

(
2 + 4
2× 4

)( 2+4
2×4

)
× 8(η − 1)

(
4 + 6
4× 6

)( 4+6
4×6

)
×

2(η − 1)
(

6 + 6
6× 6

)( 6+6
6×6

)
× 4(η − 1)(2η − 3)

(
4 + 4
4× 4

)( 4+4
4×4

)}
.

= log((2η − 1)(2η + 1))− 1
(2η−1)(2η+1) log

{
(2η − 3)2(η− 1)3× 212×

( 7
12
) 7

12 ×
( 2

3
) 2

3 ×
( 3

4
) 3

4

×
( 5

12
) 5

12 ×
( 1

3
) 1

3

}
.

(b) We use the similar method as in part (a). By using the edge partition of HCB(η)
given in Table 5 in the formula of ENTReZG2 from the Table 2 and simplifying the expression,
we obtain the required formula.

(c) Follows from the edge partition of HCB(η) in Table 5 and the formula of ENTReZG3

in Table 2.

Table 5. Edge partition of HCB(η) based on the degree of end vertices.

(dui , dvj) with uivj ∈ E(HCB(η)) Frequency

(3, 6) 2
(3, 4) 4
(2, 6) 4
(2, 4) 2η+2 − 12
(4, 6) 8(η − 1)
(6, 6) 2(η − 1)
(4, 4) 4(η − 1)(2η − 3)

(d) Follows from the edge partition of HCB(η) in Table 6 and the formula of ENTABC4
in Table 2.
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(e) Follows from the edge partition of HCB(η) in Table 6 and the formula of ENTGA5

in Table 2.
( f ) Follows from the edge partition of HCB(η) in Table 6 and the formula of ENTS in

Table 2.

Table 6. Edge partition of HCB(η) (for η ≥ 4) based on degree sum of end vertices.

(Sui , Svj), uivj ∈ E(HCB(η)) Frequency

(8, 12) 8(2η−1 − 3)
(8, 14) 8
(10, 13) 4
(10, 21 4
(12, 16) 32(3η − 4)
(12, 18) 8
(13, 14) 4
(13, 16) 8
(14, 18) 4
(14, 21) 2
(14, 28) 4
(16, 16) 2η+2(η − 1)− 32(3η−4)− 32η + 40
(16, 18) 8(2η − 5)
(18, 18) 4(η − 3)
(18, 20) 4
(18, 21) 4
(18, 28) 4(2η − 5)
(20, 28) 4
(21, 28) 2
(28, 28) 2(η − 2)

4.3. Entropy Measures Obtained via Degree-Based Topological Indices for VCB(η)

In an η-dimensional vertical cylindrical representation of a Benes network VCB(η),
we have | V(VCB(η)) |= η2η+1 and | E(VCB(η)) |= η2η+2. By observation, we note that
each vertex of VCB(η) has degree 4. As all the vertices of VCB(η) have same degree 4,
therefore, Su = 16 for each u ∈ V(VCB(η)). So, all edges of VCB(η) have same degree 4 of
end vertices, and thus, the partition of edge set of VCB(η) contains all its edges in one class.
Similarly, the values of Su = 16 for each u ∈ V(VCB(η)) implies partition of the edge set
of VCB(η) containing all its edges in one class. By utilizing these facts in the formulae of
the entropies given in Table 2, we obtain the following formulae of entropy measures for
VCB(η).

Theorem 3. For VCB(η), we have
(a) ENTReZG1(VCB(η)) = log(η2η+1)− 1

η2η+1 log(η2η+ 3
2 ).

(b) ENTReZG2(VCB(η)) = log(η2η+3)− 1
η2η+3 log(η2η+4).

(c) ENTReZG3(VCB(η))=log(η2η+9)− 1
η2η+9 log

(
η2η+2(128)128).

(d) ENTABC4(VCB(η)) = log(η2η−2
√

30)− 1
η2η−2

√
30

log
{

η2η+2
(√

30
16

)√30
16
}

.

(e) ENTGA5(VCB(η)) = log(η2η+2)− 1
η2η+2 log

(
η2η+2).

( f ) ENTS(VCB(η)) = log
(

η2η+23

3375

)
− 3375

η2η+23 log
{

η2η+2
(

256
30

)3( 256
30 )3}

.

5. Complexity-Based Classification of Interconnection Networks via Entropy Measures
by Using Numeric Tables and Graphical Analysis

In this sections, we apply the proved results of this manuscript to classify the studied
interconnection networks in terms their complexity measures. We construct numerical
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tables by taking specific values of the parameter η. In Table 7, we consider the values of
η = 3, 4, 5, 6, 7 and find the corresponding values of the TIs for B(η), HCB(η) and VCB(η).
Secondly, in Table 8, we consider the values of η = 4, 5, 6, 7 and find the corresponding
values of the entropies for B(η), HCB(η) and VCB(η). Table 8 assists in understanding and
comparing the entropy and consequently the complexity measures of the studied network.
Note that the higher the value of entropy, the complex the networks, and vice versa. Also,
remember that not all topological indices or entropy measures describe all the network
property. Thus, our method will assist in filtering those topological indices that provide a
certain conclusion about the complexity measures of these networks. As a comparison, we
start with the entropy measure corresponding the TI ReZG1, denoted by ENT(ReZG1). The
values of the entropy measures for B(η) are greater than both HCB(η) and VCB(η), which
shows that both horizontal and vertical identifications in Benes networks help to reduce its
complexity. However, while observing the case ENT(ReZG2), different results are obtained.
In this case, the behaviour is opposite to the previous one. It can be interpreted as both the
horizontal and vertical identifications resulting in an increase in the complexity of the Benes
network. In terms of structure, it can be expressed that due to identifications, the degrees
of certain vertices are increased, thus resulting in a more complex network. Similarly, the
other entropy measures can also be compared. The most interesting observation among
the entropy/complexity comparison is that as the value of η is increasing, the difference
between the entropy measures is reducing, which in fact is a true description of the structure.
Because all three types of networks have the same interior, the differences appear on the
boundary and the neighbors of the boundary. Thus, an increase in the value of η results in
a higher increase in the interior (compared to the boundary). Therefore, the entropy and
complexity difference keeps on reducing. This comparison and behavior are also expressed
using Figures 4–6.

4

6

0

2

4

6

8

Entropy Measure for 𝐵(𝜂)

4 5 6 7

Figure 4. The graphical representation of trends of entropy measures of B(η) with 4 ≤ η ≤ 7.

4

6

0

2

4

6

8

Entropy Measure for VCB(𝜂)

4 5 6 7

Figure 5. The graphical representation of trends of entropies of VCB(η) with 4 ≤ η ≤ 7.
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4

6

0

2

4

6

8

Entropy Measure for HCB(𝜂)

4 5 6 7

Figure 6. The graphical representation of trends of entropies of HCB(η) with 4 ≤ η ≤ 7.

Table 7. Numerical values of degree-dependent TIs for B(η), VCB(η) and HCB(η).

Graph η ReZG1 ReZG2 ReZG3 ABC4 GA5 S

B(η)

3 56 9728 9728 36.5865 95.0253 1,073,314.6264
4 144 27,648 27,648 95.0819 254.0505 2,186,397.4684
5 352 71,680 71,680 233.9818 636.1010 4,452,331.3683
6 832 176,128 176,128 555.5991 1528.2020 9,063,735.5994
7 1920 417,792 417,792 1286.4695 3568.4041 18,445,616.9244

VCB(η)

3 48 192 12,288 32.8635 96 59,652.3236
4 128 512 32,768 87.6356 256 159,072.8628
5 320 1280 81,920 219.0890 640 397,682.1570
6 768 3072 196,608 525.8137 1536 954,437.1769
7 1792 7168 458,752 1226.8985 3584 222,720.0794

HCB(η)

3 49 76.2095 12,692 92.0364 879664 3,309,166.9482
4 135 216.0762 31,860 266.3577 247.9947 3,403,675.1478
5 341 558.6095 77,140 727.7314 630.9388 3,617,866.8340
6 819 1370.4762 182,836 1861.1340 1523.2770 4,101,863.5117
7 1905 3249.0095 425,748 4538.8074 3561.0906 5,177,016.0111

Table 8. Numerical values of degree-dependent entropies for B(η), VCB(η) and HCB(η).

Graph η ENT(ReZG1) ENT(ReZG2) ENT(ReZG3) ENT(ABC4) ENT(GA5) ENT(S)

B(η)

4 2.1317 2.6611 4.4288 1.9229 2.3919 5.0336
5 2.5336 3.0726 4.8504 2.3422 2.7976 5.4807
6 2.9138 3.4604 5.2438 2.7315 3.1814 5.8871
7 3.2802 3.8332 5.6201 3.1091 3.5512 6.2712

VCB(η)

4 2.0913 2.7034 4.5071 1.9170 2.3988 5.1907
5 2.4976 3.1045 4.9101 2.3285 2.8018 5.5952
6 2.8817 3.4862 5.2922 2.7151 3.1843 5.9779
7 3.2516 3.8548 5.6609 3.0860 3.5534 6.3469

HCB(η)

4 2.0814 2.6756 4.4161 2.9771 3.4205 6.5194
5 2.5102 3.0793 4.8513 4.4766 3.9066 6.5467
6 2.9028 3.4636 5.2469 3.9510 4.3828 6.6026
7 3.2749 3.8347 5.6226 4.4253 4.8559 6.7058

6. Conclusions and Future Work

In [6,11], a comprehensive and fruitful discussion was performed on the frequency
of research on numeric parameters associated to graphs. It was also emphasized that
associating numeric values to the graphs via complex computation is not sufficient, as
it does not add value to the field. In our work, we have established a model through
entropy measures which are based on information functionals, which helps in determining
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the complexity of networks. In the first step, the general formulae of entropy measures
corresponding to any value of the parameter η are given, which provides the rigorous base
of the study. However, as per the standards set in [6,11], it is important to deduce numeric
data and analyze which applications the proved results provide. In the previous section, we
presented that the numeric data provide obvious patterns in cases of few defined entropies.
However, in few cases, the patterns are reversed or no pattern is observed. But, as a
limitation of this research direction, it is also discussed in [6,11] that one numeric parameter
associated is not necessarily applicable to all properties, which in fact is a basic reason for
the introduction of so many numeric parameters of the graphs. Thus, the patterns obtained
in the previous sections justify the usefulness of entropy measures. However, the values
that are not providing the same entropy patters or no pattern cannot be discarded, and
this is a limitation of the model. Thus, it raise natural questions about whether we can
introduce a family of entropy measures that completely distinguish these networks through
same pattern of numeric values. In future, the current model can also be implemented on
other related families of networks or isomers for discrimination.
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